
STAT 770 Oct. 21 Lecture 15

Loose Ends in GLM Model-building

Reading and Topics for this lecture: Chapter 5.

(1) Extension of Quasilikelihood to dispersions ai(φ) = b(φ)/wi

(2) Weighted binomial regression – aggregated form of data

(3) Specific Models for Overdispersion, e.g. Negative Binomial

(4) R function update used in HW3 solutions

(5) Stepwise regression in R, AIC “model-building” idea

(6) Posteriors using Mixture Priors
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Quasilikelihood with Dispersions ai(φ) = φ/wi

fYi(y, θi) ∝ exp
(
(θi y − c(θi))/ai(φ)

)
= exp

(
wi

θi y−c(θi)
φ

)
logLik = logL(β) =

∑n
i=1

wi
φ (θi y − c(θi))

Score =
∑n
i=1

wi
φ Xi

Yi−c(θi)
g′(µi) v(µi)

Observed Info J = Xtr diag
(
wi
φ

{
(g′(µi))2v(µi)

}−1)
X
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Weighted GLMs – Scores and R Syntax

Recall GLM score eq’n:
∑n
i=1 Xi

Yi−µi
g′(µi) v(µi)

= 0

Suppose Xi categorical, define groups Gk = {i : Xi = xk} for the

distinct combinations xk of Xi in data, and nk = |Gk|.

yk ≡
∑
i∈Gk Yi satisfy fyk(x) ∝ exp(θ x− nk c(θ)) (Exercise!)

θi = θ̃k ≡ (c′)−1(µ̃k) , µi = µ̃k ≡ g−1(xtrk β) for i ∈ Gk

logLik =
∑
k nk (θ̃k yk/nk − c(θ̃k))

Score
∑K
k=1 nk xk

yk/nk−µ̃k
g′(µ̃k) v(µ̃k) =

∑n
i=1 Xi

Yi−µi
g′(µi) v(µi)

modA = glm(y/nvec ~ X1+..., data= dfr, family=xxx, weight=nvec)
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Negative Binomial Regression Model

Recall: quasilikelihood fit like quiasipoisson in R

signals overdispersion by φ > 1

Saw in Lec. 14 that Poisson(λ) with λ ∼ Gamma(k, k/µ)

is NegBin(k, µ/(µ+ k)), with Var(Yi) = µi + µ2
i /k

extends to non-integer θ replacing k,

with prob. mass fcn p(y) = Γ(y+θ)
Γ(y+1) Γ(θ) ( µ

µ+θ)y ( θ
µ+θ)θ

Let µi = exp(Xtr
i β) as in Poisson regression. For fixed θ:

GLM with g ≡ log, v(µi) = µi + µ2
i /θ, θi = log(µi/(µi + θ))
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Negative Binomial Regression in R

Function glm.nb in MASS package, syntax like glm but no “family”

new argument link = log by default (otherwise sqrt or identity)

“offset” handled differently

From R documentation:

“An alternating iteration process is used. For given theta the

GLM is fitted using the same process as used by glm(). For

fixed means the theta parameter is estimated using score and

information iterations ... alternated until convergence of both.”
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Posteriors with Mixture Priors

Suppose as in HW 3.(I) parametric models with mixture prior
on {(j, θ(j))} for models fj(·, θ(j)) (different θ(j))

π
(
{(j, θ(j))}Jj=1

)
=

J∑
j=1

pj πj(θ
(j))

Then the posterior is π(θ |Y) = C · pj πj(θ(j))Lj(θ
(j),Y)

( C = 1/
∑J
j=1 pj

∫
πj(t)Lj(t,Y)dt normalizing ‘constant’

depending on Y)

The relative sizes of contributions to posterior from the mixture
components depend on ratios of pj πj(θ

(j))Lj(θ
(j),Y) , called

Likelihood ratios or Bayes Factors

This construction and slide address Bayesian model selection
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