
Chapter 4

Introducing GAMs

4.1 Introduction

A generalized additive model (Hastie and Tibshirani, 1986, 1990) is a generalized
linear model with a linear predictor involving a sum of smooth functions of covari-
ates. In general the model has a structure something like

g(µi) = Aiθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . . (4.1)

where µi ≡ E(Yi) and Yi ∼ EF(µi, φ). Yi is a response variable, EF(µi, φ) denotes
an exponential family distribution with mean µi and scale parameter, φ, Ai is a row
of the model matrix for any strictly parametric model components, θ is the corre-
sponding parameter vector, and the fj are smooth functions of the covariates, xk .
The model allows for flexible specification of the dependence of the response on the
covariates, but by specifying the model only in terms of ‘smooth functions’, rather
than detailed parametric relationships, it is possible to avoid the sort of cumbersome
and unwieldy models seen in section 3.3.5, for example. This flexibility and con-
venience comes at the cost of two new theoretical problems. It is necessary both to
represent the smooth functions in some way and to choose how smooth they should
be.

This chapter illustrates how GAMs can be represented using basis expansions for
each smooth, each with an associated penalty controlling function smoothness. Esti-
mation can then be carried out by penalized regression methods, and the appropriate
degree of smoothness for the fj can be estimated from data using cross validation
or marginal likelihood maximization. To avoid obscuring the basic simplicity of the
approach with a mass of technical detail, the most complicated model considered
here will be a simple GAM with two univariate smooth components. Furthermore,
the methods presented will not be those that are most suitable for general practical
use, being rather the methods that enable the basic framework to be explained simply.
The ideal way to read this chapter is sitting at a computer, working through the statis-
tics, and its implementation in R, side by side. If adopting this approach recall that
the help files for R functions can be accessed by typing ? followed by the function
name, at the command line (e.g., ?lm, for help on the linear modelling function).

161

C
o
p
y
r
i
g
h
t

2
0
1
7
.

C
h
a
p
m
a
n

a
n
d

H
a
l
l
/
C
R
C
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK
AN: 1521286 ; Simon N. Wood.; Generalized Additive Models : An Introduction with R, Second Edition
Account: umarylnd.main.ehost

162 INTRODUCING GAMs

4.2 Univariate smoothing

The representation and estimation of component functions of a model is best intro-
duced by considering a model containing one function of one covariate,

yi = f(xi) + ǫi, (4.2)

where yi is a response variable, xi a covariate, f a smooth function and the ǫi are
independentN(0, σ2) random variables.

4.2.1 Representing a function with basis expansions

To estimate f , using the methods covered in chapters 1 to 3, requires that f be repre-
sented in such a way that (4.2) becomes a linear model. This can be done by choosing
a basis, defining the space of functions of which f (or a close approximation to it)
is an element. Choosing a basis amounts to choosing some basis functions, which
will be treated as completely known: if bj(x) is the j th such basis function, then f is
assumed to have a representation

f(x) =
k
∑

j=1

bj(x)βj , (4.3)

for some values of the unknown parameters, βj . Substituting (4.3) into (4.2) clearly
yields a linear model.

A very simple basis: Polynomials

As a simple example, suppose that f is believed to be a 4th order polynomial, so that
the space of polynomials of order 4 and below contains f . A basis for this space is
b1(x) = 1, b2(x) = x, b3(x) = x2, b4(x) = x3 and b5(x) = x4, so that (4.3)
becomes

f(x) = β1 + xβ2 + x2β3 + x3β4 + x4β5,

and (4.2) becomes the simple model

yi = β1 + xiβ2 + x2iβ3 + x3i β4 + x4i β5 + ǫi.

Figures 4.1 and 4.2 illustrate a basis function representation of a function, f , using a
polynomial basis.

The problem with polynomials

Taylor’s theorem implies that polynomial bases will be useful for situations in which
interest focuses on properties of f in the vicinity of a single specified point. But
when the questions of interest relate to f over its whole domain, polynomial bases
are problematic (see exercise 1).

The difficulties are most easily illustrated in the context of interpolation. The
middle panel of figure 4.3 illustrates an attempt to approximate the function shown in

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

UNIVARIATE SMOOTHING 163

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

x

b
1
(x

)=
1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

b
2
(x

)=
x

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

b
3
(x

)=
x

2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

b
4
(x

)=
x

3

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

b
5
(x

)=
x

4

0.0 0.2 0.4 0.6 0.8 1.0

2
.5

3
.0

3
.5

4
.0

x

f(
x
)

Figure 4.1 Illustration of the idea of representing a function in terms of basis functions, using

a polynomial basis. The first 5 panels (starting from top left) illustrate the 5 basis functions,

bj(x), for a 4th order polynomial basis. The basis functions are each multiplied by a real

valued parameter, βj , and are then summed to give the final curve f(x), an example of which

is shown in the bottom right panel. By varying the βj , we can vary the form of f(x), to produce

any polynomial function of order 4 or lower. See also figure 4.2

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

x

b
1
(x

)β
1
=

4
.3

1

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

8
−

6
−

4
−

2
0

x

b
2
(x

)β
2
=

−
1
0
.7

2
x

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

x

b
3
(x

)β
3
=

1
6
.8

x
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

x

b
4
(x

)β
4
=

2
.2

2
x

3

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

8
−

6
−

4
−

2
0

x

b
5
(x

)β
5
=

−
1
0
.8

8
x

4

0.0 0.2 0.4 0.6 0.8 1.0

2
.5

3
.0

3
.5

4
.0

x

f(
x
)

Figure 4.2 An alternative illustration of how a function is represented in terms of basis func-

tions. As in figure 4.1, a 4th order polynomial basis is illustrated. In this case the 5 basis

functions, bj(x), each multiplied by its coefficient βj , are shown in the first five figures (start-

ing at top left). Simply summing these 5 curves yields the function, f(x), shown at bottom

right.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

164 INTRODUCING GAMs

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

y

Figure 4.3 The left panel shows a smooth function sampled at the points shown as black dots.

The middle panel shows an attempt to reconstruct the function (dashed curve) by polynomial

interpolation (black curve) of the black dots. The right panel shows the equivalent piecewise

linear interpolant. The condition that the polynomial should interpolate the data and have all

its derivatives continuous leads to quite wild oscillation.

the left panel of figure 4.3, by polynomial interpolation of the points shown as black
dots. The polynomial oscillates wildly in places, in order to accommodate the twin
requirements to interpolate the data and to have all derivatives w.r.t. x continuous.
If we relax the requirement for continuity of derivatives, and simply use a piecewise
linear interpolant, then a much better approximation is obtained, as the right hand
panel of figure 4.3 illustrates.

It clearly makes sense to use bases that are good at approximating known func-
tions in order to represent unknown functions. Similarly, bases that perform well for
interpolating exact observations of a function are also a good starting point for the
closely related task of smoothing noisy observations of a function. In subsequent
chapters we will see that piecewise linear bases can be improved upon by spline
bases having continuity of just a few derivatives, but the piecewise linear case pro-
vides such a convenient illustration that we will stick with it for this chapter.

The piecewise linear basis

A basis for piecewise linear functions of a univariate variable x is determined entirely
by the locations of the function’s derivative discontinuities, that is by the locations at
which the linear pieces join up. Let these knots be denoted {x∗j : j = 1, · · ·k}, and
suppose that x∗j > x∗j−1. Then for j = 2, . . . , k − 1

bj(x) =

(x− x∗j−1)/(x
∗
j − x∗j−1) x∗j−1 < x ≤ x∗j

(x∗i+j − x)/(x∗j+1 − x∗j) x∗j < x < x∗j+1

0 otherwise
(4.4)

while

b1(x) =

{

(x∗2 − x)/(x∗2 − x∗1) x < x∗2
0 otherwise

and

bk(x) =

{

(x− x∗k−1)/(x
∗
k − x∗k−1) x > x∗k−1

0 otherwise

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

UNIVARIATE SMOOTHING 165

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

x

b
j(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

x

y

Figure 4.4 The left panel shows an example tent function basis for interpolating the data

shown as black dots. The continuous lines show the tent function basis functions, each of which

peaks with value 1 at the x-axis value of one of the data points. The right panel illustrates

how the basis functions are each multiplied by a coefficient, before being summed to give the

interpolant, shown as the thick black line.

So bj(x) is zero everywhere, except over the interval between the knots immediately
to either side of x∗j . bj(x) increases linearly from 0 at x∗j−1 to 1 at x∗j , and then
decreases linearly to 0 at x∗j+1. Basis functions like this, that are non zero only over
some finite intervals, are said to have compact support. Because of their shape the bj
are often known as tent functions. See figure 4.4.

