
STAT 770 Oct. 26 Lecture 17

Variant GLM models and I × 2 and 2× 2×K Tables

Reading and Topics for this lecture: Chapters 5, 7.

(1) GLMs and ‘Tests for Trend’ in I × 2 Tables (Sec. 5.3.4)

(2) Other Links, other Models (Secs. 7.1, 7.3)

(3) 2× 2×K Tables, Tests for Common Odds Ratios

(4) (Local) Power Formulas, Sample Size Formulas
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Logistic Regression in I × 2 Tables

Data: Yi1 ∼ Binom(ni, πi), 1 ≤ i ≤ I, j = 1, , Yi0 = ni − Yi1
Model: H1 : logit(πi) = α+ βxi, H0 : β = 0

predictor scores xi describe ‘distances’ between i levels

This is a ‘test for trend’ with ordinal categories, also a GLM
Logistic Regression (can use glm).

Score test is equivalent to Cochran-Armitage trend test (derived
using OLS) with statistic

z2 =
[ I∑
i=1

(xi − x̄)Yi,1
]2/[

p̂(1− p̂)
I∑

i=1

ni(xi − x̄)2
]

where p̂ = Y+1/n, x̄ =
∑n
i=1 nixi/n. More powerful than test for

independence against H1 alternatives, because more specific.
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Other Models, Chapter 7

• probit and cloglog links for binary-outcome GLMs

Recall g−1 = F could be any distribution function:

F = Φ probit, F (x) = 1− exp(−ex) cloglog

graphs on next page, example of fits in RscriptLec16

• Look at conditional Logistic Regression (sec. 7.3) next time

• Also look at Multinomial Responses (Sec. 8.1),

then move on to Loglinear models (Ch. 9)
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Inverse−Links for GLMs: Logit, Probit, cloglog
 1st two are symmetric, all standardized
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Hypotheses in 2× 2×K Tables

Roughly similar to I × 2 trend topic: again formulate hypothesis
either within logistic regression or more generally. GLM-based
test is usually not the same as one valid for broader alternatives.

Setting: Yijk count outcomes, 2×2 table (say with indep. rows)
for each k = 1, . . . ,K.

Objective: Find whether θk = π11kπ00k/(π10kπ01k) are all 1, or
are the same θ, or follow a trend in k.

Example: each 2 × 2 crosses treatment with pos. outcome; k

indexes separate experimental sites, or ordinal dose categories.
Alternatives to θk ≡ 1 might be: all 6= 1, or all sgn(θk − 1) the
same, or positive coeff for a dose-size predictor dk
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Logistic Regression vs Mantel-Haenszel

Logistic regression might model γ as interesting parameter within

pak = πa1k/πa+k = plogis
(
aγ + βk

)
, a = 0,1

( ⇒ θk ≡ eγ ) or in dose-response case, plogis
(
β0 + γ a dk

)

MH Statistic:
[∑K

k=1

(
Y11k −mk

)]2/ ∑K
k=1 Vk

squared standardized aggregated 2× 2 table Ok − Ek

mk = Y1+kY+1k/Y++k, Vk = mk Y+1kY+0k/(Y++k(Y++k − 1))

MH Common θ̂:
∑K
k=1

Y11kY00k
Y++k

/ ∑K
k=1

Y10kY01k
Y++k
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Local Power for Score Tests

Not really covered in the book, except indirectly in talking about
special power and sample-size formulas, Secs. 6.4 and 6.6.

Consider GLM with Yi, link g , variance v(µ), β = (γ, λ)

Testing scalar parameter H0 : γ = 0 versus HA,n : γ = b/
√
n

contiguous alternatives, in which n−1(I(β) − I(0, λ0)) ≈ 0

Score Test: let blocks of obs info J at (0, λ̂r) be
(
Jγγ Jγλ
Jλγ Jλλ

)

Statistic S = (Jγγ − JγλJ−1
λλ Jλγ)−1/2∇γ logL(0, λ̂r)

≈ (Jγγ − JγλJ−1
λλ Jλγ)−1/2

(
∇γ − JγλJ−1

λλ ∇λ
)

logL(0, λ0)
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Canonical GLM, Under Local Alternatives to Scalar γ = 0

Let ξi be the Xi component with coeff. γ, ζi with coeff. λ

∇β logL(β) =
∑n
i=1 Xi

(
Yi − µi

)
, ∂

∂γ logL(β) =
∑n
i=1 ξi (Yi − µi)

∂
∂γ logL(0, λ̂r) ≈

(
∂
∂γ − JγλJ

−1
λλ ∇λ

)
logL(0, λ0)

=
∑n
i=1 (ξi − JγλJ−1

λλ ζi) (Yi − µi,0)

J ≈ I(0, λ0) =
∑n
i=1XiX

tr
i v(µi,0) , Jγγ =

∑n
i=1 ξ

2
i v(µi,0)

Jλγ = Jtrγλ =
∑n
i=1 ξi ζi v(µi,0), Jλλ =

∑n
i=1 ζi ζ

tr
i v(µi,0)
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GLM Asymptotics under Alternatives γ = b/
√
n

Recall µi,0 = g−1(ζtri λ0). Under HA,n,

E(Yi) = g−1(ζtri λ0 + b ξi/
√
n) ≈ µi,0 + (g−1)′(µi,0) b ξi/

√
n

So Yi − µi,0 = Yi − EHA,n(Yi) + v(µi,0) b ξi/
√
n

It remains to put all these steps together, get a general formula,

and apply it to some simple cases like the Cochran-Armitage

Trend Test. This will be done in a handout.
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