STAT 770 Sep. 14 Lecture Part B

Loose Ends from Previous Lecture Segments

Reading for this lecture:

Section 1.6 in Agresti for Bayes, Sections 1.2 .5 and 1.5 for Multinomial and Poisson likelihoods.

We consolidate topics mentioned in previous lectures:
(i). Bayes Estimates \& Intervals for Binomial/Multinomial data.
(ii). Connection between Multinomial \& Poisson likelihoods from different data-collection methods for 2×2 contingency tables.
(iii). LRT in Multinomial Setting.

Bayes Multinomial Examples

Let $\underline{\mathbf{Y}}=\left\{X_{a}\right\}_{a=1}^{n}$ with $P\left(X_{a}=j\right)=\beta_{j}$ if $1 \leq j \leq d$, and $P\left(X_{a}=d+1\right)=1-\beta_{1}-\cdots-\beta_{d}, \quad N_{j} \equiv \sum_{a=1}^{n} I_{\left[Y_{a}=j\right]}$
$\operatorname{Dirichlet}(\underline{\mu}) \quad$ prior $\propto\left[\prod_{j=1}^{d} \beta_{j}^{\mu_{j}-1}\right] \cdot\left(1-\sum_{j=1}^{d} \beta_{j}\right)^{\mu_{d+1}-1}$ where $\beta_{j}>0, j=1, \ldots, d$, such that $\beta_{1}+\cdots+\beta_{d}<1$

Posterior $f(\beta \mid \underline{\mathbf{Y}}) \sim \operatorname{Dirichlet}\left(\mu_{1}+N_{1}, \ldots, \mu_{d+1}+N_{d+1}\right)$

$$
\begin{gathered}
\beta_{j} \sim \operatorname{Beta}\left(\mu_{j}+N_{j}, \sum_{k \leq d+1: k \neq j}\left(\mu_{k}+N_{k}\right)\right) \text { given } \underline{\mathbf{Y}} \\
E\left(\beta_{j} \mid \underline{\mathbf{N}}\right)=\left(\mu_{j}+N_{j}\right) / \sum_{k=1}^{d+1}\left(\mu_{k}+N_{k}\right)
\end{gathered}
$$

Bayes Data Examples

(1). Suppose $Y_{a} \sim \operatorname{Bernoulli}(p), a=1, \ldots 50, \quad N_{1}=13$. Consider priors: Jeffreys Beta($1 / 2,1 / 2$), or Uniform Beta(1, 1).

Estimates: Jeffreys $13.5 / 51=0.265$, Uniform $14 / 52=0.269$
Intervals: Jeffreys qbeta(c (.025,.975),13.5,37.5) $=(.154, .393)$

$$
\text { Uniform qbeta }(c(.025, .975), 14,38)=(.159, .396)
$$

Priors pictured on next slide

Bayes Credible Interval Coverage

(2). Coverage: as function of (n,p), for fixed $b=1 / 2$ (Jeffreys) or $b=1$ (Uniform)

$$
\begin{gathered}
\sum_{k=0}^{n} \operatorname{dbinom}(\mathrm{k}, \mathrm{n}, \mathrm{p}) \mathrm{I}[\text { qbeta }(.025, \mathrm{k}+\mathrm{b}, \mathrm{n}-\mathrm{k}+\mathrm{b})< \\
\mathrm{p}<\operatorname{qbeta}(.975, \mathrm{k}+\mathrm{b}, \mathrm{n}-\mathrm{k}+\mathrm{b})]
\end{gathered}
$$

Plotted coverage together with that of Score Interval, for $n=50$, on next slide.

Coverage Probs for Jeffreys, Uniform and Score Ints

Multinomial, Binomial, Poisson Likelihood (2×2)

Consider 2×2 table with counts $N_{z x}$ with marginal totals, N_{z+}, etc. and underlying parameters $\pi_{z x}$

	$\mathrm{X}=0$	1	Tot
$\mathrm{Z}=0$	N_{00}	N_{01}	N_{0+}
1	N_{10}	N_{11}	N_{1+}
Tot	N_{+0}	N_{+1}	N_{++}

Three scenarios possible with likelihood $L(\underline{\pi}) \propto \prod_{z, x=0,1} \pi_{z x}^{N_{z x}}$
(1). n fixed, $\left(N_{z x}, z, x=0,1\right) \sim \operatorname{Multinom}(n, \underline{\pi})$
(2). N_{z+} fixed, $N_{z 1} \sim \operatorname{Binom}\left(n, \pi_{z 1}\right), \pi_{z+}=1$
(3). all $N_{z x} \sim \operatorname{Poisson}\left(n \pi_{z x}\right)$ indep., $\pi_{++}=1$

Scenario (3) is like the Poisson problem (B) in HW1, or eq. (1.5) on p.8.

Multinomial 2×2 LRT Example (Sec.2.1.6)

$Z_{a} \in\{0,1\}$ random (Seat-belt use), $X_{a} \in\{0,1\}$ (Fatal accident)

$$
\beta=\left(\gamma, \lambda_{1}, \lambda_{2}\right)=\left(p_{11} /\left(p_{+1} p_{1+}\right), p_{+1}, p_{1+}\right), \quad K=4
$$

with $\gamma=p_{11} /\left(p_{+1} p_{1+}\right)=1$ under row-column independence.
Mmodel is $\pi_{11}(\gamma, \lambda)=\gamma \lambda_{1} \lambda_{2}, \pi_{+1}=\lambda_{1}, \pi_{1+}=\lambda_{2}, \pi_{++}=1$.
unrestricted MLE $\hat{p}_{z c}=N_{z c} / n$, restricted MLE maximizes $\left(\lambda_{1} \lambda_{2}\right)^{N_{11}}\left(\lambda_{1}-\lambda_{1} \lambda_{2}\right)^{N_{01}}\left(\lambda_{2}-\lambda_{1} \lambda_{2}\right)^{N_{10}}\left(\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\right)^{N_{00}}$ which occurs (check it!) at $\left(\hat{\lambda}_{1}\right)_{r}=N_{+1} / n,\left(\hat{\lambda}_{2}\right)_{r}=N_{1+} / n$

$$
X^{2}=\sum_{z, c} \frac{\left(N_{z c}-E_{z c}\right)^{2}}{E_{z c}}, E_{11}=\frac{N_{+1} N_{1+}}{n}, E_{1+}=\frac{N_{1+}}{n}, E_{+1}=\frac{N_{+1}}{n}
$$

