
STAT 770 Sep. 9 Lecture Part A

LRT Theory for Multinomial Likelihoods

Reading for this lecture: Chap. 1 Agresti, plus proofs in Ch. 16,

Sec. 16.3 through 16.3.4) on Asymptotics of LRT.

Material for this lecture segment:

(i) Finishing up with Confidence Intervals for unknown

Binomial Proportion p

(ii) A bit of theory and computation related to the Yates

Continuity Correction

(iii) General Wilks Theorem statement (about LRT) and

application to Categorical Data problems

1



Confidence Intervals for p in Binomial Case

Wald: {p : (p̂− p)2 ≤ χ2
1,α · p̂(1−p̂)

n } = p̂±Φ−1(1−α/2)
√

p̂(1−p̂)√
n

Score = Wilson, (inverted): {p : (p̂− p)2 ≤ χ2
1,α · p(1−p)

n }
(solve quadratic in p: interval approximated by Agresti-Coull

interval which is Wald with n 7→ n+2, N1 7→ N1 +1)

Clopper-Pearson [pL, pU ] (which is very conservative)
inverts exact one-sided binomial tails tests such that

pbinom(N1, n, pU) = α/2 = 1− pbinom(N1 − 1, n, pL)

Issue in Sec. 1.4.2, 16.6.1 and Exercise (A): the common Wald
CI has poor (low) coverage, bad for surprisingly large n !!

See Picture for n = 100 on next slide (also on Course Web-
page) to compare these intervals !!
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Binomial Distribution, CLT & Continuity Correction

Rely on (DeMoive-Laplace) CLT to approximate

Binom(n, p) ≈ N (np, np(1− p)).

But for moderate n, discrete Binomial is granular:

Slud (1977, Ann. Prob.) inequality from my thesis:

for X ∼ Binomial(n, p), if either k ≥ np and p ≤ 1/4, or np ≤ k,

then 1−B(k − 1, n, p) = P (X ≥ k) ≥ 1−Φ
(

k−np√
np(1−p)

)
Relation to Yates correction: Binomial prob. dbinom(k, n, p)
covers interval (k−1/2, k+1/2), so better normal approx is

P (X ≥ k) ≈ 1−Φ
(
(k − 0.5− np)/

√
np(1− p)

)
for k ≥ np+1

Mid-P Idea: instead use {P (X ≥ k)+ P (X > k)}/2 or approx.
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Illustrating Continuity Correction with R code

> ApproxTab = array(c(pbinom(8:20,40,1/3),

pnorm( (8:20 - 40/3)/sqrt(40*2/9)),

pnorm( (8:20 - 40/3 + 0.5)/sqrt(40*2/9)),

0.5*(pnorm((8:20-40/3)/sqrt(40*2/9)) +

pnorm((9:21-40/3)/sqrt(40*2/9)))),

c(13,4), dimnames=list(8:20,

c("Binom","Norm","Yates","NMidP")))

> round(100*t(ApproxTab),1)

8 9 10 11 12 13 14 15 16 17 18 19 20

Binom 4.8 9.7 17.1 27.4 39.7 53.0 65.8 76.9 85.6 91.7 95.6 97.9 99.0

Norm 3.7 7.3 13.2 21.7 32.7 45.5 58.8 71.2 81.4 89.1 94.1 97.1 98.7

Yates 5.2 9.9 17.1 26.9 39.0 52.2 65.2 76.6 85.6 91.9 95.8 98.1 99.2

NMidP 5.5 10.2 17.4 27.2 39.1 52.2 65.0 76.3 85.3 91.6 95.6 97.9 99.1

5



General Statement of Wilks Theorem

Ch. 16, Sec. 4 & handouts (3) on Web-page for proofs.

Assume data iid governed by model Yi ∼ f(x, β), β ∈ U ⊂ Rd,

f twice cont. diff. in β, with
∫
∥∇ log f(y, β)∥2f(y, β)dy < ∞ and

I(β) =
∫
∇∇′ log(f(y, β)) f(y, β)dy < ∞ (MLE regularity cond’ns)

Let β̂ maximize L(β) on U, β = (γ, λ), γ ∈ Rq and

β̂r = maximizer of L(β) on {(γ, λ) ∈ U : γ = γ0} (r=restricted)

restricted model has dimension d− q

Likelihood Ratio test statistic under hypothesis H0 : γ = γ0,

Λ = −2 log
(
L(β̂r)/L(β̂)

) D→ χ2
d−(d−q) = χ2

q as n → ∞

Extensions exist to independent non-i.d. data
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Application to Contingency Table Setting

Recall: Ya = (Za, Xa) Multinomial with probabilities pz,c

θ = {pz,c : (z, c) ∈ K}, β = (θ1, . . . , θd), d = |K| − 1

L(β;Y) = (multinom. coeff.) ·
∏
(z,c)∈K p

Nz,c
z,c

Lower dimensional model pz,c = πz,c(γ0, λ) is Null Hypothesis

(Many examples will follow !)

So LRT Λ = G2 = −2 log
[
L({πz,c(γ0, λ̂r})

/
L({p̂x,c})

]

= 2
∑

(z,c)∈K
Nz,c log

( Nz,c/n

πz,c(γ0, λ̂r)

)
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