STAT 770 Oct. 19 Lecture 14
Quasilikelihood and Overdispersion

Reading and Topics for this lecture: Secs. 4.4.1-4.4.5, ‘quasi’
family within glm in R, also Ch 13 through 13.1.2, Sec. 14.3-14.4

(1) Idea of Overdispersion — Important!

(2) Specific Models for Overdispersion, e.g. Negative Binomial
(3) Quasilikelihood estension of GLM

(4) R Code for Quasilikelihood fits

(5) Summarizing Predictive Power of Logistic Regression (Sec. 6.3)

1



Extra Heterogeneity among Observations

A key assumption required for validity of GLM methods is
homogeneity and independence (iid individual observations).

What if observations in groups (i.e., clusters) share a random
effect, i.e., observations are dependent among themselves 7

Examples:
(a) Beta-Binomial Y, ~ Binom(n;,p;), p; ~ Beta(a, 3),
(b) Negative-Binomial Y, ~ Poisson(}\;), \; ~ Gamma(k,k/u)

Var(Y;) = E(Var(Y;|X;)) + Var(E(Y;| X)) = E(N\;) + Var(\;)
= u + p?/k over-dispersion



NegBin Model

(material covered in detail in Sec. 14.4)
In example (b): Negative Binomial (k,u/(,u—l—k)) distribution
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Randomness in the Poisson parameter has the effect of changing
the link! More generally, need estimation strategy to recognize
overdispersion.



Quasilikelihood Extension of GLM

Assume instead of exponential family, Yj ~ h(y, ¢)e(?v—c(9))/a(é)

¢ IS a new dispersion parameter

Check again (same as before) that ¢ (0) = E(Y;). For variances:
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So score estimating equation (for 6) becomes
0 = Zznzl vﬁ [(ezY; — C(ez))/a(¢)] — Z?:l X; g’(ui)%zqﬁgiv(ui)

same with factor 1/a(¢) and J = X' (W/a(¢))X




Dispersion Parameter

a(®) generally found not from likelihood but from a moment
expression like
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to indicate overdispersion when this estimate is clearly > 1



R Script with Illustrations of Methods

(i) Quasilikelihood example (simulated), RscriptLec14.RLog

(ii) Quasilikelihood example as in book with Crab mating, in
script GLMsScript.RLog

(iii) Predictive Power of Logistic Regression Models
— 9% reduction in sum of squared errors
— % reduction in deviance

— ROC plot and AUC



Predictive Power of Logistic Regressions

Continue with this topic later on, using

— Binning of predicted values to make sure that the approximately
correct proportions of Y = 1 cases are seen within each bin

— Cross-validated estimates of proportion of correct predictions

— Comparison with ‘Machine Learning’ algorithms

for binary prediction