Notice that an exactly equivalent way of defining bj(x) is as the linear interpolant
of the data {x∗i , δji : i = 1, . . . , k} where δji = 1 if i = j and zero otherwise. This
definition makes for very easy coding of the basis in R.

Using this basis to represent f(x), (4.2) now becomes the linear model y =
Xβ + ǫ where Xij = bj(xi).

Using the piecewise linear basis

Now consider an illustrative example. It is often claimed, at least by people with
little actual knowledge of engines, that a car engine with a larger cylinder capacity
will wear out less quickly than a smaller capacity engine. Figure 4.5 shows some data
for 19 Volvo engines. The pattern of variation is not entirely clear, so (4.2) might be
an appropriate model.

First read the data into R.

require(gamair); data(engine); attach(engine)

plot(size,wear,xlab="Engine capacity",ylab="Wear index")

Now write an R function defining bj(x)

tf <- function(x,xj,j) {

generate jth tent function from set defined by knots xj

dj <- xj*0;dj[j] <- 1

approx(xj,dj,x)$y

}

and use it to write an R function that will take a sequence of knots and an array of x
values to produce a model matrix for the piecewise linear function.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

166 INTRODUCING GAMs

1.5 2.0 2.5 3.0

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

Engine capacity (Litres)

W
e

a
r

in
d

e
x

Figure 4.5 Data on engine wear index versus engine capacity for 19 Volvo car engines, ob-

tained from http://www3.bc.sympatico.ca/Volvo_Books/engine3.html.

tf.X <- function(x,xj) {

tent function basis matrix given data x

and knot sequence xj

nk <- length(xj); n <- length(x)

X <- matrix(NA,n,nk)

for (j in 1:nk) X[,j] <- tf(x,xj,j)

X

}

All that is required now is to select a set of knots, x∗j , and the model can be fitted.
In the following a rank k = 6 basis is used, with the knots spread evenly over the
range of the size data.

sj <- seq(min(size),max(size),length=6) ## generate knots

X <- tf.X(size,sj) ## get model matrix

b <- lm(wear ~ X - 1) ## fit model

s <- seq(min(size),max(size),length=200)## prediction data

Xp <- tf.X(s,sj) ## prediction matrix

plot(size,wear) ## plot data

lines(s,Xp %*% coef(b)) ## overlay estimated f

The model fit looks quite plausible (figure 4.6), but the choice of degree of model
smoothness, controlled here by the basis dimension, k, was essentially arbitrary. This
issue must be addressed if a satisfactory theory for modelling with unknown func-
tions is to be developed.

4.2.2 Controlling smoothness by penalizing wiggliness

One obvious possibility for choosing the degree of smoothing is to try to make use
of the hypothesis testing methods from chapter 1, to select k by backwards selection.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

http://www3.bc.sympatico.ca/Volvo_Books/engine3.html

UNIVARIATE SMOOTHING 167

1.5 2.0 2.5 3.0

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

size

w
e

a
r

Figure 4.6 Piecewise linear regression fit (continuous line) to data (◦) on engine wear index

versus engine capacity (size) for 19 Volvo car engines.

However, such an approach is problematic, since a model based on k − 1 evenly
spaced knots will not generally be nested within a model based on k evenly spaced
knots. It is possible to start with a fine grid of knots and simply drop knots sequen-
tially, as part of backward selection, but the resulting uneven knot spacing can itself
lead to poor model performance. Furthermore, the fit of such regression models tends
to depend quite strongly on the locations chosen for the knots.

An alternative is to keep the basis dimension fixed at a size a little larger than
it is believed could reasonably be necessary, but to control the model’s smoothness
by adding a ‘wiggliness’ penalty to the least squares fitting objective. For example,
rather than fitting the model by minimizing

‖y −Xβ‖2,

it could be fitted by minimizing

‖y −Xβ‖2 + λ

k−1
∑

j=2

{f(x∗j−1)− 2f(x∗j) + f(x∗j+1)}2,

where the summation term measures wiggliness as a sum of squared second differ-
ences of the function at the knots (which crudely approximates the integrated squared
second derivative penalty used in cubic spline smoothing: see section 5.1.2, p. 198).
When f is very wiggly the penalty will take high values and when f is ‘smooth’ the
penalty will be low.∗ If f is a straight line then the penalty is actually zero. So the
penalty has a null space of functions that are un-penalized: the straight lines in this

∗Note that even knot spacing has been assumed: uneven knot spacing would usually require some
re-weighting of the penalty terms.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

168 INTRODUCING GAMs

case. The dimension of the penalty null space is 2, since the basis for straight lines is
2-dimensional.

The smoothing parameter, λ, controls the trade-off between smoothness of the
estimated f and fidelity to the data. λ → ∞ leads to a straight line estimate for f ,
while λ = 0 results in an un-penalized piecewise linear regression estimate.

For the basis of tent functions, it is easy to see that the coefficients of f are simply
the function values at the knots, i.e., βj = f(x∗j). This makes it particularly straight-
forward to express the penalty as a quadratic form, βTSβ, in the basis coefficients
(although in fact linearity of f in the basis coefficients is all that is required for this).
Firstly note that

β1 − 2β2 + β3
β2 − 2β3 + β4
β3 − 2β4 + β5

.

.

=

1 −2 1 0 . . .
0 1 −2 1 0 . .
0 0 1 −2 1 0 .
.
.

β1
β2
β3
.
.

so that writing the right hand side as Dβ, by definition of (k − 2)× k matrix D, the
penalty becomes

k−1
∑

j=2

(βj−1 − 2βj + βj+1)
2 = βTDTDβ = βTSβ (4.5)

where S = DTD (S is obviously rank deficient by the dimension of the penalty null
space). Hence the penalized regression fitting problem is to minimize

‖y −Xβ‖2 + λβTSβ (4.6)

w.r.t. β. The problem of estimating the degree of smoothness for the model is now
the problem of estimating the smoothing parameter λ. But before addressing λ esti-
mation, consider β estimation given λ.

It is fairly straightforward to show (see exercise 3) that the formal expression for
the minimizer of (4.6), the penalized least squares estimator of β, is

β̂ =
(

XTX+ λS
)−1

XTy. (4.7)

Similarly the influence (hat) matrix, A, for the model can be written

A = X
(

XTX+ λS
)−1

XT.

Recall that µ̂ = Ay. As with the un-penalized linear model, these expressions are not
the ones to use for computation, for which the greater numerical stability offered by
orthogonal matrix methods is to be preferred. For practical computation, therefore,
note that

∥

∥

∥

∥

[

y

0

]

−
[

X√
λD

]

β

∥

∥

∥

∥

2

= ‖y−Xβ‖2 + λβTSβ.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

UNIVARIATE SMOOTHING 169

Obviously any matrix square root such that DTD = S could be substituted for the
original D here, but at the moment there is no reason to use an alternative. The sum
of squares term, on the left hand side, is just a least squares objective for a model in
which the model matrix has been augmented by a square root of the penalty matrix,
while the response data vector has been augmented with k − 2 zeros. Fitting the
augmented linear model will therefore yield β̂.

To see a penalized regression spline in action, first note that D can be obtained in
R using diff(diag(k),differences=2), which applies second order differ-
encing to each column of the rank k identity matrix. Now it is easy to write a simple
function for fitting a penalized piecewise linear smoother.

prs.fit <- function(y,x,xj,sp) {

X <- tf.X(x,xj) ## model matrix

D <- diff(diag(length(xj)),differences=2) ## sqrt penalty

X <- rbind(X,sqrt(sp)*D) ## augmented model matrix

y <- c(y,rep(0,nrow(D))) ## augmented data

lm(y ~ X - 1) ## penalized least squares fit

}

To use this function, we need to choose the basis dimension, k, the (evenly
spaced) knot locations, x∗j , and a value for the smoothing parameter, λ. Provided that
k is large enough that the basis is more flexible than we expect to need to represent
f(x), then neither the exact choice of k, nor the precise selection of knot locations,
has a great deal of influence on the model fit. Rather it is the choice of λ that now
plays the crucial role in determining model flexibility, and ultimately the shape of
f̂(x). In the following example k = 20 and the knots are evenly spread out over the
range of observed engine sizes. It is the smoothing parameter, λ = 2, which really
controls the behaviour of the fitted model.

sj <- seq(min(size),max(size),length=20) ## knots

b <- prs.fit(wear,size,sj,2) ## penalized fit

plot(size,wear) ## plot data

Xp <- tf.X(s,sj) ## prediction matrix

lines(s,Xp %*% coef(b)) ## plot the smooth

By changing the value of the smoothing parameter,λ, a variety of models of different
smoothness can be obtained. Figure 4.7 illustrates this, but begs the question, which
value of λ is ‘best’?

