STAT 770 Sep. 23 Lecture More on Dependence Structure in 2-way Tables

Reading for this lecture:

Chapter 2 in Agresti.

Today's topics (not separated into parts A, B):
(1) row-column independence for larger two-way tables;
(2) Sensitivity \& specificity, 'prevalence'
(3) Case-control 2-way $2 \times K$ tables
(4) Conditional Association, Stratified ($K \times 2 \times 2$) tables

Multinomial 2×2 LRT Example (Sec.2.1.6)

$Z_{a} \in\{0,1\}$ random (Seat-belt use), $X_{a} \in\{0,1\}$ (Fatal accident)

$$
\beta=\left(\gamma, \lambda_{1}, \lambda_{2}\right)=\left(p_{11} /\left(p_{+1} p_{1+}\right), p_{+1}, p_{1+}\right), \quad K=4
$$

with $\gamma=p_{11} /\left(p_{+1} p_{1+}\right)=1$ under row-column independence.
Model is $\pi_{11}(\gamma, \lambda)=\gamma \lambda_{1} \lambda_{2}, \pi_{+1}=\lambda_{1}, \pi_{1+}=\lambda_{2}, \pi_{++}=1$.
unrestricted MLE $\hat{p}_{z c}=N_{z c} / n$, restricted MLE maximizes $\left(\lambda_{1} \lambda_{2}\right)^{N_{11}}\left(\lambda_{1}-\lambda_{1} \lambda_{2}\right)^{N_{01}}\left(\lambda_{2}-\lambda_{1} \lambda_{2}\right)^{N_{10}}\left(\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)\right)^{N_{00}}$ which occurs (check it!) at $\left(\hat{\lambda}_{1}\right)_{r}=N_{+1} / n,\left(\hat{\lambda}_{2}\right)_{r}=N_{1+} / n$ $X^{2}=\sum_{z, c} \frac{\left(N_{z c}-E_{z c}\right)^{2}}{E_{z c}}, E_{11}=\frac{N_{+1} N_{1+}}{n}, E_{1+}=\frac{N_{1+}}{n}, E_{+1}=\frac{N_{+1}}{n}$
Same method applies to larger 2-way tables !

Sensitivity and Specificity in 2×2 tables

Consider table with Z_{a} a diagnostic prediction Y / N and X_{a} the indicator of the actual Disease condition D / N.

Sensitivity: $\quad P\left(Z_{a}=Y \mid X_{a}=D\right)=\pi_{Y D} / \pi_{+D} \quad$ True Positive

Specificity: $P\left(Z_{a}=N \mid X_{a}=N\right)=\pi_{N N} / \pi_{+N}$ True Negative
Prevalence: $P\left(X_{a}=D\right)$ delicate case when this is small

If $P(\mathrm{TP})=0.96, P(\mathrm{TN})=0.97, P(D)=.005$, test pos: then
$P\left(X_{a}=D \mid Z_{a}=Y\right)=.005 * .96 /(.005 * .96+.995 * .03)=0.139$
Very low prevalence leads to low Positive Predictive Value

Case-Control Studies, $2 \times K$

Collect records on Risk-factor categories $k=1, \ldots, K$ separately for Disease Cases and for comparable Controls

Here row-totals $n_{z}=N_{z+}$ are fixed, often $n_{C} / n_{D}=1$ or 2

Example (Br.Med.J. 1950): $\mathrm{D}=$ Lung Cancer, $\mathrm{k}=1 \Leftrightarrow$ Smoking

	Smoker	Non
Cases	688	21
Controls	650	59

Hugely influential, $O R=2.97$; other similar studies with stricter 'smoker' def'n had higher OR

Critics (including R.A.Fisher!) asked whether omitted Riskfactors defining population subgroups would explain the OR

Conditional Association, Stratification/Confounding

Confounding: in Cancer/Smoking case-control studies with higher OR's, Cornfield (1956) asked: could there be K pop subgroups with different conditional ORs that account for overall OR ?

Notation: $\pi_{k z x}$ cell-probs, $N_{k z x}$ counts,

$$
n_{z}=N_{+z+} \text { or } N_{++x} \text { fixed }
$$

Conditional OR: separate Odds Ratio for population subgroup k

$$
\mathrm{OR}=\theta=\frac{\pi_{+11} \pi_{+00}}{\pi_{+01} \pi_{+10}}, \quad \theta_{k}=\frac{\pi_{k 11} \pi_{k 00}}{\pi_{k 01} \pi_{k 10}}
$$

When overall OR is ≥ 10, some subgroup ORs would have to be absurdly large !

Conditional Association, Stratification $K \times 2 \times 2$

Sec.2.3.2 Race \& Death Penalty covered in R Script in file R-ContingTable.RLog using
separately coded OR function and apply

Separate Odds Ratios 0.431 and 0 stratified by Victim's Race

Combined Odds Ratio 1.45 instance of Simpson's Paradox

Small Additional Use of Univariate Delta Method

In last lecture, we found it convenient to talk about approximate normal distribution of log Odds Ratio estimate $\widehat{\beta}_{1}$ and estimated standard error $\widehat{\sigma}_{l o g O R}$ for Wald-type CI $\widehat{\beta}_{1} \pm 1.96 \hat{\sigma}_{l o g O R}$.

Can form confidence interval for Odds Ratio $\psi=e^{\beta_{1}}$ in 2 ways:
(i) Transform the previous interval:

$$
\left(\exp \left\{\widehat{\beta}_{1}-1.96 \widehat{\sigma}_{l o g O R}\right\}, \exp \left\{\widehat{\beta}_{1}+1.96 \widehat{\sigma}_{l o g O R}\right\}\right)
$$

(ii) Wald interval for transformed parameter: $e^{\widehat{\beta}_{1}} \pm 1.96 \hat{\sigma}_{O R}$ where Delta Method gives $\sqrt{n}\left(e^{\widehat{\beta}_{1}}-e^{\beta_{1}}\right) \approx e^{\beta_{1}} \sqrt{n}\left(\widehat{\beta}_{1}-\beta_{1}\right)$ which implies $\hat{\sigma}_{O R}=e^{\widehat{\beta}_{1}} \cdot \widehat{\sigma}_{l o g O R}$

