STAT 770 Oct. 12 Lectures

GLMs – Estimating Equations without Likelihoods

Reading and Topics for this lecture: Chapter 4, Secs. 4.5, 4.7

- (1) Recap of GLM Estimating Equations (with scalar θ)
- (2) Score Equation & Asymptotic Variance
- (3) Deviances and Log LR's
- (4) Other Model Examples: Noncanonical, Dispersion
- (5) Using GLM Estimating Eq'n without the Likelihood!
- (6) More on fitting R models using glm

Recap of GLM from Likelihood

Start from Y_i scalar outcomes $\ Y_i \sim f(y, \theta_i) = \exp\big(\theta_i\, y - c(\theta_i)\big)\,h(y)$

 X_i (vector) regressor variables entering model via $\eta_i = \beta' X_i$

θ natural parameter: book expresses it as function $Q(\theta)$

$$
E(Y_i | X_i) = c'(\theta_i) = \mu_i, \quad \text{Var}(Y_i | X_i) = c''(\theta_i)
$$

$$
\text{Var}(Y_i | X_i) = v(\mu_i), \quad v = c'' \circ (c')^{-1}
$$

Link function: g monotonic, smooth, known, $g(\mu_i) = \eta_i$

GLM relationships $\beta \mapsto \eta_i \mapsto \mu_i \mapsto \theta_i = (c')^{-1} \circ g^{-1}(X_i^{tr}\beta)$ 2

Score Equation and Information Matrix

Score Equation: ∇_{β} log $L(\beta) = \sum_{i=1}^{n} X_i \frac{Y_i - \mu_i}{q'(\mu_i) v(\beta)}$ $\frac{Y_i-\mu_i}{g'(\mu_i)\,v(\mu_i)}\,=\,0$

 $\mu_i=g^{-1}(X^{tr}_{i}\beta)$, and if link is canonical, $\quad g'(\mu_i)\,v(\mu_i)\equiv 1$

Suppose $\widehat{\beta}$ MLE solves GLM score equation. Theory (later in lecture) shows it is consistent: under $\;P_{\beta},\;$ as $n\rightarrow\infty,\quad \widehat{\beta}\stackrel{P}{-}$ $\longrightarrow \beta$

$$
0 = \nabla \log L(\hat{\beta}) \approx \nabla \log L(\beta) + \sum_{i=1}^{n} \nabla_{\beta}^{\otimes 2} \log f(Y_i, \theta_i(\beta)) (\hat{\beta} - \beta)
$$

So *
$$
\sqrt{n} (\widehat{\beta} - \beta) \stackrel{\mathcal{D}}{\approx} \mathcal{I}^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)} \right)
$$

where $\qquad \qquad \mathcal{I}\ =\ -\frac{1}{n}\,E\Big[\, \textstyle{\sum_{i=1}^{n}}\,\,X_{i}\,\nabla^{tr}_{\beta}$ $Y_i-\mu_i$ $\overline{g'(\mu_i) \, v(\mu_i)}$ 1

Information Matrix Versus Observed Information

$$
\text{Observed Information } J = -\frac{1}{n} \left[\sum_{i=1}^{n} X_i \nabla_{\beta}^{tr} \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)} \right] \Big|_{\beta = \widehat{\beta}}
$$

Fisher Information $\mathcal{I} = -\frac{1}{n} E\Big[\sum_{i=1}^n X_i \nabla_{\beta}^{tr}$ $Y_i-\mu_i$ $\overline{g'(\mu_i) \, v(\mu_i)}$ 1

$$
= \frac{-1}{n} E\Big[\sum_{i=1}^n X_i (Y_i - \mu_i) \nabla_\beta^t \frac{1}{g'(\mu_i) v(\mu_i)} \Big] + \frac{1}{n} E\Big[\sum_{i=1}^n X_i \frac{\nabla \mu_i}{g'(\mu_i) v(\mu_i)} \Big]
$$

Use $E(Y_i | X_i) = \mu_i$ and $\mu_i = g^{-1}(X_i^{tr} \beta)$: then

$$
\mathcal{I} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^{tr} \left[(g'(\mu_i))^2 v(\mu_i) \right]^{-1} \quad \text{for } \{X_i\} \text{ fixed}
$$

Observed information has additional (smaller-order) term involving $Y_i - \mu_i$ [only] when the link is non-canonical

Drawing Conclusions from the Variance Expressions

General case (under regularity conditions): $\mu_i = g^{-1}(X_i^{tr}\beta)$, and

$$
\widehat{\beta} \text{ solves } \sum_{i=1}^{n} X_i \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)} = 0 \quad , \qquad \widehat{\mu}_i = g^{-1}(X_i^{tr} \widehat{\beta})
$$
\n
$$
\widehat{\beta} - \beta \stackrel{\mathcal{D}}{\approx} \mathcal{N}\Big(0, \Big[\sum_{i=1}^{n} X_i X_i^{tr} \Big((g'(\widehat{\mu}_i))^2 v(\widehat{\mu}_i)\Big)^{-1}\Big]^{-1}\Big)
$$

