STAT 770 Oct. 12 Lectures

GLMs – Estimating Equations without Likelihoods

Reading and Topics for this lecture: Chapter 4, Secs. 4.5, 4.7

- (1) Recap of GLM Estimating Equations (with scalar θ)
- (2) Score Equation & Asymptotic Variance
- (3) Deviances and Log LR's
- (4) Other Model Examples: Noncanonical, Dispersion
- (5) Using GLM Estimating Eq'n without the Likelihood!
- (6) More on fitting R models using glm

Recap of GLM from Likelihood

Start from Y_i scalar outcomes $Y_i \sim f(y, \theta_i) = \exp(\theta_i y - c(\theta_i)) h(y)$

 X_i (vector) regressor variables entering model via $\eta_i = \beta' X_i$

 θ natural parameter: book expresses it as function $Q(\theta)$

$$E(Y_i | X_i) = c'(\theta_i) = \mu_i, \quad \text{Var}(Y_i | X_i) = c''(\theta_i)$$
$$\text{Var}(Y_i | X_i) = v(\mu_i), \quad v = c'' \circ (c')^{-1}$$

Link function: g monotonic, smooth, known, $g(\mu_i) = \eta_i$

GLM relationships $\beta \mapsto \eta_i \mapsto \mu_i \mapsto \theta_i = (c')^{-1} \circ g^{-1}(X_i^{tr}\beta)$

Score Equation and Information Matrix

Score Equation:
$$\nabla_{\beta} \log L(\beta) = \sum_{i=1}^{n} X_i \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)} = 0$$

 $\mu_i = g^{-1}(X_i^{tr}\beta)$, and if link is **canonical**, $g'(\mu_i) v(\mu_i) \equiv 1$

Suppose $\hat{\beta}$ MLE solves GLM score equation. Theory (later in lecture) shows it is consistent: under P_{β} , as $n \to \infty$, $\hat{\beta} \xrightarrow{P} \beta$

$$0 = \nabla \log L(\hat{\beta}) \approx \nabla \log L(\beta) + \sum_{i=1}^{n} \nabla_{\beta}^{\otimes 2} \log f(Y_i, \theta_i(\beta)) (\hat{\beta} - \beta)$$

So *
$$\sqrt{n} \left(\hat{\beta} - \beta\right) \stackrel{\mathcal{D}}{\approx} \mathcal{I}^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} \frac{Y_{i} - \mu_{i}}{g'(\mu_{i}) v(\mu_{i})}\right)$$

where $\mathcal{I} = -\frac{1}{n} E \left[\sum_{i=1}^{n} X_i \nabla_{\beta}^{tr} \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)} \right]$

Information Matrix Versus Observed Information

Observed Information
$$J = -\frac{1}{n} \left[\sum_{i=1}^{n} X_i \nabla_{\beta}^{tr} \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)} \right] \Big|_{\beta = \hat{\beta}}$$

Fisher Information $\mathcal{I} = -\frac{1}{n} E \left[\sum_{i=1}^{n} X_i \nabla_{\beta}^{tr} \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)} \right]$

$$= \frac{-1}{n} E \left[\sum_{i=1}^{n} X_i \left(Y_i - \mu_i \right) \nabla_{\beta}^{tr} \frac{1}{g'(\mu_i) v(\mu_i)} \right] + \frac{1}{n} E \left[\sum_{i=1}^{n} X_i \frac{\nabla \mu_i}{g'(\mu_i) v(\mu_i)} \right]$$

Use $E(Y_i | X_i) = \mu_i$ and $\mu_i = g^{-1}(X_i^{tr} \beta)$: then

$$\mathcal{I} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^{tr} \left[(g'(\mu_i))^2 v(\mu_i) \right]^{-1}$$
 for $\{X_i\}$ fixed

Observed information has additional (smaller-order) term involving $Y_i - \mu_i$ [only] when the link is non-canonical

Drawing Conclusions from the Variance Expressions

General case (under regularity conditions): $\mu_i = g^{-1}(X_i^{tr}\beta)$, and

$$\widehat{\beta} \text{ solves } \sum_{i=1}^{n} X_i \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)} = 0 \quad , \qquad \widehat{\mu}_i = g^{-1} (X_i^{tr} \widehat{\beta})$$
$$\widehat{\beta} - \beta \stackrel{\mathcal{D}}{\approx} \mathcal{N} \Big(0, \left[\sum_{i=1}^{n} X_i X_i^{tr} \left((g'(\widehat{\mu}_i))^2 v(\widehat{\mu}_i) \right)^{-1} \right]^{-1} \Big)$$

Variance matrix = Information⁻¹ = $(\mathbf{X}^{tr} W \mathbf{X})^{-1}$

 $\mathbf{X}_{n \times p}$ has *i*'th row X_i , $W_{n \times n} = \operatorname{diag}\left(\left[g'(\hat{\mu}_i)\right)^2 v(\hat{\mu}_i)\right]^{-1}\right)$ With canonical link: $J = \mathcal{I}\Big|_{\beta = \hat{\beta}}$ and $W = \operatorname{diag}(v(\hat{\mu}_i))$