4.2.3 Choosing the smoothing parameter, λ, by cross validation

If λ is too high then the data will be over-smoothed, and if it is too low then the data
will be under-smoothed: in both cases this will mean that the estimate f̂ will not be
close to the true function f . Ideally, it would be good to choose λ so that f̂ is as close
as possible to f . A suitable criterion might be to choose λ to minimize

M =
1

n

n
∑

i=1

(f̂i − fi)2,

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

170 INTRODUCING GAMs

1.5 2.0 2.5 3.0

2
.0

3
.0

4
.0

λ = 80

size

w
e

a
r

1.5 2.0 2.5 3.0

2
.0

3
.0

4
.0

λ = 2

size

w
e

a
r

1.5 2.0 2.5 3.0

2
.0

3
.0

4
.0

λ = .05

size

w
e

a
r

Figure 4.7 Penalized piecewise linear fits to the engine wear versus capacity data, using

three different values for the smoothing parameter, λ. Notice how penalization produces quite

smooth estimates, despite the piecewise linear basis.

where the notation f̂i ≡ f̂(xi) and fi ≡ f(xi) has been adopted for conciseness.
Since f is unknown,M cannot be used directly, but it is possible to derive an estimate
of E(M) + σ2, which is the expected squared error in predicting a new variable. Let
f̂ [−i] be the model fitted to all data except yi, and define the ordinary cross validation

score

Vo =
1

n

n
∑

i=1

(f̂
[−i]
i − yi)2.

This score results from leaving out each datum in turn, fitting the model to the re-
maining data and calculating the squared difference between the missing datum and
its predicted value: these squared differences are then averaged over all the data.
Substituting yi = fi + ǫi,

Vo =
1

n

n
∑

i=1

(f̂
[−i]
i − fi − ǫi)2

=
1

n

n
∑

i=1

(f̂
[−i]
i − fi)2 − 2(f̂

[−i]
i − fi)ǫi + ǫ2i .

Since E(ǫi) = 0, and ǫi and f̂ [−i]
i are independent, the second term in the summation

vanishes if expectations are taken:

E(Vo) =
1

n
E

(

n
∑

i=1

(f̂
[−i]
i − fi)2

)

+ σ2.

Now, f̂ [−i] ≈ f̂ with equality in the large sample limit, so E(Vo) ≈ E(M) + σ2 also
with equality in the large sample limit. Hence choosing λ in order to minimize Vo is
a reasonable approach if the ideal would be to minimizeM . Choosing λ to minimize
Vo is known as ordinary cross validation.

Ordinary cross validation is a reasonable approach, in its own right, even without
a mean square (prediction) error justification. If models are judged only by their
ability to fit the data from which they were estimated, then complicated models are

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

UNIVARIATE SMOOTHING 171

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
λ too high

x

y

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

λ about right

x
y

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

λ too low

x

y

Figure 4.8 Illustration of the principle behind cross validation. The fifth datum (•) has been

omitted from fitting and the continuous curve shows a penalized regression spline fitted to the

remaining data (◦). When the smoothing parameter is too high the spline fits many of the data

poorly and does no better with the missing point. When λ is too low the spline fits the noise as

well as the signal and the consequent extra variability causes it to predict the missing datum

poorly. For intermediate λ the spline is fitting the underlying signal quite well, but smoothing

through the noise: hence, the missing datum is reasonably well predicted. Cross validation

leaves out each datum from the data in turn and considers the average ability of models fitted

to the remaining data to predict the omitted data.

always selected over simpler ones. Choosing a model in order to maximize the ability
to predict data to which the model was not fitted, does not suffer from this problem,
as figure 4.8 illustrates.

It is computationally costly to calculate Vo by leaving out one datum at a time,
refitting the model to each of the n resulting data sets, but it can be shown that

Vo =
1

n

n
∑

i=1

(yi − f̂i)2/(1−Aii)2,

where f̂ is the estimate from fitting to all the data, and A is the corresponding influ-
ence matrix (see section 6.2.2, p. 256). In practice the Aii are often replaced by their
mean, tr (A) /n, resulting in the generalized cross validation score

Vg =
n
∑n
i=1(yi − f̂i)2

[n− tr (A)]2
.

GCV has computational advantages over OCV, and it also has advantages in terms of
invariance (see Wahba, 1990, p.53 or sections 6.2.2 and 6.2.3, p. 258). In any case, it
can also be shown to minimize E(M) in the large sample limit.

Returning to the engine wear example, a simple direct search for the GCV opti-
mal smoothing parameter can be made as follows.

rho = seq(-9,11,length=90)

n <- length(wear)

V <- rep(NA,90)

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

172 INTRODUCING GAMs

−5 0 5 10

0
.4

5
0
.5

5
0
.6

5
0

.7
5

GCV score

log(λ)

V

1.5 2.0 2.5 3.0

2
.0

3
.0

4
.0

GCV optimal fit

size

w
e
a
r

Figure 4.9 Left panel: the GCV function for the engine wear example against log smoothing

parameter. Right panel: the fitted model which minimizes the GCV score.

for (i in 1:90) { ## loop through smoothing params

b <- prs.fit(wear,size,sj,exp(rho[i])) ## fit model

trF <- sum(influence(b)$hat[1:n]) ## extract EDF

rss <- sum((wear-fitted(b)[1:n])^2) ## residual SS

V[i] <- n*rss/(n-trF)^2 ## GCV score

}

Note that the influence() function returns a list of diagnostics including hat,
an array of the elements on the leading diagonal of the influence/hat matrix of the
augmented model. The first n of these are the leading diagonal of the influence matrix
of the penalized model (see exercise 4).

For the example, V[54] is the lowest GCV score, so that the optimal smoothing
parameter, from those tried, is λ̂ ≈ 18. Plots of the GCV score and the optimal model
are easily produced

plot(rho,V,type="l",xlab=expression(log(lambda)),

main="GCV score")

sp <- exp(rho[V==min(V)]) ## extract optimal sp

b <- prs.fit(wear,size,sj,sp) ## re-fit

plot(size,wear,main="GCV optimal fit")

lines(s,Xp %*% coef(b))

The results are shown in figure 4.9.

4.2.4 The Bayesian/mixed model alternative

At some level we introduce smoothing penalties because we believe that the truth is
more likely to be smooth than wiggly. We might as well formalise this belief in a
Bayesian way, and specify a prior distribution on function wiggliness. Perhaps the
simplest choice is an exponential prior

∝ exp(−λβTSβ/σ2)

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

UNIVARIATE SMOOTHING 173

1.5 2.0 2.5 3.0

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

size

w
e

a
r

Figure 4.10 Smooth model fits to the engine wear data with smoothing parameters estimated

using marginal likelihood maximization (grey) or REML (black).

(where scaling by σ2 is introduced merely for later convenience), but this is imme-
diately recognisable as being equivalent to an improper multivariate normal prior
β ∼ N(0, σ2S−/λ). That is, the prior precision matrix is proportional to S: because
S is rank deficient by the dimension of the penalty null space, the prior covariance
matrix is proportional to the pseudo-inverse† S−.

This Bayesian interpretation of the smoothing penalty gives the model the struc-
ture of a linear mixed model as discussed in chapter 2, and in consequence the MAP
estimate of β is the solution (4.7) to (4.6), while

β|y ∼ N(β̂, (XTX+ λS)−1σ2)

— the Bayesian posterior distribution of β (this is equivalent to (2.17), p. 80). Also,
having given the model this extra structure opens up the possibility of estimating σ2

and λ using marginal likelihood maximization or REML.
In this section we will re-parameterize slightly to get the smooth model into a

form such that its marginal likelihood can be evaluated using the simple routine llm
from section 2.4.4 (p. 81). R routine optim can be used to fit the model. The same
re-parameterization allows the model to be easily estimated using lme (see section
2.5, p. 86). As we will see in chapter 6, this re-parameterization is not necessary: it
just simplifies matters for the moment, and perhaps makes the relationship between
fixed effects and the penalty null space clearer than might otherwise be the case.

The re-parameterization is to re-write the model in terms of parameters, β′ =
D+β where

D+ =

[

I2 0

D

]

.