Variance matrix $=$ Information⁻¹ = $(X^{tr}WX)^{-1}$

 $\textbf{X}_{n\times p}$ has i 'th row X_i , $W_{n\times n} \,=\, \texttt{diag}\!\left(\left[g'(\widehat{\mu}_i))^2\,v(\widehat{\mu}_i)\right]^{-1}\right)$ With canonical link: $J = \mathcal{I}$ $\Big\}$ $\Big\}$ $\Big\}$ $|_{\beta=\widehat{\beta}}$ and $W = diag(v(\hat{\mu}_i))$

Deviances and Likelihood Ratio Statistics

deviance between models with dim(β) = q or p is

$$
2 \cdot \left(\log(L(\widehat{\beta}^{(p)}) \ -\ \log(L(\widehat{\beta}^{(q)})\right) \ \Big|
$$

Wilks' Theorem says (under H_0 that $\beta^{(q)}$ is correct) $\;\sim\chi_p^2$ $\overline{p}-q$ (residual) Deviance: between current β and Saturated model **Null Model:** GLM with intercept only, $q = 1$ **Saturated model:** GLM with $\hat{\mu}_i \equiv Y_i$ (examples to follow) **Null Deviance:** Deviance between Null and Saturated model (incremental) Deviance: Analysis of Deviance table line for terms $(q+1)$: p (single compionent or factor) is deviance between $\beta^{(q)}$ and $\beta^{(p)}$ models

R Script with Links, Deviances, Data Structures

- (i) Links are arguments to family within glm
- (ii) Null, incremental and residual deviances within anova tables
- (iii) Residual Deviances useful for categorical variables X_i that may include row, column factors and interactions
- (iv) Data may be at unit obs. level or aggregated over common X_i categories
- (v) Exhibit variances using \$cov.unscaled component of glm fitted object

Other GLMs and Extensions

Non-canonical Link Examples:

(I). Binomial outcome Y_i , $\mu_i \in (0,1)$, link g^{-1} any dist'n function other than plogis, e.g. $g^{-1} = \Phi$ for probit model.

(II). Poisson outcome Y_i , link g^{-1} any monotone map on R, can be identity, e.g. for linear model, if $X_{i}'\beta$ all positive

Models with Overdispersion: will cover this extension next time

Estimating Equation for GLM

Now work backwards. **Assume** Y_i conditionally independent given X_i with (conditional) means μ_i satisfying $\mu_i = g(X'_i\beta)$, with β the same for $1 \leq i \leq n$ and g known.

Assume (for now) that $Var(Y_i | X_i) = v(\mu_i)$, with $v(\cdot)$ known.

Idea: estimate β as the solution of

$$
\sum_{i=1}^{n} X_i \frac{Y_i - g^{-1}(X_i^{tr}\beta)}{g'(g^{-1}(X_i^{tr}\beta)) v(g^{-1}(X_i^{tr}\beta))} = 0
$$

by writing $\mu_i = g^{-1}(X_i^{tr}\beta)$.

Recall g^{-1} = logit for Logistic Regression, log for Poisson.

General Idea of Estimating Equations

Suppose *iid* (Y_i,X_i) satisfy $\; E_{\beta_0}\big[Q(Y_i,X_i,\beta_0)\big]\equiv 0\;$ in model P_{β} with parameter $\beta = \beta_0$ (and maybe other nuisance parameters).

Law of Large Numbers implies

$$
n^{-1}\sum_{i=1}^n Q(Y_i, X_i, \beta) \stackrel{P_{\beta}}{\longrightarrow} 0
$$

Assume regularity conditions (smoothness and moments) on Q as in MLE-theory special case $Q(Y_i, X_i, \beta) = \nabla_{\beta} \log f(Y_i | X_i, \beta)$:

Q continuously differentiable in β , with $E_\beta(\nabla_\beta\left\{Q(Y_1,X_1,\beta)\right\}^{tr})$ nonsingular

Further Steps in Estimating Equation Theory

 $M(\beta) \, = \, n^{-1} \, \sum_{i=1}^n \, Q(Y_i,X_i,\beta) \,$ is random function for $\beta \in B_{\epsilon}(\beta_0)$ Under regularity conditions, uniformly close to $\ E_{\beta_0}\big(Q(Y_1,X_1,\beta)\big)$ and $\frac{1}{n}$ \overline{n} $\sum_{i=1}^n \nabla \{Q(Y_i, X_i, \beta)\}^{tr} \approx E_{\beta_0} (\nabla_{\beta} \{Q(Y_1, X_1, \beta)\}^{tr}) = A(\beta)$ $M(\beta)$ is 0 at $\beta = \beta_0$, and conclude (via empirical process theory) that with prob. \rightarrow 1 there is solution in $B_{\epsilon}(\beta_0)$.

Nonsingularity of $A(\beta)$ near β_0 implies root of $M(\cdot)$ locally unique: if $\beta^*, \tilde{\beta}$ are solutions in $B_{\epsilon}(\beta_0)$, then $0 = M(\beta^*) - M(\tilde{\beta})$

$$
\approx \left[E_{\beta} \big(\nabla_{\beta} \{ Q(Y_1, X_1, \beta_0) \}^{tr} \big) \right]^{tr} (\beta^* - \tilde{\beta}) + o \big(\| \beta^* - \tilde{\beta} \| \big)
$$

11