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Abstract

We describe a fractional-step numerical procedure for the simulation of immiscible three-phase flow in heterogeneous porous
media that takes into account capillary pressure and apply it to indicate the existence of a so-called “transitional" wave in at least
some multi-dimensional flows, thereby extending theoretical results for one-dimensional flows. The step procedure combines a
second-order, conservative central difference scheme for a pertinent system of conservation laws modeling the convective transport
of the fluid phases with locally conservative mixed finite elements for the associated parabolic and elliptic problems.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In immiscible, incompressible three-phase flow in porous media for which advection dominates diffusive or capillary
effects, the leading front caused by injection intended to move one or more of the phases toward a production point
can split into a classical Buckley–Leverett shock followed by a new type of shock wave related to the existence of an
elliptic region or an umbilic point for the system of nonlinear conservation laws describing the convective transport of
the fluid phases. Unlike classical Buckley–Leverett fronts, this nonclassical “transitional” shock wave is very sensitive
to the form of the parabolic (capillary) terms in the equations; see [31] and references therein. Thus, it is imperative
that capillary pressure effects be modeled accurately in order to calculate physically correct transitional waves.

Transitional waves (also called undercompressive and intermediate waves) have been identified for flows in a linear
domain [26,16,37,22,23] and for a number of other physical problems such as magneto-hydrodynamics, van der Waals
gases and combustion. Recently [8] it was determined that transitional waves arise in lubrication flow.

The purposes of this work are to present an accurate numerical procedure for the simulation of three-phase flows
including capillarity and to apply the technique to show the existence of transitional waves in multi-dimensional flows
for some reasonable capillary pressure functions. The numerical procedure is validated in two ways; first, semi-analytic
one-dimensional results [31] are closely reproduced computationally by the numerical method [1,2] and, second, a
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numerical convergence study is presented for a two-dimensional reservoir having moderately inhomogeneous physical
parameters. Then, we focus on two-dimensional problems arising from fractally heterogeneous geology. (We shall use
the terminology of waterflooding in petroleum reservoirs—including calling the three fluids oil, water, and gas.) Our
calculations verify that transitional waves are present in two-dimensional heterogenous reservoirs for at least some
reasonable capillary pressure functions. To the authors’ knowledge such results have not been reported previously in
the literature.

Our new procedure is a two-level operator-splitting procedure with mixed finite element methods being used for
the approximation of the parabolic problem for diffusion (capillarity) and the elliptic problem for the pressure and
a Darcy velocity combined with a nonoscillatory, second-order, conservative central difference scheme to handle a
system of nonlinear conservation laws describing advection. As announced above, the technique is designed to treat the
numerical solution of three-phase, immiscible displacement problems in heterogeneous porous media; the numerical
tests performed indicate that the two-dimensional simulator produces accurate approximations of the differential
equations making up the model.

Different approaches for solving numerically the three-phase flow equations can be found in [7,9,10].

2. Three-phase flow

We consider two-dimensional, horizontal flow of three immiscible, incompressible fluid phases in a porous medium.
For concreteness, the phases will be called gas, oil, and water and indicated by the subscripts g, o, and w, respectively.
We assume that there are no internal sources or sinks. Compressibility, mass transfer between phases, and thermal and
gravitational effects are neglected.

We assume that the three fluid phases saturate the pores; thus, with Si denoting the saturation (local volume fraction)
of phase i,∑

i=g,o,w

Si = 1. (1)

Consequently, any pair of saturations inside the triangle of saturations

� := {(Si, Sj) : Si, Sj ≥ 0, Si + Sj ≤ 1, i �= j} (2)

can be chosen to describe the state of the fluid. In our model we shall work with the saturations Sw and Sg of water and
gas. First, let us derive the governing equations for our model.

The equations expressing conservation of mass of oil, water and gas are

∂

∂t
(φSiρi) + ∇·(ρivi) = 0, i = o, w, g, (3)

respectively, where φ denotes the porosity of the porous medium. For the phase i, Si denotes its saturation and ρi its
density, and vi is its volumetric rate of flow (or, Darcy velocity) and is given by the multiphase Darcy law [34,36,6]

vi = −K(x)λi∇pi, i = o, w, g, (4)

where K(x) denotes absolute permeability of the porous medium; λi ≥ 0 and pi are the mobility and the pressure of
phase i, respectively. The mobility is usually expressed as

λi = ki

μi

, (5)

the ratio of the relative permeability ki and the viscosity μi of the phase i. Each relative permeability ki depends
on the saturation vector. Experimentally, ki increases when Si increases, and the relative permeabilities never vanish
simultaneously. The porosity φ and the absolute permeability K(x) are properties of the medium; we take the porosity
to be constant and the permeability to be a function of position in the reservoir. If thermal effects and compressibility
are neglected, μi and ρi are constant, and (3) can be rewritten in volumetric form:

∂

∂t
(φSi) + ∇·vi = 0, i = o, w, g, (6)
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Denote the capillary pressure between phase i and phase j, i �= j, by

pij = pi − pj; (7)

clearly, only two of the possible six capillary pressures are independent, since

pij = −pji, and pik = pij + pjk. (8)

An independent pair must be measured experimentally as a function of the saturation vector.
Define the total mobility λ and the fractional flow functions fi by

λ =
∑

j

λj and fi = λi

λ
. (9)

Clearly,
∑

j fj = 1. Let the total velocity (total volumetric flow rate) be given by

v =
∑

j

vj. (10)

After a bit of algebraic manipulation, we can see that

vfi = −Kλi

∑
j

fj∇pj. (11)

If we add and subtract vi in the last equation and note that ∇pi = (
∑

j fj)∇pi, we see that

vi = vfi + Kλi

∑
j �=i

fj∇pji. (12)

Therefore, by (6) and (12), the equations governing the flow are

∂(φ Sw)

∂t
+ ∇·(vfw) = ∇·[Kλw(fg∇pwg + fo∇pwo)],

∂(φ Sg)

∂t
+ ∇·(vfg) = ∇·[Kλg(fw∇pgw + fo∇pgo)],

∂(φ So)

∂t
+ ∇·(vfo) = ∇·[Kλo(fw∇pow + fg∇pog)].

