
STAT 770 Oct. 7 Lectures

GLMs – Estimating Equations without Likelihoods

Reading and Topics for this lecture: Chapter 4, Secs. 4.4-4.5

(1) Recap of GLM Ingredients (with scalar θ)

(2) Score Equation for GLM using Likelihood

(3) GLM Score Eq’n – Recalling Logistic & Poisson Regression

(4) Using GLM Estimating Eq’n without the Likelihood!

(5) More on fitting R models using glm

(6) Fitting Logistic & Poisson Regressions

(7) Deviances vs Log LR’s
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Natural Exponential Families, Scalar θ, T (y) = y

probability mass function f(y, θ) = h(y) exp
(
θy − c(θ)

)
(1) 0 =

d

dθ

∑
y
f(y, θ) =

∑
y

(y − c′(θ)) f(y, θ)

Therefore 0 = Eθ
(
Y − c′(θ)

)
⇒ c′(θ) = Eθ(Y ))

(2) 0 =
d

dθ

∑
y

(y−c′(θ)) f(y, θ) =
∑
y

[
(y−c′(θ))2− c′′(θ)

]
f(y, θ)

Therefore 0 = Eθ
[
(Y−c′(θ))2− c′′(θ)

]
⇒ c′′(θ) = Varθ(Y ))
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Ingredients and Terminology for GLMs

Yi outcomes ‘satisfying’ Yi ∼ f(y, θi) = exp
(
θ′iy − c(θi)

)
h(y)

Xi (vector) regressor variables entering model via ηi = β′Xi

µi conditional expectation of Yi given Xi

θi monotonically related to µi = c′(θi) through model

g(µi) = ηi link function g monotonic, smooth

GLM contains relationships β 7→ ηi 7→ µi 7→ θi

specifying likelihood L(β) =
∏n
i=1 f(Yi, θi)
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Deriving the GLM Score Equation

ηi = X ′iβ, µi = g−1(ηi), Eθi(Yi |Xi) = c′(θi) = µi

∇β log f(Yi, θi) = (∇β ηi)
(
dµi
dηi

dθi
dµi

)
∂

∂θi

[
θi Yi − c(θi)

]

= Xi

(
dηi
dµi

)−1 (dµi
dθi

)−1 [
Yi − c′(θi)

]

= Xi

(
g′(µi) · c′′(θi)

)−1 [
Yi − c′(θi)

]
= Xi

Yi − µi
g′(µi) Varθi(Yi)

∇β logL(β) =
n∑
i=1

Xi
Yi − µi

g′(µi) v(µi)

where v(µi) ≡ c′′(θi) = Varθi(Yi), µi = c′(θi).
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Notes on GLM Score Equation

(I) In some, models, with canonical link function g(η), the
choice satisfies ηi = θi. This is true in Logistic Regression
log(p/(1 − p)) = θ = βtrX, and also in Poisson Regression
log(λ) = θ = βtrX. It is not true in Probit Regression where
Yi is binary, so θ = log(p/(1− p)), but µi = p = Φ(ηi).

(II) When the link is canonical, the terms dµi
dηi

dθi
dµi

in the 2nd line of
derivation on the previous slide disappear, and g′(µi) c′′(θi) ≡ 1.

The Score Equation becomes
∑n
i=1Xi

(
Yi − c′(βtrXi)

)
= 0.

(III) The Score Equation (to be solved for MLE) does not de-
pend on the model except through its mean µi and its variance
v(µi) expressed as a function of the mean.
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Logistic Regression Estimating Equation

Logistic Regression is a model for binary Yi given Xi :

logitP (Yi = 1 |Xi) = X ′iβ , logit(x) = log
(

x
1−x

)
log-odds

P (Yi = 1 |Xi, β) = eβ
′Xi/(1 + eβ

′Xi) plogis(x) = ex

1+ex

Data {(Yi, Xi)}ni=1, L(β) =
∏n
i=1

[(
eβ
′Xi

1+eβ
′Xi

)Yi ( 1
1+eβ

′Xi

)1−Yi]

logLik logL(β) =
∑n
i=1

[
Yi β
′Xi − log

(
1 + eβ

′Xi
)]

Equation: ∇ logL(β) =
∑n
i=1 Xi

[
Yi − eβ

′Xi

1+eβ
′Xi

]
= 0

Compare least-squares estimating equation !
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Poisson Regression Estimating Equation

Poisson Regression: model for Poisson counts Yi given Xi :

log
{
E(Yi |Xi)

}
= X ′iβ , Poisson rate λi = eβ

′Xi for Yi

P (Yi = k |Xi, β) = e−λi λki / k! = dpois(k, λi)

Data {(Yi, Xi)}ni=1, L(β) =
∏n
i=1

[
exp

(
− eβ′Xi

)
eYi β

′Xi
]

logLik logL(β) =
∑n
i=1

[
Yi β
′Xi − eβ

′Xi
]

Equation: ∇ logL(β) =
∑n
i=1 Xi

[
Yi − eβ

′Xi
]

= 0
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Estimating Equation for GLM

Now work backwards. Assume Yi conditionally independent

given Xi with (conditional) means µi satisfying µi = g(X ′i β),

with β the same for 1 ≤ i ≤ n and g known.

Assume (for now) that Var(Yi |Xi) = v(µi), with v(·) known.

Idea: estimate β as the solution of

n∑
i=1

Xi
Yi − g−1(Xtr

i β)

g′(g−1(Xtr
i β)) v(g−1(Xtr

i β))
= 0

by writing µi = g−1(Xtr
i β).

Recall g−1 = logit for Logistic Regression, log for Poisson.
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General Idea of Estimating Equations

Suppose iid (Yi, Xi) satisfy Eβ0

[
Q(Yi, Xi, β0)

]
≡ 0 in model Pβ

with parameter β = β0 (and maybe other nuisance parameters).

Law of Large Numbers implies

n−1
n∑
i=1

Q(Yi, Xi, β)
Pβ−→ 0

Assume regularity conditions (smoothness and moments) on Q

as in MLE-theory special case Q(Yi, Xi, β) = ∇β log f(Yi |Xi, β)):

Q continuously differentiable in β, with Eβ
(
∇β {Q(Y1, X1, β)}tr

)
nonsingular
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Further Steps in Estimating Equation Theory

View n−1 ∑n
i=1 Q(Yi, Xi, β) as random function for β ∈ Bε(β0)

Under regularity conditions, uniformly close to Eβ0

(
Q(Y1, X1, β)

)
This function is 0 at β = β0, and nonsingularity of gradient

implies there exists solution within Bε(β0).

This can be used also to show that there exist locally consis-

tent estimating equation solutions in Pβ0
probability. Will

take this further next time to develop asymptotic normality and

information-like matrices to invert for asymptotic variance.
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