STAT 770 Oct. 7 Lectures
GLMs — Estimating Equations without Likelihoods

Reading and Topics for this lecture: Chapter 4, Secs. 4.4-4.5
(1) Recap of GLM Ingredients (with scalar 6)
(2) Score Equation for GLM using Likelihood
(3) GLM Score Eg'n — Recalling Logistic & Poisson Regression
(4) Using GLM Estimating Eq’'n without the Likelihood!
(5) More on fitting R models using glm
(6) Fitting Logistic & Poisson Regressions

(7) Deviances vs Log LR's



Natural Exponential Families, Scalar 0, T'(y) =y

probability mass function  f(y,0) = h(y) exp (9y — c(@))

(1) 0 =15 w0 = X (- ¢®) f.0)
Y Y

Therefore 0 = Ep(Y -d(0) = | d0)=Ey(Y))

(2) 0= 05 GO w0 = ¥ [~ O)],0)
Y Y

Therefore 0 = Ey|(Y=d(0))2-<"(0)] = | ¢"(6) = Vary(Y))




Ingredients and Terminology for GLMs
Y; outcomes ‘satisfying’ Y, ~ f(y,0;) = exp (ng — c(Qi)) h(y)
X, (vector) regressor variables entering model via n; = 8'X;
;  conditional expectation of Y, given X
6; monotonically related to u; = ' (0;) through model
g(u;) =mn; link function ¢ monotonic, smooth

GLM contains relationships B +— n; — p; — 6;

specifying likelihood L(B8) = I['—; f(Y;,6;)



Deriving the GLM Score Equation

m = X8, wi =g (), FEp(Yi|X;) = d0;) = p

dn; dp;/ 06;

= X; <§—Z>_1 (%‘)‘1 [Yi B cl(ei)]

Vglog f(Y;, 6;) = (Vgn;) ( [eiYi - C(ei)]

/ . ~1 , Yi — 1y
= X; (g (1) - (Qi)) {YZ — (Qi)] = g’ (1) Va/r;.(Yz-)

n

Vg log L(B) = Z; Xi g’ (pi) v(ps)

Y —

where v(u;) = ¢'(0;) = Varg (7)),  p; = c(6;).



Notes on GLM Score Equation

(I) In some, models, with canonical link function g¢(n), the
choice satisfies n; = 6;,. This is true in Logistic Regression
log(p/(1 —p)) = 0 = BX, and also in Poisson Regression
log(\) = 6 = B"X. It is not true in Probit Regression where
Y; is binary, so 8 = 1og(p/(1 —p)), but p; = p = d(n;).

(II) When the link is canonical, the terms %% in the 2nd line of
derivation on the previous slide disappear, and ¢'(u;) c’(6;) = 1.

The Score Equation becomes 7 ; X; (YZ — c’(B”XQ) = 0.

(III) The Score Equation (to be solved for MLE) does not de-
pend on the model except through its mean u; and its variance
v(u;) expressed as a function of the mean.



Logistic Regression Estimating Equation

Logistic Regression is a model for binary Y; given X;

logitP(Y; =1|X;) = X8, logit(xz) = log <ﬁ) log-odds
P(Y; = 1|X;, B) = P Xij(1 + PX0) plogis(z) = 15

Data {(Y;, X))} 4, L(B) =1l Kﬂ)y@ (4)1_5/1

14ef'Xi 145X
logL.ik log L(B) = X [Yz B'X; — log (1 "'eﬁlXi)]
Equation: Viog L(B) = ¥, X, [v;— <Y | = o
quation: og L(B) = >iq Z[ a 1_|_€B’XJ

Compare least-squares estimating equation !



Poisson Regression Estimating Equation

Poisson Regression: model for Poisson counts Y; given X;

log {E(YHXZ-)} = X/ , Poisson rate \; = eP'Xi for Y;

P(Y;=k|X;, 8) = e YA7/k! = dpois(k, \;)

Data {(Y;, X;)}i—q, L(B) =11~ [exp < — eﬁ’)@;) eYi B’Xi]

logLik log L(B) = X4 [Yz B'X; — eB’Xi]

Equation: Vieg L(B) = Sy X;|Y; — e#Xi] = 0




Estimating Equation for GLM

Now work backwards. Assume Y; conditionally independent
given X; with (conditional) means p; satisfying p; = g(X/3),
with g the same for 1 <:<n and g known.

Assume (for now) that Var(Y;|X;) = v(u;), with v(-) known.

Idea: estimate [ as the solution of

Y. —1(Xt7"6)
Z X X B)) ol 1(XFR)) —

by writing p; = g7 H(XI"B).

Recall g_l — logit for Logistic Regression, log for Poisson.
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General Idea of Estimating Equations

Suppose iid (Y;, X;) satisfy Eg, [Q(Yi,XZ-,BO)] =0 in model Pg
with parameter 8 = B (and maybe other nuisance parameters).

Law of Large Numbers implies
1 v Ps
n= Y QY X;,8) — O
i=1
Assume regularity conditions (smoothness and moments) on @
as in MLE-theory special case Q(Y;, X;,8) = Vg log f(Y; | X;,8)):

Q continuously differentiable in 8, with Eg(Vz{Q(Y1,X1,8)}")
nonsingular
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Further Steps in Estimating Equation Theory
View n=1 3% . Q(Y;, X;,8) as random function for 8 € Be(Bp)
Under regularity conditions, uniformly close to  Eg, (Q(Yl, X1, B))

This function is 0 at S = Bg, and nonsingularity of gradient
implies there exists solution within B(8p).

This can be used also to show that there exist locally consis-
tent estimating equation solutions in P50 probability. Will
take this further next time to develop asymptotic normality and
information-like matrices to invert for asymptotic variance.
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