So we now have Xβ = XD−1
+ β′ and βTSβ =

∑k
i=3 β

′2
i . If we write the first 2

†Consider eigen-decomposition S = UΛUT. Let Λ− denote the diagonal matrix of the inverse of the
non-zero eigenvalues, with zeroes in place of the inverse for any zero eigenvalues. Then S− = UΛ−UT.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

174 INTRODUCING GAMs

elements of β′ as β∗ and the remainder as b, the Bayesian smoothing prior becomes
b ∼ N(0, Iσ2/λ) (which is proper). β∗ is completely unpenalized, so we treat this
as a vector of fixed effects. To make the connection to a standard mixed model com-
pletely clear, let X∗ now denote the first 2 columns of XD−1

+ , while Z is the matrix
of the remaining columns. Then the smooth model has become

y = X∗β∗ + Zb+ ǫ, b ∼ N(0, Iσ2/λ), ǫ ∼ N(0, Iσ2)

which is self-evidently in the standard form of a linear mixed model given in sec-
tion 2.3, (p.77). Here is the code to re-parameterize the model and estimate it using
optim and llm from section 2.4.4 (p. 81):

X0 <- tf.X(size,sj) ## X in original parameterization

D <- rbind(0,0,diff(diag(20),difference=2))

diag(D) <- 1 ## augmented D

X <- t(backsolve(t(D),t(X0))) ## re-parameterized X

Z <- X[,-c(1,2)]; X <- X[,1:2] ## mixed model matrices

estimate smoothing and variance parameters...

m <- optim(c(0,0),llm,method="BFGS",X=X,Z=Z,y=wear)

b <- attr(llm(m$par,X,Z,wear),"b") ## extract coefficients

plot results...

plot(size,wear)

Xp1 <- t(backsolve(t(D),t(Xp))) ## re-parameterized pred. mat.

lines(s,Xp1 %*% as.numeric(b),col="grey",lwd=2)

The resulting plot is shown in figure 4.10.
Estimation using REML via lme is also easy. In lme terms all the data belong to

a single group, so to use lme we must create a dummy grouping variable enforcing
this. A covariance matrix proportional to the identity matrix is then specified via the
pdIdent function.

library(nlme)

g <- factor(rep(1,nrow(X))) ## dummy factor

m <- lme(wear ~ X - 1, random=list(g = pdIdent(~ Z-1)))

lines(s,Xp1 %*% as.numeric(coef(m))) ## and to plot

The curve of the estimated smooth is shown in black in figure 4.10. Notice how the
REML based estimate (black) is more variable than the ML based estimate (grey), as
expected from section 2.4.5 (p. 83).

4.3 Additive models

Now suppose that two explanatory variables, x and v, are available for a response
variable, y, and that a simple additive model structure,

yi = α+ f1(xi) + f2(vi) + ǫi, (4.8)

is appropriate.α is an intercept parameter, the fj are smooth functions, and the ǫi are
independentN(0, σ2) random variables.

There are two points to note about this model. Firstly, the assumption of additive
effects is a fairly strong one: f1(x) + f2(v) is a quite restrictive special case of

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

ADDITIVE MODELS 175

the general smooth function of two variables f(x, v). Secondly, the fact that the
model now contains more than one function introduces an identifiability problem: f1
and f2 are each only estimable to within an additive constant. To see this, note that
any constant could be simultaneously added to f1 and subtracted from f2, without
changing the model predictions. Hence identifiability constraints have to be imposed
on the model before fitting.

Provided that the identifiability issue is addressed, the additive model can be
represented using penalized regression splines, estimated by penalized least squares
and the degree of smoothing selected by cross validation or (RE)ML, in the same
way as for the simple univariate model.

4.3.1 Penalized piecewise regression representation of an additive model

Each smooth function in (4.8) can be represented using a penalized piecewise linear
basis. Specifically, let

f1(x) =

k1
∑

j=1

bj(x)δj

where the δj are unknown coefficients, while the bj(x) are basis functions of the
form (4.4), defined using a sequence of k1 knots, x∗j , evenly spaced over the range of
x. Similarly

f2(v) =

k2
∑

j=1

Bj(v)γj

where the γj are the unknown coefficients and the Bj(v) are basis functions of the
form (4.4), defined using a sequence of k2 knots, v∗j , evenly spaced over the range of
v. Defining n-vector f1 = [f1(x1), . . . , f1(xn)]

T, we have f1 = X1δ where bj(xi)
is element i, j of X1. Similarly, f2 = X2γ, where Bj(vi) is element i, j of X2.

A penalty of the form (4.5) is also associated with each function: δTDT

1D1δ =
δTS̄1δ for f1 and γTDT

2D2γ = γTS̄2γ for f2.
Now it is necessary to deal with the identifiability problem. For estimation pur-

poses, almost any linear constraint that removed the problem could be used, but most
choices lead to uselessly wide confidence intervals for the constrained functions. The
best constraints from this viewpoint are sum-to-zero constraints, such as

n
∑

i=1

f1(xi) = 0, or equivalently 1Tf1 = 0,

where 1 is an n vector of 1’s. Notice how this constraint still allows f1 to have
exactly the same shape as before constraint, with exactly the same penalty value.
The constraint’s only effect is to shift f1, vertically, so that its mean value is zero.

To apply the constraint, note that we require 1TX1δ = 0 for all δ, which implies
that 1TX1 = 0. To achieve this latter condition the column mean can be subtracted
from each column of X1. That is, we define a column centred matrix

X̃1 = X1 − 11TX1/n

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

176 INTRODUCING GAMs

and set f̃1 = X̃1δ. It’s easy to check that this constraint imposes no more than a shift
in the level of f1:

f̃1 = X̃1δ = X1δ − 11TX1δ/n = X1δ − 1c = f1 − c

by definition of the scalar c = 1TX1δ/n. Finally note that the column centring
reduces the rank of X̃1 to k1− 1, so that only k1 − 1 elements of the k1 vector δ can
be uniquely estimated. A simple identifiability constraint deals with this problem:
a single element of δ is set to zero, and the corresponding column of X̃1 and D

is deleted.‡ The column centred rank reduced basis will automatically satisfy the
identifiability constraint. In what follows the tildes will be dropped, and it is assumed
that the Xj , Dj , etc. are the constrained versions.

Here is an R function which produces constrained versions of Xj and Dj .

tf.XD <- function(x,xk,cmx=NULL,m=2) {

get X and D subject to constraint

nk <- length(xk)

X <- tf.X(x,xk)[,-nk] ## basis matrix

D <- diff(diag(nk),differences=m)[,-nk] ## root penalty

if (is.null(cmx)) cmx <- colMeans(X)

X <- sweep(X,2,cmx) ## subtract cmx from columns

list(X=X,D=D,cmx=cmx)

}

tf.XD calls the functions producing the unconstrained basis and square root penalty
matrices, given knot sequence xk and covariate values x. It drops a column of each
resulting matrix and centres the remaining columns of the basis matrix. cmx is the
vector of values to subtract from the columns of the X. For setting up a basis cmx
should be NULL, in which case it is set to the column means of the basis matrix
X. However, when using tf.XD to produce a basis matrix for predicting at new
covariate values, it is essential that the basis matrix columns are centred using the
same constants used for the original basis setup, so these must be supplied. Later
code will clarify this.

Having set up constrained bases for the fj it is now straightforward to re-express
(4.8) as

y = Xβ + ǫ

where X = (1,X1,X2) and βT = (α, δT,γT). Largely for later notational conve-
nience it is useful to express the penalties as quadratic forms in the full coefficient
vector β, which is easily done by simply padding out S̄j with zeroes, as appropriate.
For example,

βTS1β = (α, δT,γT)

0 0 0

0 S̄1 0

0 0 0

α
δ

γ

 = δTS̄1δ.

‡The recipe given here is applicable to any basis which includes the constant function in its span, and
has a penalty that is zero for constant functions. However, for bases that explicitly include a constant
function, it is not sufficient to set any coefficient to zero: the coefficient for the constant is the one to
constrain.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

ADDITIVE MODELS 177

10 20 30 40 50 60 70

1
0

2
0

3
0

4
0

5
0

6
0

7
0

fitted volume

o
b
s
e
rv

e
d
 v

o
lu

m
e

8 10 12 14 16 18 20

−
2

0
0

1
0

2
0

3
0

4
0

Girth

s
(G

ir
th

)

65 70 75 80 85

−
6

−
4

−
2

0
2

4
6

Height

s
(H

e
ig

h
t)

Figure 4.11 The best fit two term additive model for the tree data. The left panel shows

actual versus predicted tree volumes. The middle panel is the estimate of the smooth function

of girth. The right panel is the estimate of the smooth function of height.