(13)

Any one of the Eq. (13) is redundant, and the system can be reduced to a two-component system. As a result of the
redundancy in (13), one of its characteristic speeds is 0. The two other characteristic speeds are the same for any
subsystem of two equations (see [32]).

As a consequence of the redundancy, the system can be written in the form of a pair of saturation equations and a
Darcy pressure–velocity system. The Eq. (15a) results from adding the three equations in (13), and the derivation of
(16) is facilitated by applying the relation pwg = pwo + pog. The governing equations then become as follows:

Saturation equations:

∂(φSw)

∂t
+ ∇·(vfw(Sw, Sg)) = ∇·ww, (14a)

∂(φSg)

∂t
+ ∇·(vfg(Sw, Sg)) = ∇·wg, (14b)

Pressure–velocity equations:

∇·v = 0, (15a)

v = −K(x)λ(Sw, Sg)∇po + vwo + vgo. (15b)

The flux terms ww and wg are given by

[ww, wg]T = K(x) B(Sw, Sg)
[∇Sw, ∇Sg

]T
. (16)
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Here, [a, b] denotes the 2 × 2 matrix with column vectors a and b, and B = QP ′, where

Q(Sw, Sg) =
⎡
⎣λw(1 − fw) −λwfg

−λgfw λg(1 − fg)

⎤
⎦ , P ′(Sw, Sg) =

⎡
⎢⎢⎢⎢⎣

∂pwo

∂Sw

∂pwo

∂Sg

∂pgo

∂Sw

∂pgo

∂Sg

⎤
⎥⎥⎥⎥⎦ . (17)

In the above, the correction velocities vwo and vgo are defined by

vij = −K(x)λi(Sw, Sg)∇pij. (18)

The diffusive (capillary) term is represented by the right-hand side of the system (14). For our model one can verify
that this term is strictly parabolic in the interior of the saturation triangle � [5].

Boundary and initial conditions for (14)–(18) must be imposed to complete the definition of the mathematical
model; in particular, Sw and Sg must be specified at the initial time t = 0. The boundary conditions will be introduced
in the description of the operator splitting for the numerical method; the computed fluid flow, in two space dimensions
reported here, are defined in a bounded two-dimensional reservoir Ω = [0, X] × [0, Y ].

3. A fractional-step procedure

We employ a two-level operator-splitting procedure for the numerical solution of the three-phase flow system in
which we first split the pressure–velocity calculation from the saturation calculation and then split the saturation
calculation into advection and diffusion. The splitting allows time steps for the pressure–velocity calculation that are
longer than those for the diffusive calculation, which are in turn longer than those for advection. Thus, we introduce
three time steps: �tt for the solution of the hyperbolic problem for the advection, �td for the diffusive calculation and
�tp for the pressure–velocity calculation:

�tp = i1�td = i1 i2�tt, (19)

where i1 and i2 are positive integers, so that �tp ≥ �td ≥ �tt. Let

tm = m�tp, tn = n�td and tn,κ = tn + κ�tt, 0 ≤ κ ≤ i2, (20)

so that tn,i2 = tn+1. Then, given a generic function z, denote its values at times tm, tn, and tn,κ by zm, zn, and zn,κ.
In practice, variable time steps are always useful, especially for the advection micro-steps subject dynamically to a

CFL condition. To simplify the description of the operator splitting, assume each time step to have a single value.
The oil pressure (and Darcy velocity) will be approximated at times tm, m = 0, 1, 2, . . .. The saturations, Sw and

Sg, will be approximated at times tn, n = 1, 2, . . .; recall that they were specified at t = 0. In addition, there will be
values for the saturation computed at intermediate times tn,κ for tn < tn,κ ≤ tn+1 that take into account the advective
transport of the water and gas but not the diffusive effects. The algorithm will be detailed below.

The initial conditions Sw and Sg at t = 0 allow the calculation of {p0
o, v0}. The following is the fractional step

algorithm associated with the differential form of three-phase model that should be followed until the final simulation
time is reached. After this, the discretization will be taken up in detail.