Deviances and Likelihood Ratio Statistics

deviance between models with $\dim(\beta) = q$ or p is

$$2 \cdot \left(\log(L(\widehat{eta}^{(p)}) - \log(L(\widehat{eta}^{(q)})) \right)$$

Wilks' Theorem says (under H_0 that $\beta^{(q)}$ is correct) ~ χ^2_{p-q} (residual) Deviance: between current β and Saturated model Null Model: GLM with intercept only, q = 1Saturated model: GLM with $\hat{\mu}_i \equiv Y_i$ (examples to follow) Null Deviance: Deviance between Null and Saturated model (incremental) Deviance: Analysis of Deviance table line for terms (q+1):p (single compionent or factor) is deviance between $\beta^{(q)}$ and $\beta^{(p)}$ models

R Script with Links, Deviances, Data Structures

- (i) Links are arguments to family within glm
- (ii) Null, incremental and residual deviances within anova tables
- (iii) Residual Deviances useful for *categorical* variables X_i that may include row, column factors and interactions
- (iv) Data may be at unit obs. level or aggregated over common X_i categories
- (v) Exhibit variances using \$cov.unscaled component
 of glm fitted object

Other GLMs and Extensions

Non-canonical Link Examples:

(I). Binomial outcome Y_i , $\mu_i \in (0, 1)$, link g^{-1} any dist'n function other than plogis, e.g. $g^{-1} = \Phi$ for probit model.

(II). Poisson outcome Y_i , link g^{-1} any monotone map on \mathbb{R} , can be identity, e.g. for linear model, if $X'_i\beta$ all positive

Models with Overdispersion: will cover this extension next time

Estimating Equation for GLM

Now work backwards. Assume Y_i conditionally independent given X_i with (conditional) means μ_i satisfying $\mu_i = g(X'_i \beta)$, with β the same for $1 \le i \le n$ and g known.

Assume (for now) that $Var(Y_i | X_i) = v(\mu_i)$, with $v(\cdot)$ known.

Idea: estimate β as the solution of

$$\sum_{i=1}^{n} X_i \frac{Y_i - g^{-1}(X_i^{tr}\beta)}{g'(g^{-1}(X_i^{tr}\beta)) v(g^{-1}(X_i^{tr}\beta))} = 0$$

by writing $\mu_i = g^{-1}(X_i^{tr}\beta)$.

Recall $g^{-1} = \text{logit}$ for Logistic Regression, log for Poisson.

General Idea of Estimating Equations

Suppose *iid* (Y_i, X_i) satisfy $E_{\beta_0}[Q(Y_i, X_i, \beta_0)] \equiv 0$ in model P_{β} with parameter $\beta = \beta_0$ (and maybe other nuisance parameters).

Law of Large Numbers implies

$$n^{-1} \sum_{i=1}^{n} Q(Y_i, X_i, \beta) \xrightarrow{P_{\beta}} 0$$

Assume regularity conditions (smoothness and moments) on Qas in MLE-theory special case $Q(Y_i, X_i, \beta) = \nabla_\beta \log f(Y_i | X_i, \beta)$:

Q continuously differentiable in β , with $E_{\beta}(\nabla_{\beta} \{Q(Y_1, X_1, \beta)\}^{tr})$ nonsingular

Further Steps in Estimating Equation Theory

 $M(\beta) = n^{-1} \sum_{i=1}^{n} Q(Y_i, X_i, \beta) \text{ is random function for } \beta \in B_{\epsilon}(\beta_0)$ Under regularity conditions, uniformly close to $E_{\beta_0}(Q(Y_1, X_1, \beta))$ and $\frac{1}{n} \sum_{i=1}^{n} \nabla \{Q(Y_i, X_i, \beta)\}^{tr} \approx E_{\beta_0}(\nabla_{\beta} \{Q(Y_1, X_1, \beta)\}^{tr}) = A(\beta)$ $M(\beta)$ is 0 at $\beta = \beta_0$, and conclude (via *empirical process theory*) that with prob. $\rightarrow 1$ there is solution in $B_{\epsilon}(\beta_0)$.

Nonsingularity of $A(\beta)$ near β_0 implies root of $M(\cdot)$ locally unique: if $\beta^*, \tilde{\beta}$ are solutions in $B_{\epsilon}(\beta_0)$, then $\mathbf{0} = M(\beta^*) - M(\tilde{\beta})$

$$\approx \left[E_{\beta} \left(\nabla_{\beta} \left\{ Q(Y_1, X_1, \beta_0) \right\}^{tr} \right) \right]^{tr} (\beta^* - \tilde{\beta}) + o \left(\|\beta^* - \tilde{\beta}\| \right)$$

11