STAT 770 Oct. 5 Lectures
 GLMs - Information \& Estimating Equations

Reading and Topics for this lecture: Chapter 4 through Sec. 4.3
(1) Score Estimating Eq'n, Observed Information
(2) Logistic Regression
(3) Poisson Regression
(4) GLM as generalization: Exponential Families
(5) R coding - Function glm

Score Equation - Observed Information

Model $f\left(x_{i}, \theta\right)$, iid data $X_{1}, \ldots, X_{n}, \log L(\theta)=\sum_{i=1}^{n} \log f\left(X_{i}, \theta\right)$
Calculus-maximizer $\hat{\theta}$ MLE satisfies the score equation:

$$
\nabla_{\theta} \log L(\theta)=\left(\begin{array}{c}
\partial / \partial \theta_{1} \\
\vdots \\
\partial / \partial \theta_{p}
\end{array}\right)=\sum_{i=1}^{n} \nabla_{\theta} \log f\left(X_{i}, \theta\right)=0
$$

Taylor expansion (Mean Value Thm, no remainder) says:

$$
\begin{aligned}
\mathbf{0} & =\nabla \log L(\widehat{\theta})=\nabla \log L\left(\theta_{0}\right)+\nabla \nabla^{\operatorname{tr}} \log L\left(\theta^{*}\right)\left(\hat{\theta}-\theta_{0}\right) \\
& =\nabla \log L\left(\theta_{0}\right)-\left\{-\nabla^{\otimes 2} \log L\left(\theta^{*}\right)\right\}\left(\widehat{\theta}-\theta_{0}\right)
\end{aligned}
$$

Observed Information: put $\quad J=-\nabla^{\otimes 2} \log L(\hat{\theta})$

Observed Information, II

Observed Information: via Law of Large Numbers

$$
J=-\nabla^{\otimes 2} \log L(\widehat{\theta}) \approx n \cdot E\left(-\nabla^{\otimes 2} \log f\left(X_{1}, \theta_{0}\right)\right) \quad \text { Fisher Info }
$$

So from the previous slide

$$
\begin{gathered}
0 \approx \frac{1}{\sqrt{n}} \nabla \log L\left(\theta_{0}\right)-\left\{\frac{1}{n} J\right\}\left\{\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)\right\} \quad \text { and } \\
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \approx\left(n J^{-1}\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \nabla \log f\left(X_{i}, \theta_{0}\right)
\end{gathered}
$$

Observed Information is the Hessian (matrix of 2nd partial deriv's) of negative loglikelihood given by MLE software.

Logistic Regression Estimating Equation

Logistic Regression is a model for binary Y_{i} given X_{i} :
logit $P\left(Y_{i}=1 \mid X_{i}\right)=X_{i}^{\prime} \beta, \quad \operatorname{logit}(x)=\log \left(\frac{x}{1-x}\right)$ log-odds
$P\left(Y_{i}=1 \mid X_{i}, \beta\right)=e^{\beta^{\prime} X_{i}} /\left(1+e^{\beta^{\prime} X_{i}}\right)$
$\operatorname{plogis}(x)=\frac{e^{x}}{1+e^{x}}$
Data $\left\{\left(Y_{i}, X_{i}\right)\right\}_{i=1}^{n}, \quad L(\beta)=\prod_{i=1}^{n}\left[\left(\frac{e^{\beta^{\prime} X_{i}}}{1+e^{\beta^{\prime} X_{i}}}\right)^{Y_{i}}\left(\frac{1}{1+e^{\beta^{\prime} X_{i}}}\right)^{1-Y_{i}}\right]$
logLik $\quad \log L(\beta)=\sum_{i=1}^{n}\left[Y_{i} \beta^{\prime} X_{i}-\log \left(1+e^{\beta^{\prime} X_{i}}\right)\right]$
Equation:

$$
\nabla \log L(\beta)=\sum_{i=1}^{n} X_{i}\left[Y_{i}-\frac{e^{\beta^{\prime} X_{i}}}{1+e^{\beta^{\prime} X_{i}}}\right]=\mathbf{0}
$$

Compare least-squares estimating equation!

