STAT 770 Oct. 7 Lectures GLMs – Estimating Equations without Likelihoods

- Reading and Topics for this lecture: Chapter 4, Secs. 4.4-4.5
- (1) Recap of GLM Ingredients (with scalar θ)
- (2) Score Equation for GLM using Likelihood
- (3) GLM Score Eq'n Recalling Logistic & Poisson Regression
- (4) Using GLM Estimating Eq'n without the Likelihood!
- (5) More on fitting R models using glm
- (6) Fitting Logistic & Poisson Regressions
- (7) Deviances vs Log LR's

Natural Exponential Families, Scalar θ , T(y) = y

probability mass function $f(y,\theta) = h(y) \exp(\theta y - c(\theta))$

(1)
$$0 = \frac{d}{d\theta} \sum_{y} f(y,\theta) = \sum_{y} (y - c'(\theta)) f(y,\theta)$$

Therefore
$$0 = E_{\theta} \Big(Y - c'(\theta) \Big) \Rightarrow \boxed{c'(\theta) = E_{\theta}(Y)}$$

(2)
$$0 = \frac{d}{d\theta} \sum_{y} (y - c'(\theta)) f(y,\theta) = \sum_{y} \Big[(y - c'(\theta))^2 - c''(\theta) \Big] f(y,\theta)$$

Therefore
$$0 = E_{\theta} \Big[(Y - c'(\theta))^2 - c''(\theta) \Big] \Rightarrow \boxed{c''(\theta) = \operatorname{Var}_{\theta}(Y)}$$

2

Ingredients and Terminology for GLMs

 Y_i outcomes 'satisfying' $Y_i \sim f(y, \theta_i) = \exp\left(\theta'_i y - c(\theta_i)\right) h(y)$

 X_i (vector) regressor variables entering model via $\eta_i = \beta' X_i$

- μ_i conditional expectation of Y_i given X_i
- θ_i monotonically related to $\mu_i = c'(\theta_i)$ through model

 $g(\mu_i) = \eta_i$ link function g monotonic, smooth

GLM contains relationships $\beta \mapsto \eta_i \mapsto \mu_i \mapsto \theta_i$ specifying likelihood $L(\beta) = \prod_{i=1}^n f(Y_i, \theta_i)$

Deriving the GLM Score Equation

 $\eta_i = X'_i \beta, \quad \mu_i = g^{-1}(\eta_i), \quad E_{\theta_i}(Y_i | X_i) = c'(\theta_i) = \mu_i$ $\nabla_\beta \log f(Y_i, \theta_i) = (\nabla_\beta \eta_i) \left(\frac{d\mu_i}{d\eta_i} \frac{d\theta_i}{d\mu_i}\right) \frac{\partial}{\partial \theta_i} \left[\theta_i Y_i - c(\theta_i)\right]$

$$= X_i \left(\frac{d\eta_i}{d\mu_i}\right)^{-1} \left(\frac{d\mu_i}{d\theta_i}\right)^{-1} \left[Y_i - c'(\theta_i)\right]$$

$$= X_i \left(g'(\mu_i) \cdot c''(\theta_i) \right)^{-1} \left[Y_i - c'(\theta_i) \right] = X_i \frac{Y_i - \mu_i}{g'(\mu_i) \operatorname{Var}_{\theta_i}(Y_i)}$$

$$\nabla_{\beta} \log L(\beta) = \sum_{i=1}^{n} X_i \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)}$$

where $v(\mu_i) \equiv c''(\theta_i) = \operatorname{Var}_{\theta_i}(Y_i), \quad \mu_i = c'(\theta_i).$

4

Notes on GLM Score Equation

(I) In some, models, with canonical link function $g(\eta)$, the choice satisfies $\eta_i = \theta_i$. This is true in Logistic Regression $\log(p/(1-p)) = \theta = \beta^{tr}X$, and also in Poisson Regression $\log(\lambda) = \theta = \beta^{tr}X$. It is not true in Probit Regression where Y_i is binary, so $\theta = \log(p/(1-p))$, but $\mu_i = p = \Phi(\eta_i)$.

(II) When the link is canonical, the terms $\frac{d\mu_i}{d\eta_i} \frac{d\theta_i}{d\mu_i}$ in the 2nd line of derivation on the previous slide disappear, and $g'(\mu_i) c''(\theta_i) \equiv 1$.

The Score Equation becomes $\sum_{i=1}^{n} X_i \left(Y_i - c'(\beta^{tr} X_i) \right) = 0.$

(III) The Score Equation (to be solved for MLE) does not depend on the model except through its mean μ_i and its variance $v(\mu_i)$ expressed as a function of the mean.

