STAT 770 Sep. 23 Lecture More on Dependence Structure in 2-way Tables

- Reading for this lecture:
- Chapter 2 in Agresti.
- Today's topics (not separated into parts A, B):
- (1) row-column independence for larger two-way tables;
- (2) Sensitivity & specificity, 'prevalence'
- (3) Case-control 2-way $2 \times K$ tables
- (4) Conditional Association, Stratified $(K \times 2 \times 2)$ tables

Multinomial 2×2 LRT Example (Sec.2.1.6)

$$\begin{split} Z_a \in \{0,1\} \text{ random (Seat-belt use), } & X_a \in \{0,1\} \text{ (Fatal accident)} \\ & \beta = (\gamma,\lambda_1,\lambda_2) = \left(p_{11}/(p_{+1}p_{1+}), p_{+1}, p_{1+}\right), \quad K = 4 \\ \text{with } & \gamma = p_{11}/(p_{+1}p_{1+}) = 1 \text{ under row-column independence.} \\ \text{Model is } & \pi_{11}(\gamma,\lambda) = \gamma\lambda_1\lambda_2, \ \pi_{+1} = \lambda_1, \ \pi_{1+} = \lambda_2, \ \pi_{++} = 1. \\ \text{unrestricted MLE } & \hat{p}_{zc} = N_{zc}/n, \text{ restricted MLE maximizes} \\ & (\lambda_1\lambda_2)^{N_{11}} (\lambda_1 - \lambda_1\lambda_2)^{N_{01}} (\lambda_2 - \lambda_1\lambda_2)^{N_{10}} ((1 - \lambda_1)(1 - \lambda_2))^{N_{00}} \\ \text{which occurs (check it!) at } & (\hat{\lambda}_1)_r = N_{+1}/n, \ (\hat{\lambda}_2)_r = N_{1+}/n \end{split}$$

$$X^{2} = \sum_{z,c} \frac{(N_{zc} - E_{zc})^{2}}{E_{zc}}, \ E_{11} = \frac{N_{+1}N_{1+}}{n}, \ E_{1+} = \frac{N_{1+}}{n}, \ E_{+1} = \frac{N_{+1}}{n}$$

Same method applies to larger 2-way tables !

Sensitivity and Specificity in 2×2 tables

Consider table with Z_a a diagnostic prediction Y/N and X_a the indicator of the actual Disease condition D/N.

Sensitivity: $P(Z_a = Y | X_a = D) = \pi_{YD}/\pi_{+D}$ True Positive

Specificity: $P(Z_a = N | X_a = N) = \pi_{NN}/\pi_{+N}$ True Negative

Prevalence: $P(X_a = D)$ delicate case when this is small

If P(TP) = 0.96, P(TN) = 0.97, P(D) = .005, test pos: then $P(X_a = D | Z_a = Y) = .005 * .96 / (.005 * .96 + .995 * .03) = 0.139$

Very low prevalence leads to low Positive Predictive Value

Case-Control Studies, $2 \times K$

Collect records on Risk-factor categories k = 1, ..., Kseparately for Disease Cases and for *comparable* Controls

Here row-totals $n_z = N_{z+}$ are fixed, often $n_C/n_D = 1$ or 2

Example (*Br.Med.J. 1950*): D=Lung Cancer, $k=1 \Leftrightarrow$ Smoking

	Smoker	Non
Cases	688	21
Controls	650	59

Hugely influential, OR = 2.97; other similar studies with stricter 'smoker' def'n had **higher** OR

Critics (including R.A.Fisher!) asked whether omitted Riskfactors defining population subgroups would explain the OR

Conditional Association, Stratification/Confounding

Confounding: in Cancer/Smoking case-control studies with higher OR's, Cornfield (1956) asked: could there be K pop subgroups with different conditional ORs that account for overall OR ?

Notation: π_{kzx} cell-probs, N_{kzx} counts, $n_z = N_{+z+}$ or N_{++x} fixed

Conditional OR: separate Odds Ratio for population subgroup k

OR =
$$\theta$$
 = $\frac{\pi_{+11}\pi_{+00}}{\pi_{+01}\pi_{+10}}$, θ_k = $\frac{\pi_{k11}\pi_{k00}}{\pi_{k01}\pi_{k10}}$

When overall OR is ≥ 10 , some subgroup ORs would have to be absurdly large !

Conditional Association, Stratification $K \times 2 \times 2$

Sec.2.3.2 Race & Death Penalty Covered in R Script in file R-ContingTable.RLog USING

separately coded OR function and apply

Separate Odds Ratios 0.431 and 0 stratified by Victim's Race

Combined Odds Ratio 1.45 instance of Simpson's Paradox

Small Additional Use of Univariate Delta Method

In last lecture, we found it convenient to talk about approximate normal distribution of log Odds Ratio estimate $\hat{\beta}_1$ and estimated standard error $\hat{\sigma}_{logOR}$ for Wald-type CI $\hat{\beta}_1 \pm 1.96 \hat{\sigma}_{logOR}$.

Can form confidence interval for Odds Ratio $\psi = e^{\beta_1}$ in 2 ways:

(i) Transform the previous interval:

$$\left(\exp\left\{\hat{\beta}_{1}-1.96\,\hat{\sigma}_{logOR}\right\},\,\exp\left\{\hat{\beta}_{1}+1.96\,\hat{\sigma}_{logOR}\right\}\right)$$

(ii) Wald interval for transformed parameter: $e^{\hat{\beta}_1} \pm 1.96 \,\hat{\sigma}_{OR}$ where Delta Method gives $\sqrt{n} \left(e^{\hat{\beta}_1} - e^{\beta_1} \right) \approx e^{\beta_1} \sqrt{n} \left(\hat{\beta}_1 - \beta_1 \right)$ which implies $\hat{\sigma}_{OR} = e^{\hat{\beta}_1} \cdot \hat{\sigma}_{logOR}$