Poisson Regression Estimating Equation

Poisson Regression: model for Poisson counts Y_{i} given X_{i} : $\log \left\{E\left(Y_{i} \mid X_{i}\right)\right\}=X_{i}^{\prime} \beta \quad, \quad$ Poisson rate $\lambda_{i}=e^{\beta^{\prime} X_{i}}$ for Y_{i}

$$
P\left(Y_{i}=k \mid X_{i}, \beta\right)=e^{-\lambda_{i}} \lambda_{i}^{k} / k!=\operatorname{dpois}\left(k, \lambda_{i}\right)
$$

Data $\left\{\left(Y_{i}, X_{i}\right)\right\}_{i=1}^{n}$,

$$
L(\beta)=\prod_{i=1}^{n}\left[\exp \left(-e^{\beta^{\prime} X_{i}}\right) e^{Y_{i} \beta^{\prime} X_{i}}\right]
$$

$$
\operatorname{logLik} \quad \log L(\beta)=\sum_{i=1}^{n}\left[Y_{i} \beta^{\prime} X_{i}-e^{\beta^{\prime} X_{i}}\right]
$$

Equation:

$$
\nabla \log L(\beta)=\sum_{i=1}^{n} X_{i}\left[Y_{i}-e^{\beta^{\prime} X_{i}}\right]=0
$$

Exponential Families and GLM's

Exponential families have densities $f(y, \theta)=e^{\theta^{\prime} T(y)-c(\theta)} h(y)$
θ is the natural parameter (not always the simplest parameter)
Examples: (1) $\operatorname{Binom}(k, \pi), \quad p(y, \pi)=\binom{k}{y} \pi^{y}(1-\pi)^{k-y}$
So $\quad p(y, \pi) \propto \exp \left(y \log \left(\frac{\pi}{1-\pi}\right)+k \log (1-\pi)\right), \quad \theta=\log \left(\frac{\pi}{1-\pi}\right)$

$$
\text { and } \left.1-\pi=\left(1+e^{\theta}\right)^{-1} \Rightarrow c(\theta)=k \log \left(1+e^{\theta}\right)\right)
$$

(2) Poisson $(\lambda), p(y, \pi)=\frac{\lambda^{y}}{y!} e^{-\lambda}=\frac{1}{y!} \exp (y \log (\lambda)-\lambda)$ So $\theta=\log (\lambda), \quad c(\theta)=e^{\theta} \quad$ in this example.

Quick Facts about (Natural) Exponential Families

(a) $\frac{d}{d \theta} \sum_{y} p(y, \theta)=0 \Rightarrow c^{\prime}(\theta)=E_{\theta}\left(T\left(Y_{1}\right)\right)$
(b) for $Y_{1}, \ldots, Y_{n}, \quad \log L(\theta)=\sum_{i=1}^{n}\left[\theta^{\prime} T\left(Y_{i}\right)-c(\theta)\right]$
is strictly concave with MLE defined uniquely, if it exists, by
$c^{\prime}(\theta)=E_{\theta}\left(T\left(Y_{1}\right)\right)=n^{-1} \sum_{i=1}^{n} T\left(Y_{i}\right)$ Score Eq'n, GMOM est.
Next step is to combine the modeling ideas from the Logistic and Poisson Regression slides into a unified "Generalized Linear Modeling" framework, introduced in Sec. 4.1 and told in more detail in Sec. 4.4 of Agresti.

Ingredients and Terminology for GLMs

Y_{i} response variables satisfying exp. family model $Y_{i} \sim f\left(y, \theta_{i}\right)$
X_{i} (vector) regressor variables entering model via $\eta_{i}=\beta^{\prime} X_{i}$
$\mu_{i} \quad$ cond. expectation of Y_{i} given X_{i}
θ_{i} monotonically related to $\mu_{i}=\int y f\left(y, \theta_{i}\right) d y$ through model
$g\left(\mu_{i}\right)=\eta_{i} \quad$ link function g monotonic, smooth
GLM contains relationships $\beta \mapsto \eta_{i} \mapsto \mu_{i} \mapsto \theta_{i}$

$$
\text { specifying likelihood } L(\beta)=\prod_{i=1}^{n} f\left(Y_{i}, \theta_{i}\right)
$$

Estimating Equation for GLM

Next time derive in detail the Score Equation $\quad \nabla_{\beta} \log L(\beta)=0$
We find that this is an Estimating Equation sum of iid terms, sketch theory to show that estimator $\widetilde{\beta}$ solving it makes

$$
\sqrt{n}(\widetilde{\beta}-\beta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, V) \quad \text { as } \quad n \rightarrow \infty
$$

if $g\left(\mu_{i}\right) \equiv \eta_{i}$ hold for iid data even without the density model.
Some simplifications occur when link is canonical, i.e. η_{i} is the natural parameter for the exponential-family (as in our 2 examples).

Now look at R coding, in glmRcode.RLog