3.1. First level

(1) Given Sm
w (x) and Sm

g (x), m ≥ 0, determine {pm
o , vm} by (15)–(18), subject to the boundaries conditions

v · ν = −q, for x = 0, y ∈ [0, Y ],

v · ν = q, for x = X, y ∈ [0, Y ],

v · ν = 0, for y = 0, Y, x ∈ [0, X],
(21)

where ν is the unit outer normal vector to ∂Ω.
(2) For tm < t ≤ tm+1, solve the advection–diffusion system (14) with the initial conditions Sw(x, tm) = Sm

w (x) and
Sg(x, tm) = Sm

g (x); Sm
w (x) and Sm

g (x) are evaluated as the final values of the calculation in [tm−1, tm] for m > 0 or
the initial saturations for m = 0.
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3.2. Second level

(1) Let tn1 = tm and assume that {po, v, Sw, Sg} are known for t ≤ tn1 .
(2) For n = n1, . . . , n2 = n1 + (i1 − 1):

(a) For κ = 0, . . . , (i2 − 1) and t ∈ [tn,κ, tn,κ+1] solve the advection system given by (for notational convenience,
s
n,κ
i is replaced by sκi below)

∂(φ sκi )

∂t
+ ∇·(E(tn,κ, v) fi(s

κ
w, sκg)) = 0, i = w, g, (22)

where

sκi (x, tn,κ) =
{

Si(x, tn), κ = 0

sκ−1
i (x, tn,κ), κ = 1, . . . , i2 − 1,

, i = w, g (23)

and E(tn,κ, v) indicates a linear extrapolation operator; it extrapolates to time tn,κ the velocity fields vm−1 and
vm.

(b) Set S̄i(x, tn) = s
i2−1
i (x, tn,i2 ), i = w, g.

(c) Compute the diffusive effects on [tn, tn+1] by solving the system

∂(φ Si)

∂t
− ∇·wi = 0, i = w, g, (24)

with boundary conditions

wi · ν = 0, i = w, g, x ∈ ∂Ω, (25)

and initial conditions

Si(x, tn) = S̄i(x, tn), i = w, g. (26)

Remark. The division of the interval [tn, tn+1] into microsteps of length �tt is artificial in the differential case
described above, but the division is desirable and often necessary after the full discretization of the advection
equations is introduced.

(3) Set Sm+1
i (x) = Si(x, tn2+1), i = w, g.

4. Approximation by mixed finite elements

We shall use a singly-indexed notation for the rectangles in the partition {Ωj} of Ω. Let {Ωj, j = 1, . . . , M}
be a uniform partition of Ω into cells of size h × h: Ω̄ = ∪M

j=1Ω̄j; Ωj ∩ Ωk = ∅, j �= k. Let Γ = ∂Ω, Γj = Γ ∩
∂Ωj, Γjk = Γkj = ∂Ωj ∩ ∂Ωk.

4.1. Pressure–velocity equations

We now describe in detail Step (1) of Section 3.1. Assume that the saturations {Sw, Sg} and their fluxes {ww, wg}
are known. Then, the phase velocity corrections vwo and vgo can be calculated using {ww, wg} as described below.
Their sum defines a source term qB. Then, the auxiliary problem (27) defined below for the pair (po, u) must be solved.
Finally, the total velocity can be recovered from (15b).

4.1.1. An auxiliary problem
Define the auxiliary problem for (po, u):

u = −K(x)λ(Sw, Sg)∇po, (27a)

∇·u = −∇·(vwo + vgo) ≡ qB, (27b)

subject to the boundary conditions (21).
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Note that, by (16), the diffusive fluxes ww and wg can be expressed in terms of the correction velocities vwo
and vgo:

ww = (fw − 1)vwo + fwvgo, wg = fgvwo + (fg − 1)vgo. (28)

Next, express the correction velocities in (28) as functions of the the diffusive fluxes:

vwo = (fg − 1)

fo
ww − fw

fo
wg, vgo = −fg

fo
ww + (fw − 1)

fo
wg. (29)

Adding the equations in (29) gives

vwo + vgo = − λ

λo
(ww + wg). (30)

Thus,

qB = ∇·
(

λ

λo
(ww + wg)

)
, (31)

with boundary conditions specified in (25).
Observe that (25), (31), and the divergence theorem imply that∫

Ω

qB dx = 0. (32)

4.1.2. Numerical solution of the auxiliary problem
We shall approximate the solution of (27) - subject to the boundary conditions (21) - by applying the mixed finite

element method based on the space Wh × Vh given by the lowest index Raviart–Thomas space [35] over rectangles.
The natural degrees of freedom on the element Ωj are the (constant) value poj of the pressure over Ωj , which

can be interpreted as the value at the center of the element, and the four (constant) values ujβ
, β ∈ {L, R, B, T} =

{left, right, bottom, top}, of the outward normal component of u across the edges of the element. Hybridize [3,12,13] the
mixed method by introducing Lagrange multipliers �ojβ

, β = L, R, B, T, for the oil pressure on Γjk; �ojβ
is constant on

each edge. We shall assume the porosity and the absolute permeability to be constant on each element and the capillary
pressure and relative permeability functions to be independent of position. Thus, the coefficients are constant on each
Ωj with respect to the space variable.

Then, the discrete form of (27b) can be written as

ujL + ujR + ujB + ujT = qBj h; (33)

here, qBj should be evaluated using (31) and the divergence theorem. A particularly simple discrete form of (27a) is
obtained by applying a trapezoidal rule for the evaluation of the pertinent integrals (see [13]):

ujβ
− 2

h
Kjλjβ

(poj − �ojβ
) = 0, β = L, R, B, T, (34)

where the total mobility function λjβ
is defined through the Lagrange multipliers for the saturations on the interface β

(see Section 4.2).
The linear algebra system resulting from the discretized equations can be solved by a preconditioned conjugate

gradient procedure (PCG) or by a multigrid procedure [13].

4.2. Diffusion system

We discuss a numerical procedure that we employ for the solution of the diffusive system (24)–(26) which combines
domain decomposition with an implicit time discretization in the construction of an efficient iterative method.