Logistic Regression Estimating Equation

Logistic Regression is a model for binary Y_i given X_i : logit $P(Y_i = 1 | X_i) = X'_i \beta$, logit $(x) = \log \left(\frac{x}{1-x}\right)$ log-odds $P(Y_i = 1 | X_i, \beta) = e^{\beta' X_i} / (1 + e^{\beta' X_i})$ plogis(x) = $\frac{e^x}{1 + e^x}$ Data $\{(Y_i, X_i)\}_{i=1}^n$, $L(\beta) = \prod_{i=1}^n \left[\left(\frac{e^{\beta' X_i}}{1 + e^{\beta' X_i}} \right)^{Y_i} \left(\frac{1}{1 + e^{\beta' X_i}} \right)^{1 - Y_i} \right]$ logLik $\log L(\beta) = \sum_{i=1}^{n} \left| Y_i \beta' X_i - \log \left(1 + e^{\beta' X_i} \right) \right|$ **Equation:**

$$\nabla \log L(\beta) = \sum_{i=1}^{n} X_i \left[Y_i - \frac{e^{\beta' X_i}}{1 + e^{\beta' X_i}} \right] = 0$$

Compare least-squares estimating equation !

Poisson Regression Estimating Equation

Poisson Regression: model for Poisson counts Y_i given X_i : $\log \{ E(Y_i | X_i) \} = X'_i \beta$, **Poisson rate** $\lambda_i = e^{\beta' X_i}$ for Y_i $P(Y_i = k | X_i, \beta) = e^{-\lambda_i} \lambda_i^k / k! = dpois(k, \lambda_i)$ **Data** $\{(Y_i, X_i)\}_{i=1}^n$, $L(\beta) = \prod_{i=1}^n \left| \exp\left(-e^{\beta' X_i} \right) e^{Y_i \beta' X_i} \right|$ logLik $\log L(\beta) = \sum_{i=1}^{n} \left| Y_i \beta' X_i - e^{\beta' X_i} \right|$ $\nabla \log L(\beta) = \sum_{i=1}^{n} X_i \left[Y_i - e^{\beta' X_i} \right] = 0$ **Equation:**

7

Estimating Equation for GLM

Now work backwards. Assume Y_i conditionally independent given X_i with (conditional) means μ_i satisfying $\mu_i = g(X'_i \beta)$, with β the same for $1 \le i \le n$ and g known.

Assume (for now) that $Var(Y_i | X_i) = v(\mu_i)$, with $v(\cdot)$ known.

Idea: estimate β as the solution of

$$\sum_{i=1}^{n} X_i \frac{Y_i - g^{-1}(X_i^{tr}\beta)}{g'(g^{-1}(X_i^{tr}\beta)) v(g^{-1}(X_i^{tr}\beta))} = 0$$

by writing $\mu_i = g^{-1}(X_i^{tr}\beta)$.

Recall $g^{-1} = \text{logit}$ for Logistic Regression, log for Poisson.

General Idea of Estimating Equations

Suppose *iid* (Y_i, X_i) satisfy $E_{\beta_0}[Q(Y_i, X_i, \beta_0)] \equiv 0$ in model P_{β} with parameter $\beta = \beta_0$ (and maybe other nuisance parameters).

Law of Large Numbers implies

$$n^{-1} \sum_{i=1}^{n} Q(Y_i, X_i, \beta) \xrightarrow{P_{\beta}} 0$$

Assume regularity conditions (smoothness and moments) on Qas in MLE-theory special case $Q(Y_i, X_i, \beta) = \nabla_\beta \log f(Y_i | X_i, \beta)$:

Q continuously differentiable in β , with $E_{\beta}(\nabla_{\beta} \{Q(Y_1, X_1, \beta)\}^{tr})$ nonsingular

Further Steps in Estimating Equation Theory

View $n^{-1} \sum_{i=1}^{n} Q(Y_i, X_i, \beta)$ as random function for $\beta \in B_{\epsilon}(\beta_0)$

Under regularity conditions, uniformly close to $E_{\beta_0}(Q(Y_1, X_1, \beta))$

This function is 0 at $\beta = \beta_0$, and nonsingularity of gradient implies there exists solution within $B_{\epsilon}(\beta_0)$.

This can be used also to show that there exist locally consistent estimating equation solutions in P_{β_0} probability. Will take this further next time to develop asymptotic normality and information-like matrices to invert for asymptotic variance.