STAT 770 Oct. 14 Lectures Estimating Equations Without Likelihoods and some HW-related Topics

Reading and Topics for this lecture: Secs. 4.5-4.7, Ch. 5

- (1) Using GLM Estimating Eq'n without the Likelihood!
- (2) Other Model Examples: Noncanonical, Dispersion
- (3) Topics for the HW: profile likelihood CI (Ch. 3, p. 80), and Fisher Scoring (Sec. 4.6)
- (4) Logistic 'Model-Building' (Ch. 5 material)
- (5) More on fitting R models using glm

Estimating Equation for GLM

Now work backwards. Assume Y_i conditionally independent given X_i with (conditional) means μ_i satisfying $\mu_i = g(X'_i \beta)$, with β the same for $1 \le i \le n$ and g known.

Assume (for now) that $Var(Y_i | X_i) = v(\mu_i)$, with $v(\cdot)$ known.

Idea: estimate β as the solution of

$$\sum_{i=1}^{n} X_i \frac{Y_i - g^{-1}(X_i^{tr}\beta)}{g'(g^{-1}(X_i^{tr}\beta)) v(g^{-1}(X_i^{tr}\beta))} = 0$$

by writing $\mu_i = g^{-1}(X_i^{tr}\beta)$.

Recall $g^{-1} = \text{logit}$ for Logistic Regression, log for Poisson.

General Idea of Estimating Equations

Suppose *iid* (Y_i, X_i) satisfy $E_{\beta_0} \left[\sum_{i=1}^n Q(Y_i, X_i, \beta_0) \right] \equiv 0$ in model P_β with parameter $\beta = \beta_0$ (maybe + other nuisance parameters)

Law of Large Numbers implies

$$n^{-1} \sum_{i=1}^{n} Q(Y_i, X_i, \beta) \xrightarrow{P_{\beta}} 0$$

Assume regularity conditions (smoothness and moments) on Qas in MLE-theory special case $Q(Y_i, X_i, \beta) = \nabla_{\beta} \log f(Y_i | X_i, \beta)$:

Q continuously differentiable in β , with the matrix $E_{\beta}\left(\sum_{i=1}^{n} \nabla_{\beta} \{Q(Y_1, X_1, \beta)\}^{tr}\right)$ nonsingular

Further Steps in Estimating Equation Theory

 $M(\beta) = n^{-1} \sum_{i=1}^{n} Q(Y_i, X_i, \beta)$ is random function for $\beta \in B_{\epsilon}(\beta_0)$

Under regularity conditions, uniformly $\approx E_{\beta_0} \left(\frac{1}{n} \sum_{i=1}^n Q(Y_i, X_i, \beta) \right)$ and

$$\frac{1}{n}\sum_{i=1}^{n}\nabla\{Q(Y_i, X_i, \beta)\}^{tr} \approx E_{\beta_0}\left(\frac{1}{n}\sum_{i=1}^{n}\nabla_{\beta}\{Q(Y_i, X_i, \beta)\}^{tr}\right) = A_n(\beta)$$

 $M(\beta)$ is 0 at $\beta = \beta_0$, and conclude (via *empirical process* theory) that with prob. $\rightarrow 1$ there is solution in $B_{\epsilon}(\beta_0)$.

(Uniform in n,β) Nonsingularity of $A_n(\beta)$ near β_0 implies root of $M(\cdot)$ locally unique: if $\beta^*, \tilde{\beta}$ are solutions in $B_{\epsilon}(\beta_0)$, then

$$\mathbf{0} = M(\beta^*) - M(\tilde{\beta}) \approx \left(A_n(\beta_0)\right)^{tr} \left(\beta^* - \tilde{\beta}\right) + o\left(\|\beta^* - \tilde{\beta}\|\right)$$

Drawing Conclusions from Variance Expressions, II

General case (under regularity conditions): $\mu_i = g^{-1}(X_i^{tr}\beta)$, and

$$\widehat{\beta} \text{ solves } \sum_{i=1}^{n} X_i \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)} = 0 \quad , \qquad \widehat{\mu}_i = g^{-1} (X_i^{tr} \widehat{\beta})$$
$$\widehat{\beta} - \beta \stackrel{\mathcal{D}}{\approx} \mathcal{N} \Big(0, \left[\sum_{i=1}^{n} X_i X_i^{tr} \left((g'(\widehat{\mu}_i))^2 v(\widehat{\mu}_i) \right)^{-1} \right]^{-1} \Big)$$

