
STAT 770 Oct. 26 Lecture 16

GLM model selection, checking, and alternatives

Reading and Topics for this lecture: Chapters 5, 7.

(1) Rationale for Stepwise Model Selection

(2) Computational Issues

(3) Checking GLM Goodness of Fit – Binning (Sec. 5.2.5)

(4) Hosmer-Lemeshow Test

(5) GLMs and ‘Tests for Trend’ in I × 2 Tables (Sec. 5.3.4)

(6) Other Links, other Models (Secs. 7.1, 7.3)
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Wilks Theorem & Variable Selection

For maximal set of covariates Xi (incl. interactions Xi,k1
∗Xi,k2

etc.), link and variance function g(µ), v(µ), outcomes Yi

consider β(d) ∈ Rp with specified (p−d)-dim subvector = 0 versus
β(d+1) with an extra nonzero coeff., β(d−1) with an extra 0

if H0 holds that d coefficients are really non-0 :

2 log
(
L(β̂(d+1))/L(β̂(d))

)
≤ χ2

1,α with prob. ≈ 1− α

2 log
(
L(β̂(d))/L(β̂(d−1))

)
> χ2

1,α with prob. � α power

Idea: logL(β̂(j))− j
2 χ

2
1,α likely maximized at j = d

AIC, BIC, ... minj
{
−logL(β̂(j))+ cj

}
for

{
c = 2, AIC
c = logn, BIC
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Computational Issues in Penalized MLE

Objective Function (to minimize): − logL(β̂(j)) + c · j

(1) In large data and covariate sets, exact maximization not

possible over all sets of variables. (SAS does best subset selec-

tion by default only when p ≤ 11) ‘‘forward’’ or ‘‘backward’’ or

‘‘both’’ all greedy algorithm searches

(2) Choosing c too low results in Overfitting, often the

problem with AIC. BIC value c = logn is probably as high as

one should go. Script RscriptLec16.RLog shows an example where

a value in-between is best as judged by 20-fold cross-validation.
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Diagnostics for Goodness of Fit

Predictive accuracy is not the same as model-adequacy. Check-

ing goodness of fit assesses whether deviations from a model

within a defined larger class of models are no more than might

occur by chance, by patternlessness of residuals.

(1) LRTs do this explicitly in a model class.

(2) Binning allows non-model-based checks on grouped data.

Bins partition data, by covariate-defined cells Ah = {i : Xi ∈ Ch}
or by predictor intervals Ah = {i : β̂′Xi ∈ Ch}, Ch = (ah, ah+1]

Diagnostic GLM comparison of
∑
i∈Ah Yi versus

∑
i∈Ah µ̂i.

Illustrated in RscriptLec16.RLog on Breast-cancer data.
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Hosmer-Lemeshow Test

In the setting where bins involve X partition only , put:

ty,h =
∑
i∈Ah

Yi , t̂y,h =
∑
i∈Ah

µ̂i , nh = |Ah|

Hosmer-Lemeshow Statistic:
∑H
h=1 (t̂y,h−ty,h)2/

[
t̂y,h(1−t̂y,h/nh)

]
Idea: ty,h/nh represents true expected fraction of 1’s in Group h,

which is roughly the proportion for each i ∈ Ah; however t̂y,h/nh
is a fitted proportion using all d parameters in the fitted GLM!

Degrees of freedom not clear (≥ H − d).∑H
h=1 (t̂y,h − ty,h)2/t̂y,h only resembles X2, (≤ χ2

H−d).
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Logistic Regression in I × 2 Tables

Data: Yi1 ∼ Binom(ni, πi), 1 ≤ i ≤ I, j = 1, , Yi2 = ni − Yi1
Model: H1 : logit(πi) = α+ βxi, H0 : β = 0

predictor scores xi describe ‘distances’ between i levels

This is a ‘test for trend’ with ordinal categories, also a GLM
Logistic Regression (can use glm).

Score test is equivalent to Cochran-Armitage trend test (derived
using OLS) with statistic

z2 =
[ I∑
i=1

(xi − x̄)Yi,1
]2/[

p(1− p)
I∑

i=1

ni(xi − x̄)2
]

where p = Y+1/n, x̄ =
∑n
i=1 nixi/n. More powerful than test for

independence against H1 alternatives.
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Other Models, Chapter 7

• probit and cloglog link binary-outcome GLMs

Recall g−1 = F could be any distribution function:

F = Φ probit, F (x) = 1− exp(−ex) cloglog

graphs on next page, example of fits in RscriptLec16

• Look at conditional Logistic Regression (sec. 7.3) next time

Also look at (local) power and sample size

formulas next time, Secs. 6.4 and 6.6.
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Inverse−Links for GLMs: Logit, Probit, cloglog
 1st two are symmetric, all standardized
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