STAT 770 Feb. 21 Lecture Misc. Topics on Testing and CI's in 2-way Tables

Reading and Topics for this lecture:

- (1) Fisher exact test, Section 3.5.1–3.5.3 (Problem D on HW2)
- (2) Nested hypotheses and Partitioning of LRT statistic & X^2 , Sec. 3.3.3
- (3) Conditional versus marginal independence (Sec. 2.3.4) and use of OR's in 2×2 subtables (Sec. 2.4.1)
- (4) Pearson and Standardized Residuals, Sec. 3.3.1-3.3.2

Fisher Exact Test

In 2×2 tables with small n, RA Fisher suggested to condition on all marginals in testing for row-column independence. We saw in HW1(C)(a) that then $N_{11} \sim \text{Hypergeom}(n, N_{1+}, N_{+1})$

 $P(N_{11} = k) = \binom{N_{1+}}{k} \binom{N_{2+}}{N_{+1}-k} / \binom{n}{N_{+1}} = \text{dhyper}(k, N_{1+}, N_{2+}, N_{+1})$

Example 1. $N_{1+} = \#$ Defective in *n* manufactured items, $N_{+1} = m$ sampled, N_{11} defective in sample. Quality inspection

Example 2. Tea-tasting or HW 2 (D): do experiment drawing from fixed numbers D, n - D where total number to be drawn is fixed.

In Examples, conditioning on marginals is unnecessary: the experiment fixes them !

Exact Test or CI, Illustration

If a set of 36 people contains 20 who favor Trump and 16 for Biden, but a random sample of 10 has 8 for Biden, the p-value for a 2-sided test that the candidates are tied in this group is

2*(1-phyper(7,18,18,10)) = 0.060 = 2 * 7613892/choose(36,10)

and the power of the test that rejects on [3,7]^c is
phyper(2,16,20,10)+1-phyper(7,16,20,10) = 0.081
while phyper(2,30,6,10)+1-phyper(7,30,6,10) = 0.801

Random sampling enforces row-column independence.

The 1-sided CI for k based on $(H_0 :\geq k$ for Trump) is $\{k: 1 - phyper(7, 36 - k, k, 10) > 0.05\} = [0, 16]$

Idea of Nested Hypothesis Tests

Example: H_A : Ind/Repub row-col independent H_B : Dem × Not-Dem row-col independent PartyTabl Dem Indep Repub Female 762 327 468 Male 484 239 477

Nested hypotheses: $H_0 = H_A \cap H_B$ full row-column indep. $H_1 = H_A$, $H_2 =$ unrestricted multinomial, $H_0 \subset H_1 \subset H_2$ Remark: testing H_B vs H_B^c is just like testing H_0 vs H_1 Model dimensions: dim $(H_0) = 3$, dim $(H_1) = 4$, dim $(H_2) = 5$

Behavior of LRTs in nested setting

Denote restricted MLEs by $\hat{\theta}(H_k)$, likelihoods by $L(\theta)$ LRT for H_0 versus $H_1 \setminus H_0$: $-2 \log \left[L(\hat{\theta}(H_0)) / L(\hat{\theta}(H_1)) \right]$ LRT for H_1 versus $H_2 \setminus H_1$: $-2 \log \left[L(\hat{\theta}(H_1)) / L(\hat{\theta}(H_2)) \right]$

LRT for H_0 versus $H_2 \setminus H_0$: $-2 \log \left[L(\hat{\theta}(H_0)) / L(\hat{\theta}(H_2)) \right]$

Note that 3rd LRT is the sum of the first two LRT's, and degrees of freedom add ! See RscriptNested.RLog

Book relates exact additive partitioning to 'orthogonal Odds Ratios': large-sample independence of partitioned LRTs.

Marginal versus Conditional Indep.

Consider categorical factors X, Y, Z: X, Y conditionally indep given Z if for each i, j, k, P(X = i | Y = j, Z = k) is free of j, or $P(X = i, Y = j | Z = k) = P(X = i | Z = k) \cdot P(Y = j | Z = k)$ But generally X, Y are not independent when this is true !

$$P(X = i, Y = j) = \sum_{k} P(Z = k) P(X = i | Z = k) P(Y = j | Z = k)$$

An important reason why aggregating an inhomogeneous population over an important stratifying variable may mislead us about dependence between categorical factors !