Variance matrix = Information⁻¹ = $(\mathbf{X}^{tr} W \mathbf{X})^{-1}$

 $\mathbf{X}_{n \times p}$ has *i*'th row X_i , $W_{n \times n} = \operatorname{diag}\left(\left[g'(\hat{\mu}_i)\right)^2 v(\hat{\mu}_i)\right]^{-1}\right)$ With canonical link: $J = \mathcal{I}\Big|_{\beta = \hat{\beta}}$ and $W = \operatorname{diag}(v(\hat{\mu}_i))$

Estimating Equation Interpretation (Sec. 4.7)

We just saw that^{*} theory tells:

 $\hat{\beta}$ solving the Estimating Equation $\sum_{i=1}^{n} X_i \frac{Y_i - \mu_i}{g'(\mu_i) v(\mu_i)} = 0$

is asymptotically normal with variance $(\mathbf{X}^{tr}W\mathbf{X})^{-1}$ assuming only that Y_i are independent with (conditional given X_i) mean and variance $\mu_i = g^{-1}(X_i^{tr}\beta), v(\mu_i)$.

Similar theory shows that solving $\sum_{i=1}^{n} h(\mu_i) X_i (Y_i - \mu_i)$ gives \sqrt{n} consistent asymptotically normal estimator (like weighted least squares!) without the assumption on $v(\mu_i)$, but estimator is generally not efficient, and the variance expression is different.

Other GLMs and Extensions

Non-canonical Link Examples:

(I). Binomial outcome Y_i , $\mu_i \in (0, 1)$, link g^{-1} any dist'n function other than plogis, e.g. $g^{-1} = \Phi$ for probit model.

(II). Poisson outcome Y_i , link g^{-1} any monotone map on \mathbb{R} , can be identity, e.g. for linear model, if $X'_i\beta$ all positive

Models with Overdispersion: will cover this extension next time

Profile Likelihood and Confidence Intervals

This is material from Ch. 3, p.80.

Let $\beta = (\gamma, \lambda)$ be the parameter (eg in a GLM) with MLE $\hat{\beta}$ and restricted MLE $\hat{\lambda}_r(\gamma_0)$ calculated under hypothesis H_0 : $\gamma = \gamma_0$

Then
$$2\left[\log L(\hat{\beta}) - \log L(\gamma_0, \hat{\lambda}_r(\gamma_0))\right] \sim \chi^2_{\dim(\gamma)}$$
 (Wilks Thm)
inverted LRT Conf. Interval: $\left\{\gamma_0 : -2\log L_{prof}(\gamma_0) \le \chi^2_{d,\alpha}\right\}$
where $L_{prof}(\gamma_0) \equiv L(\gamma_0, \hat{\lambda}_r(\gamma_0))/L(\hat{\beta})$ (Profile Likelihood)

Can calculate the test-based CI's using confint in R.

Numerical Maximization and Fisher Scoring

 $L(\beta)$ usually maximized by Newton-Raphson (NR) Iterations to solve $\nabla \log L(\beta) = 0$

$$\beta_{k+1} = \beta_k + \left\{ -\nabla^{\otimes 2} \log L(\beta_k) \right\}^{-1} \nabla \log L(\beta_k)$$

Recall Observed Information $J = -\nabla^{\otimes 2} \log L(\hat{\beta})$ So $\{\cdot\}$ matrix in NR is a current-iterate version of J

Fisher Scoring uses iterates with Fisher Info matrix:

$$\beta_{k+1} = \beta_k + \mathcal{I}\Big|_{\beta = \beta_k} \nabla \log L(\beta_k)$$

Recall that $\mathcal{I}(\hat{\beta}) = J$ [only] in canonical-link models

R Script with Illustrations of Methods

(i) Model-building: use of Deviances and Standardized Coefficients in glm(ii) Profile Likelihoods and confint

(iii) Likelihood Maximization and Fisher Scoring