We consider an element-by-element domain decomposition; in addition to requiring that the pairs (Swj , wwj ) and
(Sgj

, wgj
) (where Sij = Si|Ωj , i = w, g, etc.) be a solution of (24)–(26) for x ∈ Ωj , j = 1, . . . , M; it is necessary to
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impose the consistency conditions,

Swj = Swk
, x ∈ Γjk,

wwjk
· νj + wwkj

· νk = 0, x ∈ Γjk,
(35)

and

Sgj
= Sgk

, x ∈ Γjk,

wgjk
· νj + wgkj

· νk = 0, x ∈ Γjk,
(36)

where νj is a outward normal unit vector of Ωj .
In order to define an iterative method to solve the above problem, it will be convenient to replace (35) and (36) by

equivalent Robin transmission boundary conditions [14]. These consistency conditions are given by

−χwjk
wwj · νjj

+ Swj = χwjk
wwk

· νjk
+ Swk

, x ∈ Γjk ⊂ ∂Ωj, (37)

−χwkj
wwk

· νjk
+ Swk

= χwkj
wwj · νjj

+ Swj , x ∈ Γkj ⊂ ∂Ωk, (38)

−χgjk
wgj

· νjj
+ Sgj

= χgjk
wgk

· νjk
+ Sgk

, x ∈ Γjk ⊂ ∂Ωj, (39)

−χgkj
wgk

· νjk
+ Sgk

= χgkj
wgj

· νjj
+ Sgj

, x ∈ Γkj ⊂ ∂Ωk, (40)

where χwjk
and χgjk

are positive functions on Γjk (see [1,14]).
We consider the lowest index Raviart–Thomas space [35] over Ωj to approximate the pairs (Sw, ww) and (Sg, wg).

The degrees of freedom on an element Ωj are the values Swj and Sgj
and the two values wwjβ

and wgjβ
, β = L, R, B, T,

of the diffusive fluxes across the edge of the elements. We shall also introduce the Lagrange multipliers �wβ
and �gβ

,
β = L, R, B, T, for the water and gas saturations, respectively, on Γjk; these multipliers are constant on each edge.

So, the discrete form of (24) can be written as (see [1,13]):

φ

(
Swj − S̄wj

�td

)
− 1

h
(wwjU

+ wwjR
+ wwjD

+ wwjL
) = 0, (41)

wwjβ
B−1

11β
+ wgjβ

B−1
12β

= 2

h
(Swj − �wjβ

), β = L, R, B, T, (42)

φ

(
Sgj

− S̄gj

�td

)
− 1

h
(wgjU

+ wgjR
+ wgjD

+ wgjL
) = 0, (43)

wwjβ
B−1

21β
+ wgjβ

B−1
22β

= 2

h
(Sgj

− �gjβ
), β = L, R, B, T, (44)

where B−1
ijβ

are the entries of the inverse matrix B−1(�wβ
, �gβ

). Here also a trapezoidal rule is used for the evaluation
of the pertinent integrals in the derivation of Eqs. (42) and (44).

Define an iterative scheme for the solution of system (24) by applying (37), (38) to (42) and (39), (40) to (44) to
express all Lagrange multipliers in terms of Lagrange multipliers and fluxes associated with adjacent elements. This
scheme, developed in [1] (see also [13]), is a natural extension for parabolic systems of the procedure introduced in
[14] for scalar elliptic and parabolic problems.

5. Approximation by a central difference scheme

We shall discuss the high-resolution finite difference scheme, introduced by Nessyahu and Tadmor (NT) [33], that we
employ for the solution of the nonlinear advection system (22)–(23). This scheme can be viewed as an extension of the
celebrated first-order Lax–Friedrichs scheme into a second-order scheme. Its two main ingredients are a non-oscillatory,
piecewise bilinear reconstruction of the solution point-values from their given cell averages and central differencing
based on the staggered reconstructed averages. The piecewise bilinear reconstruction reduces the excessive dissipation
of the Lax–Friedrichs scheme and, like upwind schemes, the scheme uses nonlinear limiters to guarantee the overall
nonoscillatory nature of the approximate solution. The central differencing, unlike upwind differencing, bypasses the
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need for Riemann solvers, yielding simplicity, avoiding dimensional splitting in multi-dimensional problems. Central
differencing also allows for the extension of the scheme to hyperbolic systems by componentwise application of the
scalar framework.

5.1. The scalar framework in two space dimensions

Consider the model of hyperbolic conservation law,

∂s

∂t
+ ∂(f (s)vx)

∂x
+ ∂(f (s)vy)

∂y
= 0. (45)

Here vx ≡ vx(x, y, t) and vy ≡ vy(x, y, t) denote the x and y components of the velocity field v.
Consider the cell averages,

sj,k(t) ≡ 1

h2

∫ xj+(1/2)

xj−(1/2)

∫ yk+(1/2)

yk−(1/2)

s(x, y, t) dx dy. (46)

To approximate a solution to (45), at each time level, we start with a piecewise bilinear approximation of the cell
averages (46), defined by

Pj,k(x, y, tn,κ) = sj,k(tn,κ) + (x − xj)
1

h
s′j,k(tn,κ) + (y − yk)

1

h
s̀j,k(tn,κ),

xj−(1/2) ≤ x ≤ xj+(1/2), yk−(1/2) ≤ y ≤ yk+(1/2). (47)

In Eq. (47),

1

h
s′j,k(tn,κ) = ∂

∂x
s(xj, yk, tn,κ) + O(h)sx (48)

and

1

h
s̀j,k(tn,κ) = ∂

∂y
s(xj, yk, tn,κ) + O(h)sy (49)

denote the discrete slopes in the x and y directions. We shall discuss later the form of such discrete slopes.
The reconstruction (47) retains conservation, i.e.:

1

h2

∫ xj+(1/2)

xj−(1/2)

∫ yk+(1/2)

yk−(1/2)

P(x, y, t) dx dy = sj,k(t). (50)

The time evolution of this reconstruction is based on the integration of the conservation law (45) over staggered
volumes Ij+(1/2),k+(1/2) × [tn,κ, tn,κ + �tt] (dashed grid in Fig. 1). The piecewise bilinear approximation of the cell
averages is evolved in time, and then the result is projected on the staggered cells (dashed grid in Fig. 1) Ij+(1/2),k+(1/2)
to yield new cell averages.