4.3.2 Fitting additive models by penalized least squares

The coefficient estimates β̂ of the model (4.8) are obtained by minimization of the
penalized least squares objective

‖y−Xβ‖2 + λ1β
TS1β + λ2β

TS2β,

where the smoothing parameters λ1 and λ2 control the weight to be given to the
objective of making f1 and f2 smooth, relative to the objective of closely fitting the
response data. For the moment, assume that these smoothing parameters are given.

Similarly to the single smooth case we have

β̂ =
(

XTX+ λ1S1 + λ2S2

)−1
XTy and A = X

(

XTX+ λ1S1 + λ2S2

)−1
XT,

but again these expressions are sub-optimal with regard to computational stability
and it is better to re-write the objective as

‖y −Xβ‖2 + λ1β
TS1β + λ2β

TS2β =

∥

∥

∥

∥

[

y

0

]

−
[

X

B

]

β

∥

∥

∥

∥

2

, (4.9)

where

B =

[

0
√
λ1D1 0

0 0
√
λ2D2

]

(or any other matrix such that BTB = λ1S1 + λ2S2).
As in the single smooth case, the right hand side of (4.9) is simply the unpenalized

least squares objective for an augmented version of the model and corresponding
response data. Hence, the model can be fitted by standard linear regression using
stable orthogonal matrix based methods.

Here is a function to set up and fit a simple two term additive model, assuming
the same number of knots for each smooth.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

178 INTRODUCING GAMs

am.fit <- function(y,x,v,sp,k=10) {

setup bases and penalties...

xk <- seq(min(x),max(x),length=k)

xdx <- tf.XD(x,xk)

vk <- seq(min(v),max(v),length=k)

xdv <- tf.XD(v,vk)

create augmented model matrix and response...

nD <- nrow(xdx$D)*2

sp <- sqrt(sp)

X <- cbind(c(rep(1,nrow(xdx$X)),rep(0,nD)),

rbind(xdx$X,sp[1]*xdx$D,xdv$D*0),

rbind(xdvX,xdxD*0,sp[2]*xdv$D))

y1 <- c(y,rep(0,nD))

fit model..

b <- lm(y1 ~ X - 1)

compute some useful quantities...

n <- length(y)

trA <- sum(influence(b)$hat[1:n]) ## EDF

rsd <- y - fitted(b)[1:n] ## residuals

rss <- sum(rsd^2) ## residual SS

sig.hat <- rss/(n-trA) ## residual variance

gcv <- sig.hat*n/(n-trA) ## GCV score

Vb <- vcov(b)*sig.hat/summary(b)$sigma^2 ## coeff cov matrix

return fitted model...

list(b=coef(b),Vb=Vb,edf=trA,gcv=gcv,fitted=fitted(b)[1:n],

rsd=rsd,xk=list(xk,vk),cmx=list(xdxcmx,xdvcmx))

}

In addition to the quantities that we met in the single smooth case, am.fit also
returns an estimate of the Bayesian covariance matrix for the model coefficients:

V̂β = (XTX+ λ1S1 + λ2S2)
−1σ̂2

where σ̂2 is taken as the residual sum of squares for the fitted model, divided by the
effective residual degrees of freedom. Following section 4.2.4 the posterior distribu-
tion for β is

β|y ∼ N(β̂,Vβ), (4.10)

and this result can be used for further inference about β (see section 6.10, p. 293).
Let us use the routine to estimate an additive model for the data in R data frame

trees. The data are Volume, Girth and Height for 31 felled cherry trees. In-
terest lies in predicting Volume, and we can try estimating the model

Volumei = α+ f1(Girthi) + f2(Heighti) + ǫi.

Now that we have two smoothing parameters, grid searching for the GCV op-
timal values starts to become inefficient. Instead R function optim can be used to
minimize the GCV score. The function to be optimised has to be in a particular form
for use with optim: the optimization parameter vector must be the first argument,
and the function must be real valued. A simple wrapper for am.fit suffices:

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

ADDITIVE MODELS 179

am.gcv <- function(lsp,y,x,v,k) {

function suitable for GCV optimization by optim

am.fit(y,x,v,exp(lsp),k)$gcv

}

Using log smoothing parameters for optimization ensures that the estimated smooth-
ing parameters are non-negative. Fitting the model is now straightforward

find GCV optimal smoothing parameters...

fit <- optim(c(0,0), am.gcv, y=trees$Volume, x=trees$Girth,

v=trees$Height,k=10)

sp <- exp(fit$par) ## best fit smoothing parameters

Get fit at GCV optimal smoothing parameters...

fit <- am.fit(trees$Volume,trees$Girth,trees$Height,sp,k=10)

Now let’s plot the smooth effects. The following function will do this.

am.plot <- function(fit,xlab,ylab) {

produces effect plots for simple 2 term

additive model

start <- 2 ## where smooth coeffs start in beta

for (i in 1:2) {

sequence of values at which to predict...

x <- seq(min(fit$xk[[i]]), max(fit$xk[[i]]), length=200)

get prediction matrix for this smooth...

Xp <- tf.XD(x, fit$xk[[i]], fit$cmx[[i]])$X

extract coefficients and cov matrix for this smooth

stop <- start + ncol(Xp)-1; ind <- start:stop

b <- fit$b[ind];Vb <- fit$Vb[ind,ind]

values for smooth at x...

fv <- Xp %*% b

standard errors of smooth at x....

se <- rowSums((Xp %*% Vb) * Xp)^.5

2 s.e. limits for smooth...

ul <- fv + 2 * se; ll <- fv - 2 * se

plot smooth and limits...

plot(x, fv, type="l", ylim=range(c(ul,ll)), xlab=xlab[i],

ylab=ylab[i])

lines(x, ul, lty=2); lines(x, ll, lty=2)

start <- stop + 1

}

}

Calling it with the fitted tree model

par(mfrow=c(1,3))

plot(fit$fitted,trees$Vol,xlab="fitted volume ",

ylab="observed volume")

am.plot(fit,xlab=c("Girth","Height"),

ylab=c("s(Girth)","s(Height)"))

gives the result in figure 4.11. Notice that the smooth of Height is estimated to be
a straight line, and as a result its confidence interval has zero width at some point.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

180 INTRODUCING GAMs

The zero width point in the interval occurs because the sum to zero constraint exactly
determines where the straight line must pass through zero.

As with the one dimensional smooth, the additive model could also be estimated
as a linear mixed model, but let us move on.

4.4 Generalized additive models

Generalized additive models (GAMs) follow from additive models, as generalized
linear models follow from linear models. That is, the linear predictor now predicts
some known smooth monotonic function of the expected value of the response, and
the response may follow any exponential family distribution, or simply have a known
mean variance relationship, permitting the use of a quasi-likelihood approach. The
resulting model has a general form something like (4.1) in section 4.1.

As an illustration, suppose that we would like to model the trees data using a
GAM of the form:

log{E(Volumei)} = f1(Girthi) + f2(Heighti), Volumei ∼ gamma.

This model is perhaps more natural than the additive model, as we might expect
volume to be the product of some function of girth and some function of height, and
it is reasonable to expect the variance in volume to increase with mean volume.

Whereas the additive model was estimated by penalized least squares, the GAM
will be fitted by penalized likelihood maximization, and in practice this will be
achieved by penalized iterative least squares (PIRLS).§ For given smoothing param-
eters, the following steps are iterated to convergence.

1. Given the current linear predictor estimate, η̂, and corresponding estimated mean
response vector, µ̂, calculate:

wi =
1

V (µ̂i)g′(µ̂i)2
and zi = g′(µ̂i)(yi − µ̂i) + η̂i

where var(Yi) = V (µi)φ, as in section 3.1.2, and g is the link function.

2. Defining W as the diagonal matrix such that Wii = wi, minimize

‖
√
Wz−

√
WXβ)‖2 + λ1β

TS1β + λ2β
TS2β

w.r.t. β to obtain new estimate β̂, and hence updated estimates η̂ = Xβ̂ and
µ̂i = g−1(η̂i).

The penalized least squares problem at step 2 is exactly the problem already solved
for the simple additive model. Note the link to section 3.4.1 (p. 148).

For the trees GAM, the link function, g, is the log function, so g′(µi) = µ−1
i ,

while for the gamma distribution, V (µi) = µ2
i (see table 3.1, p. 104). Hence, for the

log-link gamma model, we have:

wi = 1 and zi = (yi − µ̂i) /µ̂i + η̂i.

