
STAT 770 Oct. 12 Lectures

GLMs – Estimating Equations without Likelihoods

Reading and Topics for this lecture: Chapter 4, Secs. 4.5, 4.7

(1) Recap of GLM Estimating Equations (with scalar θ)

(2) Score Equation & Asymptotic Variance

(3) Deviances and Log LR’s

(4) Other Model Examples: Noncanonical, Dispersion

(5) Using GLM Estimating Eq’n without the Likelihood!

(6) More on fitting R models using glm
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Recap of GLM from Likelihood

Start from Yi scalar outcomes Yi ∼ f(y, θi) = exp
(
θi y−c(θi)

)
h(y)

Xi (vector) regressor variables entering model via ηi = β′Xi

θ natural parameter: book expresses it as function Q(θ)

E(Yi |Xi) = c′(θi) = µi , Var(Yi |Xi) = c′′(θi)

Var(Yi |Xi) = v(µi) , v = c′′ ◦ (c′)−1

Link function: g monotonic, smooth, known, g(µi) = ηi

GLM relationships β 7→ ηi 7→ µi 7→ θi = (c′)−1 ◦ g−1(Xtr
i β)
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Score Equation and Information Matrix

Score Equation: ∇β logL(β) =
∑n
i=1 Xi

Yi−µi
g′(µi) v(µi)

= 0

µi = g−1(Xtr
i β), and if link is canonical, g′(µi) v(µi) ≡ 1

Suppose β̂ MLE solves GLM score equation. Theory (later in

lecture) shows it is consistent: under Pβ, as n→∞, β̂
P−→ β

0 = ∇ logL(β̂) ≈ ∇ logL(β) +
n∑
i=1

∇⊗2
β log f(Yi, θi(β)) (β̂ − β)

So ∗
√
n (β̂ − β)

D≈ I−1
(

1√
n

∑n
i=1 Xi

Yi−µi
g′(µi) v(µi)

)

where I = − 1
n E

[∑n
i=1 Xi∇

tr
β

Yi−µi
g′(µi) v(µi)

]
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Information Matrix Versus Observed Information

Observed Information J = − 1
n

[∑n
i=1 Xi∇

tr
β

Yi−µi
g′(µi) v(µi)

] ∣∣∣∣
β=β̂

Fisher Information I = − 1
n E

[∑n
i=1 Xi∇

tr
β

Yi−µi
g′(µi) v(µi)

]

= −1
n E

[∑n
i=1 Xi (Yi−µi)∇trβ

1
g′(µi) v(µi)

]
+ 1

n E

[∑n
i=1 Xi

∇µi
g′(µi) v(µi)

]

Use E(Yi |Xi) = µi and µi = g−1(Xtr
i β): then

I = 1
n

∑n
i=1 XiX

tr
i

[
(g′(µi))2 v(µi)

]−1
for {Xi} fixed

Observed information has additional (smaller-order) term

involving Yi − µi [only] when the link is non-canonical
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Drawing Conclusions from the Variance Expressions

General case (under regularity conditions): µi = g−1(Xtr
i β), and

β̂ solves
∑n
i=1 Xi

Yi−µi
g′(µi) v(µi)

= 0 , µ̂i = g−1(Xtr
i β̂)

β̂ − β D≈ N
(
0,
[ n∑
i=1

XiX
tr
i

(
(g′(µ̂i))2 v(µ̂i)

)−1
]−1)

Variance matrix = Information−1 =
(
XtrW X

)−1

Xn×p has i’th row Xi , Wn×n = diag
([
g′(µ̂i))2 v(µ̂i)

]−1)

With canonical link: J = I
∣∣∣∣
β=β̂

and W = diag(v(µ̂i))
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Deviances and Likelihood Ratio Statistics

deviance between models with dim(β) = q or p is

2 ·
(

log(L(β̂(p)) − log(L(β̂(q))
)

Wilks’ Theorem says (under H0 that β(q) is correct) ∼ χ2
p−q

(residual) Deviance: between current β and Saturated model

Null Model: GLM with intercept only, q = 1

Saturated model: GLM with µ̂i ≡ Yi (examples to follow)

Null Deviance: Deviance between Null and Saturated model

(incremental) Deviance: Analysis of Deviance table line

for terms (q+1):p (single compionent or factor) is

deviance between β(q) and β(p) models
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R Script with Links, Deviances, Data Structures

(i) Links are arguments to family within glm

(ii) Null, incremental and residual deviances within anova tables

(iii) Residual Deviances useful for categorical variables Xi

that may include row, column factors and interactions

(iv) Data may be at unit obs. level or aggregated

over common Xi categories

(v) Exhibit variances using $cov.unscaled component

of glm fitted object
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Other GLMs and Extensions

Non-canonical Link Examples:

(I). Binomial outcome Yi, µi ∈ (0,1), link g−1 any dist’n function

other than plogis, e.g. g−1 = Φ for probit model.

(II). Poisson outcome Yi, link g−1 any monotone map on R, can

be identity, e.g. for linear model, if X ′iβ all positive

Models with Overdispersion: will cover this extension next time
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Estimating Equation for GLM

Now work backwards. Assume Yi conditionally independent

given Xi with (conditional) means µi satisfying µi = g(X ′i β),

with β the same for 1 ≤ i ≤ n and g known.

Assume (for now) that Var(Yi |Xi) = v(µi), with v(·) known.

Idea: estimate β as the solution of

n∑
i=1

Xi
Yi − g−1(Xtr

i β)

g′(g−1(Xtr
i β)) v(g−1(Xtr

i β))
= 0

by writing µi = g−1(Xtr
i β).

Recall g−1 = logit for Logistic Regression, log for Poisson.
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General Idea of Estimating Equations

Suppose iid (Yi, Xi) satisfy Eβ0

[
Q(Yi, Xi, β0)

]
≡ 0 in model Pβ

with parameter β = β0 (and maybe other nuisance parameters).

Law of Large Numbers implies

n−1
n∑
i=1

Q(Yi, Xi, β)
Pβ−→ 0

Assume regularity conditions (smoothness and moments) on Q

as in MLE-theory special case Q(Yi, Xi, β) = ∇β log f(Yi |Xi, β)):

Q continuously differentiable in β, with Eβ
(
∇β {Q(Y1, X1, β)}tr

)
nonsingular
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Further Steps in Estimating Equation Theory

M(β) = n−1 ∑n
i=1 Q(Yi, Xi, β) is random function for β ∈ Bε(β0)

Under regularity conditions, uniformly close to Eβ0

(
Q(Y1, X1, β)

)

and 1
n

∑n
i=1 ∇{Q(Yi, Xi, β)}tr ≈ Eβ0

(
∇β {Q(Y1, X1, β)}tr

)
= A(β)

M(β) is 0 at β = β0, and conclude (via empirical process
theory) that with prob. → 1 there is solution in Bε(β0).

Nonsingularity of A(β) near β0 implies root of M(·) locally
unique: if β∗, β̃ are solutions in Bε(β0), then 0 = M(β∗)−M(β̃)

≈
[
Eβ
(
∇β {Q(Y1, X1, β0)}tr

)]tr
(β∗ − β̃) + o

(
‖β∗ − β̃‖

)
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