
STAT 770 Oct. 14 Lectures

Estimating Equations Without Likelihoods
and some HW-related Topics

Reading and Topics for this lecture: Secs. 4.5-4.7, Ch. 5

(1) Using GLM Estimating Eq’n without the Likelihood!

(2) Other Model Examples: Noncanonical, Dispersion

(3) Topics for the HW: profile likelihood CI (Ch. 3, p. 80),

and Fisher Scoring (Sec. 4.6)

(4) Logistic ‘Model-Building’ (Ch. 5 material)

(5) More on fitting R models using glm
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Estimating Equation for GLM

Now work backwards. Assume Yi conditionally independent

given Xi with (conditional) means µi satisfying µi = g(X ′i β),

with β the same for 1 ≤ i ≤ n and g known.

Assume (for now) that Var(Yi |Xi) = v(µi), with v(·) known.

Idea: estimate β as the solution of

n∑
i=1

Xi
Yi − g−1(Xtr

i β)

g′(g−1(Xtr
i β)) v(g−1(Xtr

i β))
= 0

by writing µi = g−1(Xtr
i β).

Recall g−1 = logit for Logistic Regression, log for Poisson.
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General Idea of Estimating Equations

Suppose iid (Yi, Xi) satisfy Eβ0

[∑n
i=1Q(Yi, Xi, β0)

]
≡ 0 in model

Pβ with parameter β = β0 (maybe + other nuisance parameters)

Law of Large Numbers implies

n−1
n∑
i=1

Q(Yi, Xi, β)
Pβ−→ 0

Assume regularity conditions (smoothness and moments) on Q

as in MLE-theory special case Q(Yi, Xi, β) = ∇β log f(Yi |Xi, β)):

Q continuously differentiable in β, with the matrix

Eβ
(∑n

i=1 ∇β {Q(Y1, X1, β)}tr
)

nonsingular
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Further Steps in Estimating Equation Theory

M(β) = n−1 ∑n
i=1 Q(Yi, Xi, β) is random function for β ∈ Bε(β0)

Under regularity conditions, uniformly ≈ Eβ0

(
1
n

∑n
i=1 Q(Yi, Xi, β)

)
and

1
n

∑n
i=1 ∇{Q(Yi, Xi, β)}tr ≈ Eβ0

(
1
n

∑n
i=1 ∇β {Q(Yi, Xi, β)}tr

)
= An(β)

M(β) is 0 at β = β0, and conclude (via empirical process

theory) that with prob. → 1 there is solution in Bε(β0).

(Uniform in n, β) Nonsingularity of An(β) near β0 implies root

of M(·) locally unique: if β∗, β̃ are solutions in Bε(β0), then

0 = M(β∗)−M(β̃) ≈
(
An(β0)

)tr
(β∗ − β̃) + o

(
‖β∗ − β̃‖

)
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Drawing Conclusions from Variance Expressions, II

General case (under regularity conditions): µi = g−1(Xtr
i β), and

β̂ solves
∑n
i=1 Xi

Yi−µi
g′(µi) v(µi)

= 0 , µ̂i = g−1(Xtr
i β̂)

β̂ − β D≈ N
(
0,
[ n∑
i=1

XiX
tr
i

(
(g′(µ̂i))2 v(µ̂i)

)−1
]−1)

Variance matrix = Information−1 =
(
XtrW X

)−1

Xn×p has i’th row Xi , Wn×n = diag
([
g′(µ̂i))2 v(µ̂i)

]−1)

With canonical link: J = I
∣∣∣∣
β=β̂

and W = diag(v(µ̂i))
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Estimating Equation Interpretation (Sec. 4.7)

We just saw that∗ theory tells:

β̂ solving the Estimating Equation
∑n
i=1 Xi

Yi−µi
g′(µi) v(µi)

= 0

is asymptotically normal with variance (XtrWX)−1 assuming

only that Yi are independent with (conditional given Xi) mean

and variance µi = g−1(Xtr
i β), v(µi).

Similar theory shows that solving
∑n
i=1 h(µi)Xi (Yi − µi) gives

√
n consistent asymptotically normal estimator (like weighted

least squares!) without the assumption on v(µi), but estimator

is generally not efficient, and the variance expression is different.
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Other GLMs and Extensions

Non-canonical Link Examples:

(I). Binomial outcome Yi, µi ∈ (0,1), link g−1 any dist’n function

other than plogis, e.g. g−1 = Φ for probit model.

(II). Poisson outcome Yi, link g−1 any monotone map on R, can

be identity, e.g. for linear model, if X ′iβ all positive

Models with Overdispersion: will cover this extension next time
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Profile Likelihood and Confidence Intervals

This is material from Ch. 3, p.80.

Let β = (γ, λ) be the parameter (eg in a GLM) with MLE β̂ and

restricted MLE λ̂r(γ0) calculated under hypothesis H0 : γ = γ0

Then 2
[

logL(β̂)−logL(γ0, λ̂r(γ0))
]
∼ χ2

dim(γ) (Wilks Thm)

inverted LRT Conf. Interval:
{
γ0 : −2 logLprof(γ0) ≤ χ2

d,α

}
where Lprof(γ0) ≡ L(γ0, λ̂r(γ0))/L(β̂) (Profile Likelihood)

Can calculate the test-based CI’s using confint in R.
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Numerical Maximization and Fisher Scoring

L(β) usually maximized by Newton-Raphson (NR) Iterations

to solve ∇ logL(β) = 0

βk+1 = βk +
{
−∇⊗2 logL(βk)

}−1
∇ logL(βk)

Recall Observed Information J = −∇⊗2 logL(β̂)

So
{
·
}

matrix in NR is a current-iterate version of J

Fisher Scoring uses iterates with Fisher Info matrix:

βk+1 = βk + I
∣∣∣
β=βk

∇ logL(βk)

Recall that I(β̂) = J [only] in canonical-link models
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R Script with Illustrations of Methods

(i) Model-building: use of Deviances and

Standardized Coefficients in glm

(ii) Profile Likelihoods and confint

(iii) Likelihood Maximization and Fisher Scoring
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