§There is no simple trick to produce an unpenalized GLM whose likelihood is equivalent to the penal-
ized likelihood of the GAM that we wish to fit.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

GENERALIZED ADDITIVE MODELS 181

So, given λ1 and λ2 it will be straightforward to obtain β̂, but what should be
used as the GCV score for this model? A natural choice is to use the GCV score
for the final linear model in the PIRLS iteration (although this choice is poor for
binary data: see section 6.2, p. 255 for better performing alternatives). It is easy to
show that this GCV score is equivalent to the usual GCV score, but with the Pearson
statistic replacing the residual sum of squares. Obviously we could also estimate
the smoothing parameters by exploiting the Bayesian/mixed model connection of
section 4.2.4, and estimating the model as a generalized linear mixed model using
the methods of section 3.4 (p. 147).

The following function implements the PIRLS loop for the log-gamma model,
and returns the required GCV score in its return list.

gam.fit <- function(y,x,v,sp,k=10) {

gamma error log link 2 term gam fit...

eta <- log(y) ## get initial eta

not.converged <- TRUE

old.gcv <- -100 ## don’t converge immediately

while (not.converged) {

mu <- exp(eta) ## current mu estimate

z <- (y - mu)/mu + eta ## pseudodata

fit <- am.fit(z,x,v,sp,k) ## penalized least squares

if (abs(fit$gcv-old.gcv)<1e-5*fit$gcv) {

not.converged <- FALSE

}

old.gcv <- fit$gcv

eta <- fit$fitted ## updated eta

}

fit$fitted <- exp(fit$fitted) ## mu

fit

}

Again a simple wrapper is needed in order to optimize the GCV score using optim

gam.gcv <- function(lsp,y,x,v,k=10) {

gam.fit(y,x,v,exp(lsp),k=k)$gcv

}

Now fitting and plotting proceeds exactly as in the simple additive case.

fit <- optim(c(0,0),gam.gcv,y=trees$Volume,x=trees$Girth,

v=trees$Height,k=10)

sp <- exp(fit$par)

fit <- gam.fit(trees$Volume,trees$Girth,trees$Height,sp)

par(mfrow=c(1,3))

plot(fit$fitted,trees$Vol,xlab="fitted volume ",

ylab="observed volume")

am.plot(fit,xlab=c("Girth","Height"),

ylab=c("s(Girth)","s(Height)"))

The resulting plots are shown in figure 4.12.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

182 INTRODUCING GAMs

10 20 30 40 50 60 70 80

1
0

2
0

3
0

4
0

5
0

6
0

7
0

fitted volume

o
b
s
e
rv

e
d
 v

o
lu

m
e

8 10 12 14 16 18 20

−
0

.5
0

.0
0

.5
1

.0

Girth

s
(G

ir
th

)

65 70 75 80 85

−
0

.3
−

0
.1

0
.0

0
.1

0
.2

Height

s
(H

e
ig

h
t)

Figure 4.12 The best fit two term generalized additive model for the tree data. The left panel

shows actual versus predicted tree volumes. The middle panel is the estimate of the smooth

function of girth. The right panel is the estimate of the smooth function of height.

4.5 Summary

The preceding sections have illustrated how models based on smooth functions of
predictor variables can be represented, and estimated, once a basis and wiggliness
penalty have been chosen for each smooth in the model. Estimation is by penal-
ized versions of the least squares and maximum-likelihood methods used for linear
models and GLMs. Indeed technically GAMs are simply GLMs estimated subject to
smoothing penalties. The most substantial difficulty introduced by this penalization is
the need to select the degree of penalization, that is, to estimate the smoothing param-
eters. As we have seen, GCV provides one quite reasonable solution, and marginal
likelihood provides an alternative.

The rest of this book will stick to the basic framework presented here, simply
adding refinements to it. We will consider a variety of basis-penalty smoothers some-
what preferable to the piecewise linear basis given here, and some alternatives to
GCV for smoothness estimation. More efficient and reliable computational meth-
ods will be developed, and the theoretical basis for inference will be more fully
expounded. The link between smooths and random effects will also be developed,
as will models based on linear functionals of smooths. However, throughout, func-
tions are represented using penalized basis expansions, estimation of coefficients is
by penalized likelihood maximisation and estimation of smoothing parameters uses
a separate criterion, such as GCV or REML.

4.6 Introducing package mgcv

Before considering smoothers and GAM theory in more detail, it is worth briefly
introducing the mgcv package. The gam function from mgcv is very much like the
glm function covered in chapter 3. The main difference is that the gam model for-
mula can include smooth terms, s() and te() (as well as the te variants ti and
t2). Also there are a number of options available for controlling automatic smooth-
ing parameter estimation, or for directly controlling model smoothness (summarized
in table 4.1).

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

INTRODUCING PACKAGE mgcv 183

The cherry tree data provide a simple example with which to introduce the mod-
elling functions available in R package mgcv.

library(mgcv) ## load the package

data(trees)

ct1 <- gam(Volume ~ s(Height) + s(Girth),

family=Gamma(link=log),data=trees)

This fits the generalized additive model

log(E[Volumei]) = f1(Heighti) + f2(Girthi) where Volumei ∼ gamma

and the fj are smooth functions. By default, the degree of smoothness of the fj
(within certain limits) is estimated by GCV. The results can be checked by typing
the name of the fitted model object to invoke the print.gam print method, and by
plotting the fitted model object. For example

> ct1

Family: Gamma

Link function: log

Formula:

Volume ~ s(Height) + s(Girth)

Estimated degrees of freedom:

1.00 2.42 total = 4.42

GCV score: 0.008082356

> plot(ct1,residuals=TRUE)

The resulting plot is displayed in the upper two panels of figure 4.13. Notice that the
default print method reports the model distribution family, link function and formula,
before displaying the effective degrees of freedom for each term (in the order that
the terms appear in the model formula) and the whole model: in this case a nearly
straight line, corresponding to about one degree of freedom, is estimated for the effect
of height, while the effect of girth is estimated as a smooth curve with 2.4 degrees
of freedom; the total degrees of freedom is the sum of these two, plus one degree
of freedom for the model intercept. Finally, the GCV score for the fitted model is
reported.

The plots show the estimated effects as solid lines/curves, with 95% confidence
limits (strictly Bayesian credible intervals; see section 6.10, p. 293), based on (4.10),
shown as dashed lines. The coincidence of the confidence limits and the estimated
straight line, at the point where the line passes through zero on the vertical axis, is
a result of the identifiability constraints applied to the smooth terms.¶ The points
shown on the plots are partial residuals. These are simply the Pearson residuals

¶The identifiability constraint is that the sum of the values of each curve, at the observed covariate
values, must be zero: for a straight line, this condition exactly determines where the line must pass through
zero, so there can be no uncertainty about this point.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

184 INTRODUCING GAMs

65 70 75 80 85

−
0
.5

0
.0

0
.5

1
.0

Height

s
(H

e
ig

h
t,
1
.0

8
)

8 10 12 14 16 18 20

−
0
.5

0
.0

0
.5

1
.0

Girth

s
(G

ir
th

,2
.4

1
)

65 70 75 80 85

−
0
.5

0
.0

0
.5

1
.0

Height

s
(H

e
ig

h
t,
1
)

8 10 12 14 16 18 20

−
0
.5

0
.0

0
.5

1
.0

Girth

s
(G

ir
th

,2
.1

7
)

Figure 4.13 Components of GAM model fits to the cherry tree data. The upper two panels are

from ct1 and the lower 2 from ct4.

added to the smooth terms evaluated at the appropriate covariate values. For example,
the residuals plotted in the top left panel of figure 4.13 are given by

ǫ̂partial1i = f1(Heighti) + ǫ̂pi

plotted against Heighti. For a well fitting model the partial residuals should be
evenly scattered around the curve to which they relate. The ‘rug plots’, along the
bottom of each plot, show the values of the covariates of each smooth. The number
in each y-axis caption is the effective degrees of freedom of the term being plotted.

4.6.1 Finer control of gam

The simple form of the gam call producing ct1 hides a number of options that have
been set to default values. The first of these is the choice of basis used to repre-
sent the smooth terms. The default is to use thin plate regression splines (section
5.5.1, p. 215), which have some appealing properties, but can be somewhat compu-
tationally costly for large data sets. The full range of available smoothers is covered
in chapter 5. In the following, penalized cubic regression splines are selected using
s(...,bs="cr").

