STAT 770 Oct. 7 Lectures

GLMs - Estimating Equations without Likelihoods
Reading and Topics for this lecture: Chapter 4, Secs. 4.4-4.5
(1) Recap of GLM Ingredients (with scalar θ)
(2) Score Equation for GLM using Likelihood
(3) GLM Score Eq'n - Recalling Logistic \& Poisson Regression
(4) Using GLM Estimating Eq'n without the Likelihood!
(5) More on fitting R models using glm
(6) Fitting Logistic \& Poisson Regressions
(7) Deviances vs Log LR's

Natural Exponential Families, Scalar $\theta, T(y)=y$
probability mass function $\quad f(y, \theta)=h(y) \exp (\theta y-c(\theta))$
(1) $0=\frac{d}{d \theta} \sum_{y} f(y, \theta)=\sum_{y}\left(y-c^{\prime}(\theta)\right) f(y, \theta)$

Therefore

$$
\left.0=E_{\theta}\left(Y-c^{\prime}(\theta)\right) \Rightarrow \quad c^{\prime}(\theta)=E_{\theta}(Y)\right)
$$

(2) $0=\frac{d}{d \theta} \sum_{y}\left(y-c^{\prime}(\theta)\right) f(y, \theta)=\sum_{y}\left[\left(y-c^{\prime}(\theta)\right)^{2}-c^{\prime \prime}(\theta)\right] f(y, \theta)$

Therefore $\left.\quad 0=E_{\theta}\left[\left(Y-c^{\prime}(\theta)\right)^{2}-c^{\prime \prime}(\theta)\right] \Rightarrow \quad c^{\prime \prime}(\theta)=\operatorname{Var}_{\theta}(Y)\right)$

Ingredients and Terminology for GLMs

$Y_{i} \quad$ outcomes 'satisfying' $\quad Y_{i} \sim f\left(y, \theta_{i}\right)=\exp \left(\theta_{i}^{\prime} y-c\left(\theta_{i}\right)\right) h(y)$
X_{i} (vector) regressor variables entering model via $\eta_{i}=\beta^{\prime} X_{i}$
$\mu_{i} \quad$ conditional expectation of Y_{i} given X_{i}
θ_{i} monotonically related to $\mu_{i}=c^{\prime}\left(\theta_{i}\right)$ through model
$g\left(\mu_{i}\right)=\eta_{i} \quad$ link function g monotonic, smooth
GLM contains relationships $\beta \mapsto \eta_{i} \mapsto \mu_{i} \mapsto \theta_{i}$

$$
\text { specifying likelihood } L(\beta)=\prod_{i=1}^{n} f\left(Y_{i}, \theta_{i}\right)
$$

Deriving the GLM Score Equation

$$
\begin{gathered}
\eta_{i}=X_{i}^{\prime} \beta, \quad \mu_{i}=g^{-1}\left(\eta_{i}\right), \quad E_{\theta_{i}}\left(Y_{i} \mid X_{i}\right)=c^{\prime}\left(\theta_{i}\right)=\mu_{i} \\
\nabla_{\beta} \log f\left(Y_{i}, \theta_{i}\right)=\left(\nabla_{\beta} \eta_{i}\right)\left(\frac{d \mu_{i}}{d \eta_{i}} \frac{d \theta_{i}}{d \mu_{i}}\right) \frac{\partial}{\partial \theta_{i}}\left[\theta_{i} Y_{i}-c\left(\theta_{i}\right)\right] \\
=X_{i}\left(\frac{d \eta_{i}}{d \mu_{i}}\right)^{-1}\left(\frac{d \mu_{i}}{d \theta_{i}}\right)^{-1}\left[Y_{i}-c^{\prime}\left(\theta_{i}\right)\right] \\
=X_{i}\left(g^{\prime}\left(\mu_{i}\right) \cdot c^{\prime \prime}\left(\theta_{i}\right)\right)^{-1}\left[Y_{i}-c^{\prime}\left(\theta_{i}\right)\right]=X_{i} \frac{Y_{i}-\mu_{i}}{g^{\prime}\left(\mu_{i}\right) \operatorname{Var}_{\theta_{i}}\left(Y_{i}\right)} \\
\nabla_{\beta} \log L(\beta)=\sum_{i=1}^{n} X_{i} \frac{Y_{i}-\mu_{i}}{g^{\prime}\left(\mu_{i}\right) v\left(\mu_{i}\right)} \\
\text { where } v\left(\mu_{i}\right) \equiv c^{\prime \prime}\left(\theta_{i}\right)=\operatorname{Var}_{\theta_{i}}\left(Y_{i}\right), \quad \mu_{i}=c^{\prime}\left(\theta_{i}\right)
\end{gathered}
$$