The solution in the staggered grid obtained by the time evolution can be expressed as:

sj+(1/2),k+(1/2)(tn,κ + �tt) = s̄(x, y, tn,κ + �tt) ≡ 1

h2

∫ xj+1

xj

∫ yk+1

yk

s(x, y, tn,κ + �tt) dx dy,

xj ≤ x ≤ xj+1, yk ≤ y ≤ yk+1. (51)

By the conservation law (45), the integral in (51) equals

sj+(1/2),k+(1/2)(tn,κ + �tt)

= 1

h2

∫ xj+(1/2)

xj

∫ yk+(1/2)

yk

Pj,k(x, y, tn,κ) dx dy + 1

h2

∫ xj+(1/2)

xj

∫ yk+1

yk+(1/2)

Pj,k+1(x, y, tn,κ) dx dy

+ 1

h2

∫ xj+1

xj+(1/2)

∫ yk+(1/2)

yk

Pj+1,k(x, y, tn,κ) dx dy + 1

h2

∫ xj+1

xj+(1/2)

∫ yk+1

yk+(1/2)

Pj+1,k+1(x, y, tn,κ) dx dy
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Fig. 1. Evolution step for the two-dimensional central scheme.

− 1

h2

[∫ tn,κ+�tt

tn,κ

∫ xj+1

xj

(vx(xj+1, y, t)f (s(xj+1, y, t)) − vx(xj, y, t)f (s(xj, y, t))) dx dt

]

− 1

h2

[∫ tn,κ+�tt

tn,κ

∫ yk+1

yk

(vy(x, yk+1, t)f (s(x, yk+1, t)) − vy(x, yk, t)f (s(x, yk, t))) dx dt

]
. (52)

The first four bilinear integrands on the RHS of (52) can be integrated exactly. The remaining integrals on the RHS
of (52) involve approximations for the fluxes through the sides of the staggered volume. It is here that the benefit of
staggering manifests itself: these fluxes are smooth at the vertices of the cell defining the integration volume, since
these vertices are located at the centers of non-staggered cells, away from the jump discontinuities along the edges
(see Fig. 1). This facilitates the construction of second-order approximations. The spatial integrals in both the x and y
directions are approximated by the second-order trapezoid quadrature rule and the temporal integrals are approximated
by the midpoint quadrature rule. Then, the resulting new approximate cell averages for the interior elements take the
following form (α ≡ �tt/h and s

tn,κ+�tt
j+(1/2),k+(1/2) = sj+(1/2),k+(1/2)(tn,κ + �tt)):

s
tn,κ+�tt
j+(1/2),k+(1/2) = 1

4 (s
tn,κ

j,k + s
tn,κ

j,k+1 + s
tn,κ

j+1,k + s
tn,κ

j+1,k+1) + 1
16 (s′tn,κ

j,k + s′tn,κ

j,k+1 − s′tn,κ

j+1,k

− s′tn,κ

j+1,k+1 + s′tn,κ

j,k − s′tn,κ

j,k+1 + s′tn,κ

j+1,k − s′tn,κ

j+1,k+1)

+ 1
2α
[
vx

tn,κ+(�tt/2)
j,k f (s

tn,κ+(�tt/2)
j,k ) + vx

tn,κ+(�tt/2)
j,k+1 f (s

tn,κ+(�tt/2)
j,k+1 )

− vx
tn,κ+(�tt/2)
j+1,k f (s

tn,κ+(�tt/2)
j+1,k ) − vx

tn,κ+(�tt/2)
j+1,k+1 f (s

tn,κ+(�tt/2)
j+1,k+1 )

]
+ 1

2α
[
vy

tn,κ+(�tt/2)
j,k f (s

tn,κ+(�tt/2)
j,k ) + vy

tn,κ+(�tt/2)
j+1,k f (s

tn,κ+(�tt/2)
j+1,k )

− vy
tn,κ+(�tt/2)
j,k+1 f (s

tn,κ+(�tt/2)
j,k+1 ) − vy

tn,κ+(�tt/2)
j+1,k+1 f (s

tn,κ+(�tt/2)
j+1,k+1 )

]
. (53)

The approximation of the fluxes in (53) makes use of the midpoint values in time, s
tn,κ+(�tt/2)
j,k ∼ s(xj, yk, tn,κ + (�tt/2)),

as a predictor step. Since these mid-values are bounded away from the jump discontinuities along the edges, we may use
a Taylor expansion and the conservation law (45) to evaluate sj,k(tn,κ + (�tt/2)). In view of the hyperbolic conservation
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law (45) we can write

∂s

∂t
= −∇ · (vf (s)). (54)

Note that by the chain rule the relation

∇ · (vf (s)) = f (s)(∇ · v) + v · ∇f (s) (55)

holds. Then,

∂s

∂t
= −(f (s)(∇ · v) + v · ∇f (s)). (56)

