STAT 770 Sep. 9 Lecture Part B LRT in Contingency Table Setting

Reading for this lecture: Agresti Ch. 2 through Sec. 2.2, plus Ch. 16 through Sec. 16.3.4.

General X^{2} form of LRT for Contingency Tables.

Special cases of row-column independence in 2×2 tables, differences between proportions

LRT in Contingency Table Setting

Recall: $\quad Y_{a}=\left(Z_{a}, X_{a}\right)$ Multinomial with probabilities $p_{z, c}$
$\theta=\left\{p_{z, c}:(z, c) \in \mathcal{K}\right\}, \quad \beta=\left(\theta_{1}, \ldots, \theta_{d}\right), d=|\mathcal{K}|-1$

$$
L(\beta ; \underline{\mathbf{Y}})=\text { (multinom. coeff.) } \cdot \Pi_{(z, c) \in \mathcal{K}} p_{z, c}^{N_{z, c}}
$$

Lower dimensional model $p_{z, c}=\pi_{z, c}\left(\gamma_{0}, \lambda\right)$ is Null Hypothesis (Many examples will follow !)

So $\quad \operatorname{LRT} \wedge=G^{2}=-2 \log \left[L\left(\left\{\pi_{z, c}\left(\gamma_{0}, \hat{\lambda}_{r}\right\}\right) / L\left(\left\{\hat{p}_{x, c}\right\}\right)\right]\right.$

$$
=2 \sum_{(z, c) \in \mathcal{K}} N_{z, c} \log \left(\frac{N_{z, c} / n}{\pi_{z, c}\left(\gamma_{0}, \widehat{\lambda}_{r}\right)}\right)
$$

Consequences for General Models

(I) G^{2} is a goodness-of-fit test statistic for the model

$$
p_{z, c}=\pi_{z, c}\left(\gamma_{0}, \lambda\right) \quad(\lambda \text { general, } d-q \text { dimensional, unknown })
$$

(II) $G^{2}=2 \sum_{k \in \mathcal{K}} N_{k} \log \left(\frac{N_{k}}{n \tilde{\pi}_{k}}\right)$ with $\tilde{\pi}_{k} \sqrt{n}$-consistent for p_{k} which means the same as $\sqrt{n}\left(\tilde{\pi}_{k}-p_{k}\right)=O_{P}(1)$ or $\sqrt{n}\left(\tilde{\pi}_{k}-N_{k} / n\right)=O_{P}(1)$ for large n which implies that as $n \rightarrow \infty$

$$
G^{2}=\sum_{k \in \mathcal{K}} \frac{\left(N_{k}-n \tilde{\pi}_{k}\right)^{2}}{n \tilde{\pi}_{k}}+o_{P}(1)=\sum_{k \in \mathcal{K}} \frac{\left(O_{k}-E_{k}\right)^{2}}{E_{k}}+o_{P}(1)
$$

and Wilks' Theorem gives $X^{2}=\sum_{k \in \mathcal{K}} \frac{\left(O_{k}-E_{k}\right)^{2}}{E_{k}} \xrightarrow{\mathcal{D}} \chi_{q}^{2}$

Proof of Assertion (II) on Last Slide

This is a Taylor Series proof, using $N_{k} /\left(n p_{k}\right)-1=o_{P}(1)$ and

$$
\begin{aligned}
& N_{k} \log \left(N_{k} /\left(n \tilde{\pi}_{k}\right)\right)=-N_{k} \log \left(1-\frac{N_{k}-n \tilde{\pi}_{k}}{N_{k}}\right) \\
= & N_{k}\left[\frac{N_{k}-n \tilde{\pi}_{k}}{N_{k}}+\frac{\left(N_{k}-n \tilde{\pi}_{k}\right)^{2}}{2 N_{k}^{2}}+O_{P}\left(\frac{\left(N_{k}-n \tilde{\pi}_{k}\right)^{3}}{N_{k}^{3}}\right)\right] \\
= & N_{k}-n \tilde{\pi}_{k}+\frac{\left(N_{k}-n \tilde{\pi}_{k}\right)^{2}}{2 n \tilde{\pi}_{k}}+O_{P}\left(\frac{\left(N_{k}-n \tilde{\pi}_{k}\right)^{3}}{n^{2}}\right)
\end{aligned}
$$

since $\log (1-z)=-z-\frac{z^{2}}{2}-O_{P}\left(z^{3}\right)$ for small z.
Sum over $k \in \mathcal{K}$ to find [using $\sum_{k} N_{k}=n=\sum_{k}\left(n \tilde{\pi}_{k}\right)$] that

$$
G^{2}=2 \sum_{k \in \mathcal{K}} N_{k} \log \left(\frac{N_{k}}{n \tilde{\pi}_{k}}\right)=\sum_{k \in \mathcal{K}} \frac{\left(N_{k}-n \tilde{\pi}_{k}\right)^{2}}{n \tilde{\pi}_{k}}+O_{P}\left(n^{-1 / 2}\right)
$$