Notes on GLM Score Equation

(I) In some, models, with canonical link function $g(\eta)$, the choice satisfies $\eta_{i}=\theta_{i}$. This is true in Logistic Regression $\log (p /(1-p))=\theta=\beta^{\operatorname{tr}} X$, and also in Poisson Regression $\log (\lambda)=\theta=\beta^{t r} X$. It is not true in Probit Regression where Y_{i} is binary, so $\theta=\log (p /(1-p))$, but $\mu_{i}=p=\Phi\left(\eta_{i}\right)$.
(II) When the link is canonical, the terms $\frac{d \mu_{i}}{d \eta_{i}} \frac{d \theta_{i}}{d \mu_{i}}$ in the 2nd line of derivation on the previous slide disappear, and $g^{\prime}\left(\mu_{i}\right) c^{\prime \prime}\left(\theta_{i}\right) \equiv 1$.

The Score Equation becomes $\sum_{i=1}^{n} X_{i}\left(Y_{i}-c^{\prime}\left(\beta^{t r} X_{i}\right)\right)=0$.
(III) The Score Equation (to be solved for MLE) does not depend on the model except through its mean μ_{i} and its variance $v\left(\mu_{i}\right)$ expressed as a function of the mean.

Logistic Regression Estimating Equation

Logistic Regression is a model for binary Y_{i} given X_{i} :
logit $P\left(Y_{i}=1 \mid X_{i}\right)=X_{i}^{\prime} \beta, \quad \operatorname{logit}(x)=\log \left(\frac{x}{1-x}\right)$ log-odds
$P\left(Y_{i}=1 \mid X_{i}, \beta\right)=e^{\beta^{\prime} X_{i}} /\left(1+e^{\beta^{\prime} X_{i}}\right)$
$\operatorname{plogis}(x)=\frac{e^{x}}{1+e^{x}}$
Data $\left\{\left(Y_{i}, X_{i}\right)\right\}_{i=1}^{n}, \quad L(\beta)=\prod_{i=1}^{n}\left[\left(\frac{e^{\beta^{\prime} X_{i}}}{1+e^{\beta^{\prime} X_{i}}}\right)^{Y_{i}}\left(\frac{1}{1+e^{\beta^{\prime} X_{i}}}\right)^{1-Y_{i}}\right]$
logLik $\quad \log L(\beta)=\sum_{i=1}^{n}\left[Y_{i} \beta^{\prime} X_{i}-\log \left(1+e^{\beta^{\prime} X_{i}}\right)\right]$
Equation:

$$
\nabla \log L(\beta)=\sum_{i=1}^{n} X_{i}\left[Y_{i}-\frac{e^{\beta^{\prime} X_{i}}}{1+e^{\beta^{\prime} X_{i}}}\right]=\mathbf{0}
$$

Compare least-squares estimating equation!

