STAT 770 Feb. 21 Lecture
 Misc. Topics on Testing and CI's in 2-way Tables

Reading and Topics for this lecture:
(1) Fisher exact test, Section 3.5.1-3.5.3 (Problem D on HW2)
(2) Nested hypotheses and Partitioning of LRT statistic \& X^{2}, Sec. 3.3.3
(3) Conditional versus marginal independence (Sec. 2.3.4) and use of OR's in 2×2 subtables (Sec. 2.4.1)
(4) Pearson and Standardized Residuals, Sec. 3.3.1-3.3.2

Fisher Exact Test

In 2×2 tables with small n, RA Fisher suggested to condition on all marginals in testing for row-column independence. We saw in HW1(C)(a) that then $N_{11} \sim \operatorname{Hypergeom}\left(n, N_{1+}, N_{+1}\right)$
$P\left(N_{11}=k\right)=\binom{N_{1+}}{k}\binom{N_{2+}}{N_{+1}-k} /\binom{n}{N_{+1}}=\operatorname{dhyper}\left(k, N_{1+}, N_{2+}, N_{+1}\right)$
Example 1. $N_{1+}=\#$ Defective in n manufactured items, $N_{+1}=m$ sampled, N_{11} defective in sample. Quality inspection

Example 2. Tea-tasting or HW 2 (D): do experiment drawing from fixed numbers $D, n-D$ where total number to be drawn is fixed.

In Examples, conditioning on marginals is unnecessary: the experiment fixes them!

Exact Test or CI, Illustration

If a set of 36 people contains 20 who favor Trump and 16 for Biden, but a random sample of 10 has 8 for Biden, the p-value for a 2 -sided test that the candidates are tied in this group is
$2 *(1-\operatorname{phyper}(7,18,18,10))=0.060=2 * 7613892 /$ choose $(36,10)$
and the power of the test that rejects on $[3,7]^{c}$ is $\operatorname{phyper}(2,16,20,10)+1-\operatorname{phyper}(7,16,20,10)=0.081$
while $\operatorname{phyper}(2,30,6,10)+1-\operatorname{phyper}(7,30,6,10)=0.801$
Random sampling enforces row-column independence.
The 1-sided CI for k based on ($H_{0}: \geq k$ for Trump) is

$$
\{k: 1-\operatorname{phyper}(7,36-\mathrm{k}, \mathrm{k}, 10)>0.05\}=[0,16]
$$

Idea of Nested Hypothesis Tests

Example: H_{A} : Ind/Repub row-col independent H_{B} : Dem \times Not-Dem row-col independent

PartyTabl
Dem Indep Repub
Female 762327468
Male 484239477

Nested hypotheses: $H_{0}=H_{A} \cap H_{B}$ full row-column indep.
$H_{1}=H_{A}, \quad H_{2}=$ unrestricted multinomial, $\quad H_{0} \subset H_{1} \subset H_{2}$
Remark: testing H_{B} vs H_{B}^{c} is just like testing H_{0} vs H_{1}
Model dimensions: $\operatorname{dim}\left(H_{0}\right)=3, \operatorname{dim}\left(H_{1}\right)=4, \operatorname{dim}\left(H_{2}\right)=5$

Behavior of LRTs in nested setting

Denote restricted MLEs by $\hat{\theta}\left(H_{k}\right)$, likelihoods by $L(\theta)$
LRT for H_{0} versus $H_{1} \backslash H_{0}: \quad-2 \log \left[L\left(\hat{\theta}\left(H_{0}\right)\right) / L\left(\hat{\theta}\left(H_{1}\right)\right)\right]$
LRT for H_{1} versus $H_{2} \backslash H_{1}: \quad-2 \log \left[L\left(\hat{\theta}\left(H_{1}\right)\right) / L\left(\hat{\theta}\left(H_{2}\right)\right)\right]$
LRT for H_{0} versus $H_{2} \backslash H_{0}: \quad-2 \log \left[L\left(\widehat{\theta}\left(H_{0}\right)\right) / L\left(\hat{\theta}\left(H_{2}\right)\right)\right]$
Note that 3rd LRT is the sum of the first two LRT's, and degrees of freedom add! See RscriptNested.RLog

Book relates exact additive partitioning to 'orthogonal Odds Ratios': large-sample independence of partitioned LRTs.

Marginal versus Conditional Indep.

Consider categorical factors $X, Y, Z: \quad X, Y$ conditionally indep given Z if for each $i, j, k, \quad P(X=i \mid Y=j, Z=k)$ is free of j, or $P(X=i, Y=j \mid Z=k)=P(X=i \mid Z=k) \cdot P(Y=j \mid Z=k)$

But generally X, Y are not independent when this is true!
$P(X=i, Y=j)=\sum_{k} P(Z=k) P(X=i \mid Z=k) P(Y=j \mid Z=k)$
An important reason why aggregating an inhomogeneous population over an important stratifying variable may mislead us about dependence between categorical factors!