In our application we have ∇ · v = 0 (see Eq. (15a)). Then, Eq. (56) reduces to

∂s

∂t
= −(v · ∇f (s)) = −

(
vx

∂f (s)

∂x
+ vy

∂f (s)

∂y

)
. (57)

By Taylor expansion and the conservation law (45) we can use

s
tn,κ+(�t/2)
j,k = s

tn,κ

j,k − 1

2

(
vx

tn,κ

j,k

1

h
f

′tn,κ

j,k + vy
tn,κ

j,k

1

h
f̀

tn,κ

j,k

)
(58)

to approximate the midpoint values s
tn,κ+(�tt/2)
j,k ∼ s(xj, yk, tn,κ + (�tt/2)). In Eq. (58),

1

h
f ′

j,k(tn,κ) = ∂

∂x
f (s(xj, yk, tn,κ)) + O(h) (59)

and
1

h
f̀j,k(tn,κ) = ∂

∂y
f (s(xj, yk, tn,κ)) + O(h) (60)

are the discrete fluxes in the x and y directions, respectively; their specification will be discussed later.
The approximations (48), (49), (59) and (60) are required to produce a second-order scheme for the approximation

of (45) (see [33]). To avoid oscillations, it is essential to reconstruct these discrete derivatives with built-in nonlinear
limiters [33]. We note that no (approximate) Riemann solvers are involved and the nonoscillatory behavior of the
scheme hinges on the reconstructed discrete slopes, as described above.

In our sequential scheme, when solving for the saturation in time, the total velocity v is given by the solution of
the velocity–pressure Eqs. (15a) and (15b). Recall that the solution of the pressure equation utilizes the lowest order
Raviart–Thomas mixed finite element method. Thus, the computed total velocity v is discontinuous at the vertices of the
original non-staggered grid cells. This constitutes a problem for the staggered scheme (53), which requires the values
of the total velocity v at these vertices at every other time step. To avoid this difficulty we employ the non-staggered
version of the NT scheme.

To turn the staggered scheme (53) into a non-staggered scheme, we reaverage reconstructed values of the underlying
staggered scheme, thus recovering the cell averages of the central scheme over the original non-staggered grid cells.
First we reconstruct a piecewise bilinear interpolant at the time step tn,κ + �tt

Pj+(1/2),k+(1/2)(x, y, tn,κ) = sj+(1/2),k+(1/2)(tn,κ) + (x − xj+(1/2))
1

h
s′j+(1/2),k+(1/2)(tn,κ)

+ (y − yk+(1/2))
1

h
s̀j+(1/2),k+(1/2)(tn,κ), xj ≤ x ≤ xj+1, yk ≤ y ≤ yk+1, (61)

as in (47), through the staggered cell averages given by (53), and reaveraged it over the original grid cells, giving the
following non-staggered scheme:

s
tn,κ+�tt
j,k = 1

4 (s
tn,κ+�tt
j−(1/2),k−(1/2) + s

tn,κ+�tt
j−(1/2),k+(1/2) + s

tn,κ+�tt
j+(1/2),k−(1/2) + s

tn,κ+�tt
j+(1/2),k+(1/2))

+ 1
16 (s

′tn,κ+�tt
j−(1/2),k−(1/2) + s

′tn,κ+�tt
j−(1/2),k+(1/2) − s

′tn,κ+�tt
j+(1/2),k−(1/2) − s

′tn,κ+�tt
j+(1/2),k+(1/2)) + 1

16 (s̀
tn,κ+�tt
j−(1/2),k−(1/2)

− s̀
tn,κ+�tt
j−(1/2),k+(1/2) + s̀

tn,κ+�tt
j+(1/2),k−(1/2) − s̀

tn,κ+�tt
j+(1/2),k+(1/2)). (62)
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5.1.1. Numerical derivatives
We now discuss our choice for the numerical derivatives (48), (49), (59) and (60). Consider z to be a generic

grid function defined on a grid with nx versus ny cells (nx · ny = M). In the numerical derivatives given below the
MinMod{·, ·} is the usual limiter (see [33]),

MM{a, b} ≡ MinMod{a, b} = 1
2 [sgn(a) + sgn(b)] · Min(|a|, |b|), (63)

where a and b are real numbers.
For the cells 3 ≤ j ≤ nx − 2 and 1 ≤ k ≤ ny in the x direction and 1 ≤ j ≤ nx and 3 ≤ k ≤ ny − 2 in the y direction

we employ the UNO limiter [24] given by

z′
j,k = MM{�zj−(1/2),k + 1

2 MM{�2zj−1,k, �
2zj,k}, �zj+(1/2),k − 1

2 MM{�2zj,k, �
2zj+1,k}}, (64)

and

z̀j,k = MM{�zj,k−(1/2) + 1
2 MM{�2zj,k−1, �

2zj,k}, �zj,k+(1/2) − 1
2 MM{�2zj,k, �

2zj,k+1}}, (65)

respectively, where
�2zj,k ≡ zj+1,k − 2zj,k + zj−1,k, �2zj,k ≡ zj,k+1 − 2zj,k + zj,k−1, �z

j+ 1
2 ,k

≡ zj+1,k − zj,k, and �z
j,k+ 1

2
≡

zj,k+1 − zj,k.
For the cells j = 2, nx − 1 and 1 ≤ k ≤ ny in the x direction and 1 ≤ j ≤ nx and k = 2, ny − 1 in the y we use,

z′
j,k = MM{θ MM{�zj+(1/2),k, �zj−(1/2),k}, 1

2 (�zj+(1/2),k + �zj−(1/2),k)}, (66)

and

z̀j,k = MM{θ MM{�zj,k+(1/2), �zj,k−(1/2)}, 1
2 (�zj,k+(1/2) + �zj,k−(1/2))}. (67)

