STAT 770 Sep. 21 Lecture Part A Testing & Estimation for 2-way Tables

Reading for this lecture:

Chapter 2 in Agresti, plus review of Delta Method in Sec. 16.1.

We collect LRTand MLE-based Hypothesis Testing examples for 2-way tables, under various conditioning and parameterization.

Along the way, we discuss the (Univariate) Delta Method as a general way to obtain limiting normal distribution for a transformed parameter MLE.

Recall: LRT in Contingency Table Setting

$$
Y_a = (Z_a, X_a)
$$
 Multinomial with probabilities $p_{z,c}$
\n
$$
\theta = \{p_{z,c} : (z, c) \in \mathcal{K}\}, \quad \beta = (\theta_1, ..., \theta_d), d = |\mathcal{K}| - 1
$$
\n
$$
L(\beta; \underline{Y}) = (\text{multinom. coeff.}) \cdot \prod_{(z, c) \in \mathcal{K}} p_{z,c}^{N_{z,c}}
$$

Lower dimensional model $p_{z,c} = \pi_{z,c}(\gamma_0, \lambda)$ is Null Hypothesis (Many examples will follow !)

So LRT
$$
\Lambda = G^2 = -2 \log \left[L(\{\pi_{z,c}(\gamma_0, \hat{\lambda}_r\}) \middle/ L(\{\hat{p}_{x,c}\}) \right]
$$

$$
=2\sum_{(z,c)\in\mathcal{K}}N_{z,c}\log\left(\frac{N_{z,c}/n}{\pi_{z,c}(\gamma_0,\widehat{\lambda}_r)}\right)
$$

2

Row-column independence in 2×2 Tables

Here $Z_a \in \{0, 1\}$ are random, $K = \{0, 1\}^2$, $K = 4$ and $\beta = (\gamma, \lambda_1, \lambda_2) = (p_{11}/(p_{+1}p_{1+}), p_{+1}, p_{1+})$

with $\gamma = p_{11}/(p_{+1}p_{1+}) = 1$ under row-column independence.

The model is
$$
\pi_{11}(\gamma, \lambda) = \gamma \lambda_1 \lambda_2
$$
, $\pi_{+1} = \lambda_1$, $\pi_{1+} = \lambda_2$, $\pi_{++} = 1$.

The unrestricted MLE is $\hat{p}_{zc} = N_{zc}/n$, $z, c = 0, 1$, while the restricted MLE maximizes the likelihood

 $(\lambda_1\lambda_2)^{N_{11}}\,(\lambda_1-\lambda_1\lambda_2)^{N_{01}}\,(\lambda_2-\lambda_1\lambda_2)^{N_{10}}\,((1-\lambda_1)(1-\lambda_2))^{N_{00}}$ which occurs (check it!) at $(\hat{\lambda}_1)_r = N_{+1}/n$, $(\hat{\lambda}_2)_r = N_{1+}/n$

 $X^2 \stackrel{\mathcal{D}}{\approx} \chi_1^2$ $\frac{2}{1}$ from (II) above has the familiar form $\sum_{(z,c)}{(O_{z,c} - E_{z,c})^2}/{E_{z,c}}$, with $O_{z,c} = N_{z,c}$, $E_{z,c} = n \pi_{z,c}$

Estimation (or Wald Testing) in Multinomial 2×2 Tables

Parameter β on last slide is equivalent to $(\pi_{11}, \pi_{01}, \pi_{10})$, so MLE is the function of relative-frequency MLEs:

$$
\hat{\lambda}_1 = \hat{\pi}_{+1} = N_{+1}/n \,, \quad \hat{\lambda}_2 = \hat{\pi}_{1+} = N_{1+}/n \,, \quad \hat{\gamma} = \frac{n N_{11}}{N_{+1} N_{1+}}
$$

How to write down joint dist.'n of $\hat{\beta} - \beta$, or marginal of $\hat{\gamma}$?

This is a case of Jacobian change of variable:

$$
b \equiv (\pi_{11}, \pi_{01}, \pi_{01}) \mapsto \beta \equiv (\gamma, \lambda_1, \lambda_2)
$$

$$
(b_1, b_2, b_3) \mapsto \left(\frac{b_1}{(b_1 + b_2)(b_1 + b_3)}, b_1 + b_2, b_1 + b_3\right)
$$

(Univariate) Delta Method

Suppose θ scalar and $\sqrt{n}(\tilde{\theta}-\theta) \sim \mathcal{N}(0, \sigma^2)$

σ^2 is called asymptotic variance or a.var of $\tilde{\theta}$

If $\psi = g(\theta)$, $\tilde{\psi} = g(\tilde{\theta})$, with g known and continuously differentiable, then

$$
\sqrt{n} \left(g(\tilde{\theta}) - g(\theta) \right) \stackrel{P}{\approx} \sqrt{n} g'(\theta) \left(\tilde{\theta} - \theta \right) \stackrel{D}{\approx} \mathcal{N}(0, (g'(\theta))^2 \sigma^2)
$$

Can make confidence intervals

$$
\psi \,\in\, \hat{\psi}\pm\,\frac{\Phi^{-1}(1-\alpha/2)}{\sqrt{n}}\,|g'(\tilde{\theta})|\,\tilde{\sigma}
$$