Row-column independence in 2×2 Tables

Here $Z_{a} \in\{0,1\}$ are random, $\mathcal{K}=\{0,1\}^{2}, K=4$ and

$$
\beta=\left(\gamma, \lambda_{1}, \lambda_{2}\right)=\left(p_{11} /\left(p_{+1} p_{1+}\right), p_{+1}, p_{1+}\right)
$$

with $\gamma=p_{11} /\left(p_{+1} p_{1+}\right)=1$ under row-column independence.
The model is $\pi_{11}(\gamma, \lambda)=\gamma \lambda_{1} \lambda_{2}, \pi_{+1}=\lambda_{1}, \pi_{1+}=\lambda_{2}, \pi_{++}=1$.
The unrestricted MLE is $\hat{p}_{z c}=N_{z c} / n, z, c=0,1$, while the restricted MLE maximizes the likelihood
$\left(\lambda_{1} \lambda_{2}\right)^{N_{11}}\left(\lambda_{1}-\lambda_{1} \lambda_{2}\right)^{N_{01}}\left(\lambda_{2}-\lambda_{1} \lambda_{2}\right)^{N_{10}}\left(\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\right)^{N_{00}}$
which occurs (check it!) at ($\left.\hat{\lambda}_{1}\right)_{r}=N_{+1} / n,\left(\hat{\lambda}_{2}\right)_{r}=N_{1+} / n$
$X^{2} \stackrel{\mathcal{D}}{\approx} \chi_{1}^{2}$ from (II) above has the familiar form
$\sum_{(z, c)}\left(O_{z, c}-E_{z, c}\right)^{2} / E_{z, c}, \quad$ with $\quad O_{z, c}=N_{z, c}, E_{z, c}=n \pi_{z, c}$

R Code to Check χ_{1}^{2} Distribution

```
>tmp=array(rmultinom(1e5, 40, prob=c(.16,.24,.24,.36)), c(2,2,1e5))
    aux = apply(tmp,3, function(tab2) c(chisq.test(tab2)$stat,
    chisq.test(tab2, corr=F)$stat) )
    round( rbind(Xsq.corr = quantile(aux[,1], prob=(1:9)/10),
    Xsq = quantile(aux[,2], prob=(1:9)/10),
    chisq = qchisq((1:9)/10, 1) ), 3)
        10% 20% 30% 40% 50% 60% 70% 80% 90%
Xsq.corr 0.000 0.000 0.004 0.038 0.111 0.264 0.508 0.938 1.742
Xsq 0.017 0.067 0.152 0.302 0.444 0.750 1.125 1.710 2.824
chisq 0.016 0.064 0.148 0.275 0.455 0.708 1.074 1.642 2.706
```

Similar accuracy when $n=80$
NB Yates over-corrects badly, used only when conditioning on marginals!!

Testing Equality of Row Proportions in 2×2 Table

In this setting, Z_{a} values are fixed by design, so the row-totals $N_{z+}=n_{z}$ are nonrandom and known, and $N_{z 1} \sim \operatorname{Binom}\left(n_{z}, \pi_{z}\right)$, with $\pi_{z}=p_{z 1} / p_{z+}$.

Here we can take $\beta=(\gamma, \lambda)$ in different ways, with $H_{0}: \gamma=1$ and $\lambda=\pi_{0}$ under H_{0}.
Example 1. Relative Risk, RR: $\beta=\left(\pi_{1} / \pi_{0}, \pi_{0}\right)$
Example 2. Odds Ratio, OR: $\beta=\left(\left[\pi_{1} /\left(1-\pi_{1}\right)\right] /\left[\pi_{0} /\left(1-\pi_{0}\right)\right], \pi_{0}\right)$
In RR, the restricted MLE (under $\gamma=1$) maximizes

$$
\left[\Pi_{z=0}^{1}\binom{n_{z}}{N_{z 1}}\right] \pi_{0}^{N_{11}+N_{01}}\left(1-\pi_{0}\right)^{N_{10}+N_{00}}=c \cdot \pi_{0}^{N_{+1}}\left(1-\pi_{0}\right)^{N_{+0}}
$$

In both RR and $\operatorname{OR}, \hat{\lambda}=N_{+1} / n$ and $E_{z, c}=n_{z} \pi_{0}^{c}\left(1-\pi_{0}\right)^{1-c}$