Here θ ∈ (0.2) is a nonoscillatory limiter (see [28]). For our computations we use θ = 1.0.
For the cells j = 1, nx and 1 ≤ k ≤ ny in the x direction and 1 ≤ j ≤ nx and k = 1, ny in the y we use,

z′
j,k = zj+1,k − zj,k and z̀j,k = zj,k+1 − zj,k, (68)

respectively.
We refer to [27,30] for information about nonoscillatory boundary treatments.
We remark that for the numerical approximation of the system (22)–(23) we employ a componentwise extension

[33] of the scheme described above.

6. Numerical experiments

In our one and two-dimensional experiments we consider two Riemann problems, RP1 and RP2, whose left and
right states are given by:

RP1 =
⎧⎨
⎩

SL
w = 0.613, SR

w = 0.05

SL
g = 0.387, SR

g = 0.15
and RP2 =

⎧⎨
⎩

SL
w = 0.721, SR

w = 0.05

SL
g = 0.279, SR

g = 0.15.
(69)

We work with the system of Eqs. (14)–(18) in dimensionless form.
We use the Leverett model [29] for capillary pressures given by

pwo = 5ε(2 − Sw)(1 − Sw) and pgo = ε(2 − Sg)(1 − Sg), (70)

where the coefficient ε controls the relative importance of capillary/dispersive and advective forces. We take ε = 1.0 ×
10−3 unless a different value is mentioned explicitly. The viscosities of the fluids are μo = 1.0, μw = 0.5, and μg = 0.3.
We also adopt the model by Corey–Pope [11,15] which has been used extensively for phase relative permeabilities:
kw = S2

w, ko = S2
o and kg = S2

g . This model has the peculiarity that for a particular state in the interior of the saturation
triangle the characteristic speeds of the hyperbolic system (22) coincide, or resonate. Such a state, whose location is
determined by the fluid viscosities, is called an umbilic point [26]. It plays a central role in three-phase flow; in particular,
its existence leads to the occurrence on nonclassical transitional shock waves in the solutions of the three-phase flow
model. Crucial to calculating transitional shock waves is the correct modeling of capillarity (diffusive) effects [25].
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For other models of three-phase flow used in petroleum engineering, such as certain models of Stone [39,17], the
umbilic point is generally replaced by an elliptic region, in which the characteristic speeds are not real. In general,
under reasonable physical assumptions about a model for immiscible three-phase flow, hyperbolic singularities such
as umbilic points and elliptic regions are a necessary consequence of Buckley–Leverett behavior on each two-phase
edge of the saturation triangle [38,32].

We remark that for the choice of parameters described above a transitional (intermediate) shock wave appears in
the one-dimensional solution of RP2. Such a wave is not present in the one-dimensional solution of RP1.

6.1. One-dimensional results

Our one-dimensional solutions computed on a grid with 250 cells show very good agreement with the ones obtained
on finer grids, and we note that our numerical solutions are in agreement with the semi-analytic results reported in [31].

Fig. 2. From top to bottom profiles for oil and gas saturation are shown as a function of dimensionless distance. RP1 on the left and RP2 on the
right; a transitional shock wave appears in RP2.
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Fig. 3. The source term qB is shown as a function of dimensionless distance for two values of the parameter ε: 1.0 × 10−3 (blue) and 1.0 × 10−4

(red).

Fig. 4. Mesh refinement study for the RP2 data in two spatial dimensions.
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Fig. 5. Oil saturation surface plots for three-phase flow problems in 2D heterogeneous reservoirs; RP2 data. From top to bottom are shown oil
saturation surface plots with Cv = 0.5 and Cv = 2.0. Permeability fields with β = ∞ are considered. A transitional shock wave is simulated.
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Fig. 2 shows from top to bottom saturation profiles for oil and gas as a function of dimensionless distance and time. The
pictures on the left refer to RP1 and the ones on the right refer to RP2 (note the occurrence of the transitional wave).

Fig. 3 shows the source term (31) for two values of the parameter ε: 1.0 × 10−3 (blue) and 1.0 × 10−4 (red). We
remark that the relation (32) is verified numerically; in fact, we use this identity as one criterion to stop the iterative
scheme which solves for diffusive effects (described in Section 4.2).

6.2. Two-dimensional results

A numerical convergence study is performed for the permeability field displayed in the top left picture of Fig. 4;
the remaining pictures in this figure show saturation surface plots for the gas phase.

A mixture (72.1% of water and 27.9% of gas) is injected at a constant rate of 0.2 pore volumes every year along the
boundary, x = 0 and y ∈ [0, 1], of the computational region. The initial conditions for the system is given by SR

w = 0.05
and SR

g = 0.15; these data correspond to RP2. Two values are specified for the permeability field in the computational
region: 0.01 in a rectangle which touches the top boundary and 1.0 elsewhere. The computational grids used were 64
versus 64 (top right picture), 128 versus 128 (bottom left picture) and 256 versus 256 (bottom right picture). Clearly
the 64 versus 64 grid can resolve the low permeability region and captures the transitional (intermediate) wave; as the
grid is refined the jumps in the numerical solution get sharper, indicating numerical convergence of our new procedure.
Note that spurious oscillations do not occur in the numerical solutions.