Multivariate Delta Method

asymptotic distribution: $\sqrt{n}\, (\widehat{\bf b} - {\bf b}) \, \stackrel{\mathcal{D}}{\longrightarrow} \, \mathcal{N}\big(\mathbf{0},\, \text{diag}({\bf b}) \, - \, {\bf b} {\bf b}^{tr} \big)$ smooth transform: $(b_1, b_2, b_3) \leftrightarrow \left(\frac{b_1}{(b_1 + b_2)}\right)$ $\frac{b_1}{(b_1+b_2)(b_1+b_3)}$, b_1+b_2 , b_1+b_3 Jacobian: $J^{tr} = \nabla_{\mathbf{b}} \beta^{tr} =$ $\sqrt{ }$ \vert $\gamma(\frac{1}{\pi i})$ $\overline{\pi_{11}}$ $-\frac{1}{\pi}$ $\overline{\pi_{+1}}$ $-\frac{1}{\pi}$ $\overline{\pi_{1+}}$) 1 1 $-\gamma/\pi_{+1}$ 1 0 $-\gamma/\pi_{1+}$ 0 1 \setminus $\begin{array}{c} \hline \end{array}$

Taylor approx. $\sqrt{n} (\widehat{\beta} - \beta) \stackrel{P}{\approx}$ $\stackrel{\text{\tiny i}}{\approx}$ J √ \overline{n} $(\widehat{\textbf{b}} - \textbf{b})$ $\stackrel{\mathcal{D}}{\approx} \mathcal{N}\big(0,\, J\big[\mathrm{diag}(\mathbf{b})-\mathbf{b}\mathbf{b}^{tr}\big]J^{tr}\big).$

From upper-left of variance matrix, can read off a.var $(\widehat{\gamma})\,=\,\nabla_{{\mathbf b}}'\gamma\left[\operatorname{diag}({\mathbf b})-{\mathbf b} b^{tr}\right]\nabla_{{\mathbf b}}\gamma$

Testing Equality of Row Proportions in 2×2 Table

In this setting, Z_a values are fixed by design, so the row-totals $N_{z+} = n_z$ are nonrandom and known, and $N_{z1} \sim \text{Binom}(n_z, \pi_z)$, with $\pi_z = p_{z1}/p_{z+}$.

Here we can take $\beta = (\gamma, \lambda)$ in different ways, with H_0 : $\gamma = 1$ and $\lambda = \pi_0$ under H_0 . Example 1. Relative Risk, RR: $\beta = (\pi_1/\pi_0, \pi_0)$ Example 2. Odds Ratio, OR: $\beta = (\frac{\pi_1}{(1-\pi_1)}/\frac{\pi_0}{(1-\pi_0)}$, π_0)

In RR, the restricted MLE (under $\gamma = 1$) maximizes $\left[\prod_{z=0}^{1}\binom{n_{z}}{N_{z}}\right]$ N_{z1} $\int \frac{N_{11}+N_{01}}{N_{01}}$ $N_{0}^{N_{11}+N_{01}}(1-\pi_{0})^{N_{10}+N_{00}}=c\cdot\pi_{0}^{N+1}$ $_{0}^{N+1}(1-\pi _{0})^{N+0}% =\frac{1}{N+1}\left(1-\pi _{0}\right) ^{N+1}$ In both RR and OR, $\hat{\lambda} = N_{+1}/n$ and $E_{z,c} = n_z \pi_{0}^c$ $^{c}_{0}(1-\pi _{0})^{1-c}$

Delta Methods for RR and OR Estimates

$$
\begin{aligned}\n\text{RR case:} \quad b &= \begin{pmatrix} \pi_1 \\ \pi_0 \end{pmatrix} \mapsto \beta = \begin{pmatrix} \pi_1/\pi_0 \\ \pi_0 \end{pmatrix}, \quad \nabla_{\mathbf{b}} \beta_1 = \begin{pmatrix} 1/\pi_0 \\ -\pi_1/\pi_0^2 \end{pmatrix} \\
\hat{\pi}_z &= N_{z1}/n_z \; \sim \; \mathcal{N}\Big(\pi_z, \, n_z^{-1} \pi_z (1 - \pi_z)\Big) \quad \text{independent}\n\end{aligned}
$$

$$
\text{a.var}(\hat{\beta}_1) = \left(\frac{1}{\pi_0}\right)^2 (1, -\beta_1) \begin{bmatrix} \pi_1 (1-\pi_1)/n_1 & 0\\ 0 & \pi_0 (1-\pi_0)/n_0 \end{bmatrix} \begin{bmatrix} 1\\ -\beta_1 \end{bmatrix}
$$

So can read off a.var and use approximate normal distribution to construct (Wald-type) CIs.

Log OR in place of OR, two sets of Binomial Trials

logOR:
$$
b = \begin{pmatrix} \pi_1 \\ \pi_0 \end{pmatrix} \mapsto \beta = \begin{pmatrix} \log \left\{ \frac{\pi_1(1-\pi_0)}{(1-\pi_1)\pi_0} \right\}, \ \pi_0 \end{pmatrix}, \quad \frac{\partial \beta_1}{\partial b_z} = \frac{1}{\pi_z(1-\pi_z)}
$$

$$
\hat{\pi}_z = N_{z1}/n_z \sim \mathcal{N}\big(\pi_z, n_z^{-1}\pi_z(1-\pi_z)\big) \text{ independent}
$$

$$
\text{a.var}(\hat{\beta}_1) = \sum_{z=0}^1 \frac{1}{(\pi_z(1-\pi_z))^2} \pi_z(1-\pi_z) \frac{n}{n_z} = \sum_{z=0}^1 \frac{n}{n_z \pi_z(1-\pi_z)}
$$

Again read off a.var and use approx. N to construct (Wald-type) CIs.

Note. a.var is the variance for the limiting dist'n for $\sqrt{n}(\hat{\beta}-\beta)$