STAT 770 Oct. 26 Lecture 16 GLM model selection, checking, and alternatives

Reading and Topics for this lecture: Chapters 5, 7.

(1) Rationale for Stepwise Model Selection

- (2) Computational Issues
- (3) Checking GLM Goodness of Fit Binning (Sec. 5.2.5)
- (4) Hosmer-Lemeshow Test
- (5) GLMs and 'Tests for Trend' in $I \times 2$ Tables (Sec. 5.3.4)
- (6) Other Links, other Models (Secs. 7.1, 7.3)

Wilks Theorem & Variable Selection

For maximal set of covariates X_i (incl. interactions $X_{i,k_1} * X_{i,k_2}$ etc.), link and variance function $g(\mu), v(\mu)$, outcomes Y_i

consider $\beta^{(d)} \in \mathbb{R}^p$ with specified (p-d)-dim subvector = 0 versus $\beta^{(d+1)}$ with an extra nonzero coeff., $\beta^{(d-1)}$ with an extra 0

if H_0 holds that d coefficients are really non-0 : $2 \log \left(L(\hat{\beta}^{(d+1)})/L(\hat{\beta}^{(d)}) \right) \leq \chi^2_{1,\alpha}$ with prob. $\approx 1 - \alpha$ $2 \log \left(L(\hat{\beta}^{(d)})/L(\hat{\beta}^{(d-1)}) \right) > \chi^2_{1,\alpha}$ with prob. $\gg \alpha$ power

Idea: $\log L(\hat{\beta}^{(j)}) - \frac{j}{2}\chi_{1,\alpha}^2$ likely maximized at j = dAIC, BIC, ... $\min_j \left\{ -\log L(\hat{\beta}^{(j)}) + cj \right\}$ for $\begin{cases} c = 2, & AIC \\ c = \log n, & BIC \end{cases}$

Computational Issues in Penalized MLE

Objective Function (to minimize): $-\log L(\hat{\beta}^{(j)}) + c \cdot j$

(1) In large data and covariate sets, exact maximization not possible over all sets of variables. (SAS does best subset selection by default only when $p \le 11$) ''forward'' or ''backward'' or ''both'' all greedy algorithm searches

(2) Choosing c too low results in Overfitting, often the problem with AIC. BIC value $c = \log n$ is probably as high as one should go. Script RscriptLec16.RLog shows an example where a value in-between is best as judged by 20-fold cross-validation.

Diagnostics for Goodness of Fit

Predictive accuracy is not the same as model-adequacy. Checking goodness of fit assesses whether deviations from a model within a defined larger class of models are no more than might occur by chance, by patternlessness of residuals.

(1) LRTs do this explicitly in a model class.

(2) **Binning** allows non-model-based checks on grouped data.

Bins partition data, by covariate-defined cells $A_h = \{i : X_i \in C_h\}$ or by predictor intervals $A_h = \{i : \hat{\beta}' X_i \in C_h\}, C_h = (a_h, a_{h+1}]$

Diagnostic GLM comparison of $\sum_{i \in A_h} Y_i$ versus $\sum_{i \in A_h} \hat{\mu}_i$. Illustrated in RscriptLec16.RLog on Breast-cancer data.

Hosmer-Lemeshow Test

In the setting where bins involve X partition only , put:

$$t_{y,h} = \sum_{i \in A_h} Y_i , \qquad \hat{t}_{y,h} = \sum_{i \in A_h} \hat{\mu}_i , \qquad n_h = |A_h|$$

Hosmer-Lemeshow Statistic: $\sum_{h=1}^{H} (\hat{t}_{y,h} - t_{y,h})^2 / [\hat{t}_{y,h}(1 - \hat{t}_{y,h}/n_h)]$

Idea: $t_{y,h}/n_h$ represents true expected fraction of 1's in Group h, which is roughly the proportion for each $i \in A_h$; however $\hat{t}_{y,h}/n_h$ is a fitted proportion using all d parameters in the fitted GLM! Degrees of freedom not clear ($\geq H - d$).

$$\sum_{h=1}^{H} (\hat{t}_{y,h} - t_{y,h})^2 / \hat{t}_{y,h}$$
 only resembles X^2 , $(\leq \chi^2_{H-d})$.

Logistic Regression in $I \times 2$ Tables

Data: $Y_{i1} \sim \text{Binom}(n_i, \pi_i), \ 1 \le i \le I, \ j = 1,, \quad Y_{i2} = n_i - Y_{i1}$ **Model:** H_1 : $\text{logit}(\pi_i) = \alpha + \beta x_i, \qquad H_0 : \beta = 0$

predictor scores x_i describe 'distances' between i levels

This is a 'test for trend' with ordinal categories, also a GLM Logistic Regression (can use glm).

Score test is equivalent to Cochran-Armitage trend test (derived using OLS) with statistic

$$z^{2} = \Big[\sum_{i=1}^{I} (x_{i} - \bar{x}) Y_{i,1}\Big]^{2} / \Big[p(1-p) \sum_{i=1}^{I} n_{i} (x_{i} - \bar{x})^{2}\Big]$$

where $p = Y_{\pm 1}/n$, $\bar{x} = \sum_{i=1}^{n} n_i x_i/n$. More powerful than test for independence against H_1 alternatives.

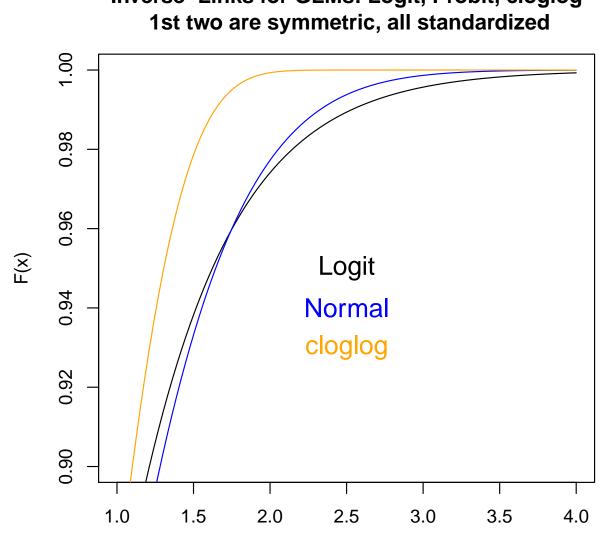
Other Models, Chapter 7

• probit and cloglog link binary-outcome GLMs

Recall $g^{-1} = F$ could be any distribution function: $F = \Phi$ probit, $F(x) = 1 - \exp(-e^x)$ cloglog graphs on next page, example of fits in RscriptLec16

• Look at conditional Logistic Regression (sec. 7.3) next time

Also look at (local) power and sample size formulas next time, Secs. 6.4 and 6.6.



Inverse-Links for GLMs: Logit, Probit, cloglog