> ct2 <- gam(Volume ~ s(Height,bs="cr") + s(Girth,bs="cr"),

+ family=Gamma(link=log),data=trees)

> ct2

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

INTRODUCING PACKAGE mgcv 185

scale The value of the scale parameter, or a negative value if it is to be
estimated. For method="GCV.Cp" then
scale > 0 implies Mallows’ Cp/UBRE/AIC is used.
scale < 0⇒ implies GCV is used.
scale= 0⇒UBRE/AIC for Poisson or binomial, otherwise GCV.

gamma This multiplies the model degrees of freedom in the GCV or
UBRE/AIC criteria. Hence as gamma is increased from 1 the
‘penalty’ per degree of freedom increases in the GCV or UBRE/AIC
criterion and increasingly smooth models are produced. Increasing
gamma to around 1.5 can usually reduce over-fitting, without much
degradation in prediction error performance.

sp An array of supplied smoothing parameters. When this array is non-
null, a negative element signals that a smoothing parameter should
be estimated, while a non-negative value is used as the smoothing
parameter for the corresponding term. This is useful for directly con-
trolling the smoothness of some terms.

method Selects the smoothing parameter selection criterion: GCV.Cp,
GACV, ML or REML.

Table 4.1 Main arguments to gam for controlling the smoothness estimation process.

Family: Gamma

Link function: log

Formula:

Volume ~ s(Height, bs = "cr") + s(Girth, bs = "cr")

Estimated degrees of freedom:

1.000126 2.418591 total = 4.418718

GCV score: 0.008080546

As you can see, the change in basis has made very little difference to the fit. Plots
are almost indistinguishable to those for ct1. This is re-assuring: it would be unfor-
tunate if the model depended very strongly on details like the exact choice of basis.
However, larger changes to the basis, such as using P-splines (section 5.3.3, p. 204),
can make an appreciable difference.

Another choice, hidden in the previous two model fits, is the dimension, k, of the
basis used to represent smooth terms. In the previous two fits, the (arbitrary) default,
k = 10, was used. The choice of basis dimensions amounts to setting the maximum
possible degrees of freedom allowed for each model term. The actual effective de-
grees of freedom for each term will usually be estimated from the data, by GCV or
another smoothness selection criterion, but the upper limit on this estimate is k − 1:
the basis dimension minus one degree of freedom due to the identifiability constraint
on each smooth term. The following example sets k to 20 for the smooth of Girth
(and illustrates, by the way, that there is no problem in mixing different bases).

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

186 INTRODUCING GAMs

> ct3 <- gam(Volume ~ s(Height) + s(Girth,bs="cr",k=20),

+ family=Gamma(link=log),data=trees)

> ct3

Family: Gamma

Link function: log

Formula:

Volume ~ s(Height) + s(Girth, bs = "cr", k = 20)

Estimated degrees of freedom:

1.000003 2.424226 total = 4.424229

GCV score: 0.00808297

Again, this change makes boringly little difference in this case, and the plots (not
shown) are indistinguishable from those for ct1. This insensitivity to basis dimen-
sion is not universal, of course, and checking of this choice is covered in section
5.9 (p. 242). One quite subtle point is worth being aware of. This is that a space of
functions of dimension 20 will contain a larger subspace of functions with effective
degrees of freedom 5, than will a function space of dimension 10 (the particular num-
bers being arbitrary here). Hence it is often the case that increasing k will change the
effective degrees of freedom estimated for a term, even though both old and new
estimated degrees of freedom are lower than the original k − 1.

Another choice is the parameter gammawhich can be used to multiply the model
effective degrees of freedom in the GCV or UBRE scores in order to (usually) in-
crease the amount of smoothing selected. The default value is 1, but GCV is known
to have some tendency to overfitting on occasion, and it has been suggested that using
γ ≈ 1.5 can somewhat correct this without compromising model fit (e.g., Kim and
Gu, 2004). See section 6.2.4 for one justification. Applying this idea to the current
model results in the bottom row of figure 4.13 and the following output.

> ct4 <- gam(Volume ~ s(Height) + s(Girth),

+ family=Gamma(link=log),data=trees,gamma=1.4)

> ct4

Family: Gamma

Link function: log

Formula:

Volume ~ s(Height) + s(Girth)

Estimated degrees of freedom:

1.00011 2.169248 total = 4.169358

GCV score: 0.00922805

> plot(ct4,residuals=TRUE)

The heavier penalty on each degree of freedom in the GCV score has resulted in

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

INTRODUCING PACKAGE mgcv 187

s(Height,Girth,4.72)

65 70 75 80 85

8
1
0

1
2

1
4

1
6

1
8

2
0

Height

G
ir
th

te(Height,Girth,3)

65 70 75 80 85
8

1
0

1
2

1
4

1
6

1
8

2
0

Height

G
ir
th

Figure 4.14 Smooth functions of height and girth fitted to the cherry tree data, with degree of

smoothing chosen by GCV. The left hand panel shows a thin plate regression spline fit (ct5),

while the right panel shows a tensor product spline fit (ct6). For both plots the bold contours

show the estimate of the smooth; the dashed contours show the smooth plus the standard error

of the smooth and the dotted contours show the smooth less its standard error. The symbols

show the locations of the covariate values on the height–girth plane. Parts of the smooths that

are far away from covariate values have been excluded from the plots using the too.far

argument to plot.gam.

a model with fewer degrees of freedom, but the figure indicates that the change in
estimates that this produces is barely perceptible.

4.6.2 Smooths of several variables

gam is not restricted to models containing only smooths of one predictor. In prin-
ciple, smooths of any number of predictors are possible via two types of smooth.
Within a model formula, s() terms, using the "tp", "ds" or "gp" bases,‖ pro-
duce isotropic smooths of multiple predictors, while te() terms produce smooths of
multiple predictors from tensor products of any singly penalized bases available for
use with s() (including mixtures of different bases). The tensor product smooths are
invariant to linear rescaling of covariates, and can be quite computationally efficient.
Alternative versions t2() and ti() are available for different sorts of functional
ANOVA decomposition. Section 5.7 (p. 237) compares isotropic and tensor product
smoothers.

‖Or indeed "sos" or "so" bases.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

188 INTRODUCING GAMs

By way of illustration, the following code fragments both fit the model

log(E[Volumei]) = f(Heighti, Girthi) where Volumei ∼ gamma,

and f is a smooth function. Firstly an isotropic thin plate regression spline is used:
> ct5 <- gam(Volume ~ s(Height,Girth,k=25),

+ family=Gamma(link=log),data=trees)

> ct5

Family: Gamma

Link function: log

Formula:

Volume ~ s(Height, Girth, k = 25)

Estimated degrees of freedom:

4.668129 total = 5.668129

GCV score: 0.009358786

> plot(ct5,too.far=0.15)

yielding the left hand panel of figure 4.14. Secondly a tensor product smooth is used.
Note that the k argument to te specifies the dimension for each marginal basis: if
different dimensions are required for the marginal bases then k can also be supplied
as an array. The basis dimension of the tensor product smooth is the product of the
dimensions of the marginal bases.
> ct6 <- gam(Volume ~ te(Height,Girth,k=5),

+ family=Gamma(link=log),data=trees)

> ct6

Family: Gamma

Link function: log

Formula:

Volume ~ te(Height, Girth, k = 5)

Estimated degrees of freedom:

3.000175 total = 4.000175

GCV score: 0.008197151

> plot(ct6,too.far=0.15)

Notice how the tensor product model has fewer degrees of freedom and a lower
GCV score than the TPRS smooth. In fact, with just 3 degrees of freedom, the tensor
product smooth model amounts to

log(E[Volumei]) = β0 + β1Heighti + β2Girthi + β3HeightiGirthi,

the ‘wiggly’ components of the model having been penalized away altogether.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

INTRODUCING PACKAGE mgcv 189

8 10 12 14 16 18 20

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Girth

s
(G

ir
th

,2
.4

1
)

0
.0

0
.1

0
.2

0
.3

Hclass

P
a

rt
ia

l
fo

r
H

c
la

s
s

small medium large

Figure 4.15 Plot of model ct7, a semi-parametric model of cherry tree volume, with a factor

for height and a smooth term for the dependence on girth. The left plot shows the smooth

of girth, with 95% confidence interval, while the right panel shows the estimated effect, for

each level of factor Hclass. The effect of being in the small height class is shown as zero,

because the default contrasts have been used here, which set the parameter for the first level

of each factor to zero.