Poisson Regression Estimating Equation

Poisson Regression: model for Poisson counts Y_{i} given X_{i} : $\log \left\{E\left(Y_{i} \mid X_{i}\right)\right\}=X_{i}^{\prime} \beta \quad, \quad$ Poisson rate $\lambda_{i}=e^{\beta^{\prime} X_{i}}$ for Y_{i}

$$
P\left(Y_{i}=k \mid X_{i}, \beta\right)=e^{-\lambda_{i}} \lambda_{i}^{k} / k!=\operatorname{dpois}\left(k, \lambda_{i}\right)
$$

Data $\left\{\left(Y_{i}, X_{i}\right)\right\}_{i=1}^{n}, \quad L(\beta)=\prod_{i=1}^{n}\left[\exp \left(-e^{\beta^{\prime} X_{i}}\right) e^{Y_{i} \beta^{\prime} X_{i}}\right]$ \log Lik $\quad \log L(\beta)=\sum_{i=1}^{n}\left[Y_{i} \beta^{\prime} X_{i}-e^{\beta^{\prime} X_{i}}\right]$

Equation:

$$
\nabla \log L(\beta)=\sum_{i=1}^{n} X_{i}\left[Y_{i}-e^{\beta^{\prime} X_{i}}\right]=0
$$

Estimating Equation for GLM

Now work backwards. Assume Y_{i} conditionally independent given X_{i} with (conditional) means μ_{i} satisfying $\mu_{i}=g\left(X_{i}^{\prime} \beta\right)$, with β the same for $1 \leq i \leq n$ and g known.

Assume (for now) that $\operatorname{Var}\left(Y_{i} \mid X_{i}\right)=v\left(\mu_{i}\right)$, with $v(\cdot)$ known.

Idea: estimate β as the solution of

$$
\sum_{i=1}^{n} X_{i} \frac{Y_{i}-g^{-1}\left(X_{i}^{t r} \beta\right)}{g^{\prime}\left(g^{-1}\left(X_{i}^{t r} \beta\right)\right) v\left(g^{-1}\left(X_{i}^{t r} \beta\right)\right)}=\mathbf{0}
$$

by writing $\mu_{i}=g^{-1}\left(X_{i}^{t r} \beta\right)$.
Recall $g^{-1}=$ logit for Logistic Regression, log for Poisson.

General Idea of Estimating Equations

Suppose iid $\left(Y_{i}, X_{i}\right)$ satisfy $E_{\beta_{0}}\left[Q\left(Y_{i}, X_{i}, \beta_{0}\right)\right] \equiv 0$ in model P_{β} with parameter $\beta=\beta_{0}$ (and maybe other nuisance parameters).

Law of Large Numbers implies

$$
n^{-1} \sum_{i=1}^{n} Q\left(Y_{i}, X_{i}, \beta\right) \xrightarrow{P_{\beta}} 0
$$

Assume regularity conditions (smoothness and moments) on Q as in MLE-theory special case $\left.Q\left(Y_{i}, X_{i}, \beta\right)=\nabla_{\beta} \log f\left(Y_{i} \mid X_{i}, \beta\right)\right)$:

Q continuously differentiable in β, with $E_{\beta}\left(\nabla_{\beta}\left\{Q\left(Y_{1}, X_{1}, \beta\right)\right\}^{t r}\right)$ nonsingular

Further Steps in Estimating Equation Theory

View $n^{-1} \sum_{i=1}^{n} Q\left(Y_{i}, X_{i}, \beta\right)$ as random function for $\beta \in B_{\epsilon}\left(\beta_{0}\right)$
Under regularity conditions, uniformly close to $\quad E_{\beta_{0}}\left(Q\left(Y_{1}, X_{1}, \beta\right)\right)$
This function is 0 at $\beta=\beta_{0}$, and nonsingularity of gradient implies there exists solution within $B_{\epsilon}\left(\beta_{0}\right)$.

This can be used also to show that there exist locally consistent estimating equation solutions in $P_{\beta_{0}}$ probability. Will take this further next time to develop asymptotic normality and information-like matrices to invert for asymptotic variance.

