STAT 770 Oct. 14 Lectures

Estimating Equations Without Likelihoods
and some HW-related Topics

Reading and Topics for this lecture: Secs. 4.5-4.7, Ch. 5
(1) Using GLM Estimating Eq’'n without the Likelihood!
(2) Other Model Examples: Noncanonical, Dispersion

(3) Topics for the HW: profile likelihood CI (Ch. 3, p. 80),
and Fisher Scoring (Sec. 4.6)

(4) Logistic ‘Model-Building’ (Ch. 5 material)

(5) More on fitting R models using glm



Estimating Equation for GLM

Now work backwards. Assume Y; conditionally independent
given X; with (conditional) means p; satisfying p; = g(X/3),
with g the same for 1 <:<n and g known.

Assume (for now) that Var(Y;|X;) = v(u;), with v(-) known.

Idea: estimate [ as the solution of

Y. —1(Xt7"6)
Z X X B)) ol 1(XFR)) —

by writing p; = g7 H(XI"B).

Recall g_l — logit for Logistic Regression, log for Poisson.
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General Idea of Estimating Equations

Suppose iid (Y;, X;) satisfy Eﬁo[zé’;l Q(Yz,Xz',ﬁo)] = 0 in model
Pg with parameter g = fo (maybe 4+ other nuisance parameters)

Law of Large Numbers implies

n P
n 1Y QY X, 8) —5 0
1=1

Assume regularity conditions (smoothness and moments) on @

as in MLE-theory special case Q(Y;, X;,8) = Vg log f(Y; | X;,8)):

Q continuously differentiable in 8, with the matrix

E@(Zfb:l Vg {Q(Yl,Xl,ﬁ)}”) nonsingular



Further Steps in Estimating Equation Theory
M(B) = n~1 30, Q(Y;, X;, B) is random function for 8 € Be(Bp)

Under regularity conditions, uniformly ~ Eg, <% D1 Q(YZ-,XZ-,B))
and

E Y VH{QYG, Xi, BT & By (£ iy Va{Q(Y:, X, B)}T) = An(B)

M(B) is 0 at B = By, and conclude (via empirical process
theory) that with prob. — 1 there is solution in Be(8p).

(Uniform in n,8) Nonsingularity of A,(8) near Bg implies root
of M(-) locally unique: if 8* B are solutions in B<(8p), then

0 = M(5*) ~ M(B) ~ (4n(B0))" (8"~ B) + o(lI8" - Bll)
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Drawing Conclusions from Variance EXxpressions, Il

General case (under regularity conditions): u; = g—l(Xf"“B), and

~ Y ~ _ 5
B solves Y1 Xiguyuty = 0+ Ri=9 (X7

55 2 a0, [ 3 xxt (@G ee) )

i=1
—1
Variance matrix = Information—1 = (X”WX)
., . AN NP B |
Xpxp has i'throw X; ,  Wpxn = diag([¢/(5;))?v(i)] )

With canonical link: J=17 ~and W =diag(v(ji;))
B=p
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Estimating Equation Interpretation (Sec. 4.7)

We just saw that™* theory tells:

~ i . . . n ) Yi— 1y
B solving the Estimating Equation 33, X; b

is asymptotically normal with variance (X"WX)~1 assuming

only that Y, are independent with (conditional given X;) mean
and variance p; = g 1 (X" B), v(u;).

y = 0

Similar theory shows that solving > h(u;) X; (Y; — pi) gives
v/n consistent asymptotically normal estimator (like weighted
least squares!) without the assumption on v(u;), but estimator
IS generally not efficient, and the variance expression is different.



Other GLMs and Extensions

Non-canonical Link Examples:

(I). Binomial outcome Y}, u; € (0,1), link g~ any dist’n function
other than plogis, e.g. g~ 1 = & for probit model.

(II). Poisson outcome Y;, link ¢g~! any monotone map on R, can
be identity, e.g. for linear model, if X/3 all positive

Models with Overdispersion: will cover this extension next time



Profile Likelihood and Confidence Intervals

This is material from Ch. 3, p.80.

Let 8 = (v,)\) be the parameter (eg in a GLM) with MLE 3 and
restricted MLE \-(7yg) calculated under hypothesis Hy : v = o

Then 2[|og L(B)—log L(WO,XT(WO))} ~ Xiimy  (Wilks Thm)

inverted LRT Conf. Interval: {’yo: —2109 Lpro¢(70) < xﬁa}

where  L,.,r(70) = L(vo0, Ar(70))/L(B)  (Profile Likelihood)

Can calculate the test-based CI's using confint in R.



Numerical Maximization and Fisher Scoring

L(B) usually maximized by Newton-Raphson (NR) Iterations
to solve VIiogL(B) =0

1
Br+1 = Br + {—V®2|09 L(ﬁk)} Vlog L(B)

Recall Observed Information J = —V®2|og L(B)

So { : } matrix in NR is a current-iterate version of J

Fisher Scoring uses iterates with Fisher Info matrix:
= Z Viog L
Br+1 = Bk + ‘B=Bk g L(B)

Recall that Z(B) =J [only] in canonical-link models



R Script with Illustrations of Methods

(i) Model-building: use of Deviances and

Standardized Coefficients in glm
(ii) Profile Likelihoods and confint

(iii) Likelihood Maximization and Fisher Scoring
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