4.6.3 Parametric model terms

So far, only models consisting of smooth terms have been considered, but there is no
difficulty in mixing smooth and parametric model components. For example, given
that the model ct1 smooth of height is estimated to be a straight line, we might as
well fit the model:

gam(Volume ~ Height+s(Girth),family=Gamma(link=log),data=trees)

but to make the example more informative, let us instead suppose that the Height
is actually only measured as a categorical variable. This can easily be arranged, by
creating a factor variable which simply labels each tree as small, medium or large:
trees$Hclass <- factor(floor(trees$Height/10)-5,

labels=c("small","medium","large"))

Now we can fit a generalized additive model to these data, using the Hclass variable
as a factor variable, and plot the result (figure 4.15).

ct7 <- gam(Volume ~ Hclass + s(Girth),

family=Gamma(link=log), data=trees)

par(mfrow=c(1,2)); plot(ct7,all.terms=TRUE)

Often, more information about a fitted model is required than is supplied by plots
or the default print method, and various utility functions exist to provide this. For
example the anova function can be used to investigate the approximate significance
of model terms.

> anova(ct7)

Family: Gamma

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

190 INTRODUCING GAMs

Link function: log

Formula:

Volume ~ Hclass + s(Girth)

Parametric Terms:

df F p-value

Hclass 2 7.076 0.00358

Approximate significance of smooth terms:

edf Est.rank F p-value

s(Girth) 2.414 9.000 54.43 1.98e-14

Clearly there is quite strong evidence that both height and girth matter (see section
6.12, for information on the p-value calculations for the smooth terms). Similarly, an
approximate AIC value can be obtained for the model (see section 6.11, p. 301):

> AIC(ct7)

[1] 154.9411

The summary method provides considerable detail.

> summary(ct7)

Family: Gamma

Link function: log

Formula:

Volume ~ Hclass + s(Girth)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.12693 0.04814 64.949 < 2e-16 ***
Hclassmedium 0.13459 0.05428 2.479 0.020085 *
Hclasslarge 0.23024 0.06137 3.752 0.000908 ***

Approximate significance of smooth terms:

edf Est.rank F p-value

s(Girth) 2.414 9.000 54.43 1.98e-14 ***

R-sq.(adj) = 0.967 Deviance explained = 96.9%

GCV score = 0.012076 Scale est. = 0.0099671 n = 31

Notice that, in this case, the significance of individual parameters of the parametric
terms is given, rather than whole term significance. Other measures of fit are also
reported, such as the adjusted r2 and percentage deviance explained, along with the
GCV score, an estimate of the scale parameter of the model, and the number of data
fitted.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

EXERCISES 191

4.6.4 The mgcv help pages

mgcv has quite extensive help pages, both documenting functions and attempting to
provide overviews of a topic. The easiest way to access the pages is via the HTML
versions, by typing help.start() in R, then navigating to the mgcv pages and
browsing. Several pages are well worth knowing about:

• mgcv-package offers an overview of the package and what it offers.

• family.mgcv gives an overview of the distributions available.

• smooth.terms gives an overview of the smooths types available.

• random.effects is an overview of random effects in mgcv.

• gam.models reviews some aspects of model specification; gam.selection
covers model selection options.

• gam, bam, gamm and jagam cover the main modelling functions.

4.7 Exercises

1. This question is about illustrating the problems with polynomial bases. First run

set.seed(1)

x<-sort(runif(40)*10)^.5

y<-sort(runif(40))^0.1

to simulate some apparently innocuous x, y data.

(a) Fit 5th and 10th order polynomials to the simulated data using, e.g.,
lm(y~poly(x,5)).

(b) Plot the x, y data, and overlay the fitted polynomials. (Use the predict

function to obtain predictions on a fine grid over the range of the x data: only
predicting at the data fails to illustrate the polynomial behaviour adequately).

(c) One particularly simple basis for a cubic regression spline is b1(x) = 1,
b2(x) = x and bj+2(x) = |x − x∗j |3 for j = 1 . . . q − 2, where q is the
basis dimension, and the x∗j are knot locations. Use this basis to fit a rank 11
cubic regression spline to the x, y data (using lm and evenly spaced knots).

(d) Overlay the predicted curve according to the spline model, onto the existing
x, y plot, and consider which basis you would rather use.

2. Polynomial models of the data from question 1 can also provide an illustration of
why orthogonal matrix methods are preferable to fitting models by solution of the
‘normal equations’ XTXβ = XTy. The bases produced by poly are actually
orthogonal polynomial bases, which are a numerically stable way of representing
polynomial models, but if a naïve basis is used then a numerically badly behaved
model can be created.

form<-paste("I(x^",1:10,")",sep="",collapse="+")

form <- as.formula(paste("y~",form))

produces the model formula for a suitably ill-behaved model. Fit this model using
lm, extract the model matrix from the fitted model object using model.matrix,
and re-estimate the model parameters by solving the ‘normal equations’ given

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

192 INTRODUCING GAMs

above (see ?solve). Compare the estimated coefficients in both cases, along
with the fits. It is also instructive to increase the order of the polynomial by one or
two and examine the results (and to decrease it to 5, say, in order to confirm that
the QR and normal equations approaches agree if everything is ‘well behaved’).
Finally, note that the singular value decomposition (see B.10) provides a reliable
way of diagnosing the linear dependencies that can cause problems when model
fitting. svd(X)$d obtains the singular values of a matrix X. The largest divided
by the smallest gives the ‘condition number’ of the matrix — a measure of how
ill-conditioned computations with the matrix are likely to be.

3. Show that the β minimizing (4.6), in section 4.2.2, is given by (4.7).

4. Let X be an n× pmodel matrix, S a p× p penalty matrix, and B any matrix such
that BTB = S. If

X̃ =

[

X

B

]

is an augmented model matrix, show that the sum of the first n elements on the
leading diagonal of X̃(X̃TX̃)−1X̃T is tr

(

X(XTX+ S)−1XT
)

.

5. The ‘obvious’ way to estimate smoothing parameters is by treating smoothing
parameters just like the other model parameters, β, and to choose λ to minimize
the residual sum of squares for the fitted model. What estimate of λ will such an
approach always produce?

6. Show that for any function f , which has a basis expansion

f(x) =
∑

j

βjbj(x),

it is possible to write
∫

f ′′(x)2dx = βTSβ,

where the coefficient matrix S can be expressed in terms of the known basis func-
tions bj (assuming that these possess at least two (integrable) derivatives). As
usual β is a parameter vector with βj in its jth element.

7. Show that for any function f which has a basis expansion

f(x, z) =
∑

j

βjbj(x, z),

it is possible to write

∫ (

∂2f

∂x2

)2

+ 2

(

∂2f

∂x∂z

)2

+

(

∂f2

∂z2

)2

dxdz = βTSβ,

where the coefficient matrix S can be expressed in terms of the known basis func-
tions bj (assuming that these possess at least two (integrable) derivatives w.r.t. x
and z). Again, β is a parameter vector with βj in its jth element.

8. The additive model of section 4.3 can equally well be estimated as a mixed model.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

EXERCISES 193

(a) Write a function which converts the model matrix and penalty returned by
tf.XD into mixed model form. Hint: because of the constraints the penalty
null space is of dimension 1 now, leading to a slight modification of D+.

(b) Using your function from part (a) obtain the model matrices required to fit the
two term additive tree model, and estimate it using lme. Because there are now
two smooths, two pdIdent terms will be needed in the random list supplied
to lme, which will involve two dummy grouping variables (which can just be
differently named copies of the same variable).

(c) Produce residual versus fitted volume and raw volume against fitted volume
plots.

(d) Produce plots of the two smooth effect estimates with partial residuals.

9. Following on from question 8, we can also estimate a GAM as a GLMM. This is
particularly easy to implement using the PQL method of section 3.4.2 (p. 149).

(a) Modify the function gam.fit from section 4.4, so that in place of the call
to am.fit there is an appropriate call to lme to estimate the coefficients and
smoothing parameters of a working linear mixed model. The modified function
should take a response vector and the model matrices from the previous ques-
tion as inputs, and return the lme fitted model object for the working model at
convergence.

(b) Use your function to fit the Gamma additive model of section 4.4 to the trees
data.

(c) Produce plots of measured volume against predicted volume, and of residuals
against the linear predictor of the model.

(d) Plot the smooth effects with partial residuals.

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 5/4/2024 4:53 PM via UNIVERSITY OF MARYLAND COLLEGE PARK. All use subject to https://www.ebsco.com/terms-of-use

http://taylorandfrancis.com

