STAT 770 Sep. 9 Lecture Part A
 LRT Theory for Multinomial Likelihoods

Reading for this lecture: Chap. 1 Agresti, plus proofs in Ch. 16, Sec. 16.3 through 16.3.4) on Asymptotics of LRT.

Material for this lecture segment:
(i) Finishing up with Confidence Intervals for unknown Binomial Proportion p
(ii) A bit of theory and computation related to the Yates Continuity Correction
(iii) General Wilks Theorem statement (about LRT) and application to Categorical Data problems

Confidence Intervals for p in Binomial Case

Wald: $\quad\left\{p:(\hat{p}-p)^{2} \leq \chi_{1, \alpha}^{2} \cdot \frac{\hat{p}(1-\hat{p})}{n}\right\}=\hat{p} \pm \Phi^{-1}(1-\alpha / 2) \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$ Score $=$ Wilson, (inverted): $\left\{p:(\hat{p}-p)^{2} \leq \chi_{1, \alpha}^{2} \cdot \frac{p(1-p)}{n}\right\}$ (solve quadratic in p : interval approximated by Agresti-Coull interval which is Wald with $n \mapsto n+2, N_{1} \mapsto N_{1}+1$)
Clopper-Pearson $\left[p_{L}, p_{U}\right]$ (which is very conservative) inverts exact one-sided binomial tails tests such that

$$
\operatorname{pbinom}\left(N_{1}, n, p_{U}\right)=\alpha / 2=1-\operatorname{pbinom}\left(N_{1}-1, n, p_{L}\right)
$$

Issue in Sec. 1.4.2, 16.6.1 and Exercise (A): the common Wald CI has poor (low) coverage, bad for surprisingly large n !!

See Picture for $n=100$ on next slide (also on Course Webpage) to compare these intervals !!

Binomial Confidence Interval Coverage, $\mathrm{n}=100$

Binomial Distribution, CLT \& Continuity Correction

Rely on (DeMoive-Laplace) CLT to approximate

$$
\operatorname{Binom}(n, p) \approx \mathcal{N}(n p, n p(1-p))
$$

But for moderate n, discrete Binomial is granular:
Slud (1977, Ann. Prob.) inequality from my thesis:
for $X \sim \operatorname{Binomial}(n, p)$, if either $k \geq n p$ and $p \leq 1 / 4$, or $n p \leq k$, then $\quad 1-B(k-1, n, p)=P(X \geq k) \geq 1-\Phi\left(\frac{k-n p}{\sqrt{n p(1-p)}}\right)$

Relation to Yates correction: Binomial prob. $\operatorname{dbinom}(k, n, p)$ covers interval $(k-1 / 2, k+1 / 2)$, so better normal approx is

$$
P(X \geq k) \approx 1-\Phi((k-0.5-n p) / \sqrt{n p(1-p)}) \text { for } k \geq n p+1
$$

Mid-P Idea: instead use $\{P(X \geq k)+P(X>k)\} / 2$ or approx.

Illustrating Continuity Correction with R code

```
> ApproxTab = array(c(pbinom(8:20,40,1/3),
    pnorm( (8:20 - 40/3)/sqrt(40*2/9)),
    pnorm( (8:20 - 40/3 + 0.5)/sqrt(40*2/9)),
    0.5*(pnorm((8:20-40/3)/sqrt(40*2/9)) +
            pnorm((9:21-40/3)/sqrt(40*2/9)))),
    c(13,4), dimnames=list(8:20,
    c("Binom","Norm","Yates","NMidP")))
```

> round (100*t (ApproxTab), 1)

	8	9	10	11	12	13	14	15	16	17	18	19	20
Binom	4.8	9.7	17.1	27.4	39.7	53.0	65.8	76.9	85.6	91.7	95.6	97.9	99.0
Norm	3.7	7.3	13.2	21.7	32.7	45.5	58.8	71.2	81.4	89.1	94.1	97.1	98.7
Yates	5.2	9.9	17.1	26.9	39.0	52.2	65.2	76.6	85.6	91.9	95.8	98.1	99.2
NMidP	5.5	10.2	17.4	27.2	39.1	52.2	65.0	76.3	85.3	91.6	95.6	97.9	99.1

General Statement of Wilks Theorem

Ch. 16, Sec. 4 \& handouts (3) on Web-page for proofs.
Assume data iid governed by model $Y_{i} \sim f(x, \beta), \beta \in \mathcal{U} \subset \mathbb{R}^{d}$, f twice cont. diff. in β, with $\int\|\nabla \log f(y, \beta)\|^{2} f(y, \beta) d y<\infty$ and $I(\beta)=\int \nabla \nabla^{\prime} \log (f(y, \beta)) f(y, \beta) d y<\infty$ (MLE regularity cond'ns)

Let $\widehat{\beta}$ maximize $L(\beta)$ on $\mathcal{U}, \beta=(\gamma, \lambda), \gamma \in \mathbb{R}^{q}$ and
$\widehat{\beta}_{r}=$ maximizer of $L(\beta)$ on $\left\{(\gamma, \lambda) \in \mathcal{U}: \gamma=\gamma_{0}\right\}$ ($r=$ restricted) restricted model has dimension $d-q$

Likelihood Ratio test statistic under hypothesis $\mathbf{H}_{0}: \gamma=\gamma_{0}$,

$$
\wedge=-2 \log \left(L\left(\widehat{\beta}_{r}\right) / L(\widehat{\beta})\right) \xrightarrow{\mathcal{D}} \chi_{d-(d-q)}^{2}=\chi_{q}^{2} \quad \text { as } \quad n \rightarrow \infty
$$

Extensions exist to independent non-i.d. data

Application to Contingency Table Setting

Recall: $\quad Y_{a}=\left(Z_{a}, X_{a}\right)$ Multinomial with probabilities $p_{z, c}$
$\theta=\left\{p_{z, c}:(z, c) \in \mathcal{K}\right\}, \quad \beta=\left(\theta_{1}, \ldots, \theta_{d}\right), d=|\mathcal{K}|-1$

$$
L(\beta ; \underline{\mathbf{Y}})=\text { (multinom. coeff.) } \cdot \Pi_{(z, c) \in \mathcal{K}} p_{z, c}^{N_{z, c}}
$$

Lower dimensional model $p_{z, c}=\pi_{z, c}\left(\gamma_{0}, \lambda\right)$ is Null Hypothesis (Many examples will follow !)

So $\quad \operatorname{LRT} \wedge=G^{2}=-2 \log \left[L\left(\left\{\pi_{z, c}\left(\gamma_{0}, \hat{\lambda}_{r}\right\}\right) / L\left(\left\{\hat{p}_{x, c}\right\}\right)\right]\right.$

$$
=2 \sum_{(z, c) \in \mathcal{K}} N_{z, c} \log \left(\frac{N_{z, c} / n}{\pi_{z, c}\left(\gamma_{0}, \hat{\lambda}_{r}\right)}\right)
$$