We reiterate that transitional waves have a strong dependency upon the physical diffusion being modeled (see [31]
and references therein); note that rock heterogeneity introduces variability in the diffusion term of Eqs. (14a) and (14b).
The goal of the numerical experiments reported below is the investigation of the occurrence of transitional waves in
two-dimensional, multiscale heterogeneous problems. As mentioned above such waves have been observed only in
one-dimensional problems.

As a model for multi-length scale rock heterogeneity we consider scalar, log-normal permeability fields, so that
ξ(x) = log K(x) is Gaussian and its distribution is determined by its mean and covariance function. We assume the
distribution is stationary, isotropic and fractal (self-similar). Thus, the mean is an absolute constant and the covariance

Fig. 6. Gas saturation surface plots for three-phase flow problems in 2D heterogeneous reservoirs; RP2 data. From top to bottom are shown gas
saturation surface plots with Cv = 0.5 and Cv = 2.0. Permeability fields with β = ∞ are considered.
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Fig. 7. Oil saturation surface plots for three-phase flow problems in 2D heterogeneous reservoirs; RP2 data. From top to bottom are shown oil
saturation surface plots for Cv = 0.5 and Cv = 2.0. Permeability fields with β = 0.5 are considered.
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is given by a power law:

Cov(x, y) = |x − y|−β, β > 0. (71)

The scaling exponent β controls the nature of multiscale heterogeneity: as it increases, the heterogeneities concentrated
in the larger length scales are emphasized and the field becomes more regular (locally). In our numerical studies we
also consider log-normal, statistically independent random fields. We refer to such fields by β = ∞. See [19] for a
discussion of the numerical construction of fractal fields.

The spatially variable permeability fields are defined on 512 × 128 grids with two values for the coefficiente of
variation Cv ((standard deviation)/mean): 0.5 and 2.0. Cv is used as a dimensionless measure of the heterogeneity of the
permeability field. The computed fluid flows are defined in a bounded two-dimensional reservoir Ω = [0, X] × [0, Y ]
with aspect ratio X/Y = 4, discretized by an uniform grid of 512 × 128 cells. Again, a mixture (72.1% of water and
27.9% of gas) is injected at a constant rate of 0.2 pore volumes every year along the boundary, x = 0 and y ∈ [0, Y ],
of the computational region. The initial conditions for the system correspond to RP2.

In Figs. 5 and 6 we show saturation surface plots for oil and gas, respectively, displayed as a function of position.
Uncorrelated Gaussian field (β = ∞) permeability fields were considered; these figures refer permeability fields with
Cv = 0.5 and 2.0, from top to bottom. Note in these figures that for both large and small strength heterogeneities
transitional shock waves were properly simulated.

Correlated Gaussian (β = 0.5) permeability fields were used in the simulations reported in Figs. 7 and 8. In these
figures the values Cv = 0.5 and 2.0 were considered (from top to bottom) and saturation surface plots are shown for
oil (Fig. 7) and gas Fig. 8. Note that for Cv = 0.5 and long-range rock correlations transitional shock waves were
properly simulated. However, for long-range correlations and stronger heterogeneity (Cv = 2.0) the separate identity
of the transitional shock and its precursor Buckley–Leverett shock seems to be lost.

Fig. 8. Gas saturation surface plots for three-phase flow problems in 2D heterogeneous reservoirs; RP2 data. From top to bottom are shown gas
saturation surface plots for Cv = 0.5 and Cv = 2.0. Permeability fields with β = 0.5 are considered.
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7. Concluding remarks

A new simulator intended for the numerical solution of three-phase, two-dimensional immiscible displacement
problems in heterogeneous reservoirs has been described in detail. The numerical tests performed indicate that the
simulator is accurate. The new simulator was used to extend theoretical results for one-dimensional flows by providing
numerical evidence of the existence of transitional waves in two-dimensional flows.

A two-level fractional-step numerical technique is introduced for the numerical solution of the problem at hand.
The nonlinear advection, diffusion and pressure–velocity problems that result from the splitting are approximated
sequentially by a nonoscillatory, second-order, conservative central difference scheme (for advection) and locally
conservative mixed finite elements (for diffusion and pressure–velocity).

The numerical simulation of the full two-dimensional coupled set of pressure–velocity-saturation Eqs. (14)–(17)
shows that the heterogeneity has an important effect on the transitional shock front. We recall that this shock is related
to the loss of strict hyperbolicity inherent in the pure 1D system of conservation laws for the saturations and that this
shock is very sensitive to diffusive effects. Our numerical simulations indicates that, the transitional shock persists
under the presence of heterogeneities and is accurately captured by our simulator, as shown by comparisons with
reliable 1D simulations and calculations for homogeneous media [31]. Moreover, the transitional shock is stable under
the excitations imposed by short-range or weak (small Cv) heterogeneities. On the other hand, for strong, long-range
excitations the separate identity of the transitional wave and its precursor Buckley–Leverett shock seems to be lost.

As a first step in the investigation of the scale-up problem for three-phase flow the authors are currently investigating
the stability (with respect to viscous fingering) of transitional waves in heterogeneous formations; stable transitional
waves could improve drastically oil production. The upscaled behavior of two-phase flow in heterogeneous media is
strongly dependent on flow regime [20,4,21]. The preliminary results of the current investigation seem to indicate that
scale-up would have to be done wave by wave, perhaps precluding the existence of effective upscaled partial differential
equations for three-phase flow in heterogeneous porous media.
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