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113ABSTRACT { We present a new �nite volume version ([1],[2],[3]) of the 1-dimensional Lax-Friedrichs and Nessyahu-Tadmor schemes ([5]) for nonlinear hyperbolic equations on unstructuredgrids, and compare it to a recent discontinuous �nite element method ([6],[23]) in the computationof some typical test problems for compressible 
ows.The non-oscillatory central di�erence scheme of Nessyahu and Tadmor, in which the resolutionof Riemann problems at the cell interfaces is by-passed thanks to the use of the staggered Lax-Friedrichs scheme, is extended here to a two-step, two-dimensional non-oscillatory centered schemein �nite volume formulation. The construction of the scheme rests on a �nite volume extension of theLax-Friedrichs scheme, in which the �nite volume cells are the barycentric cells constructed aroundthe nodes of an FEM triangulation, for even time steps, and some quadrilateral cells associatedwith this triangulation, for odd time steps. Piecewise linear cell interpolants using least-squaresgradients combined with a van Leer-type slope limiting allow for an oscillation-free second-orderresolution.The discontinuous �nite element method consists of two steps. We �rst perform a �nite elementcomputation which includes calculation of the 
uxes across the edges of the triangular elementsusing 1-D Riemann solvers with a modi�cation to satisfy the entropy condition. We then proceedto a truly multidimensional slope limitation performed on the physical variables.Numerical applications to several test problems show the accuracy and stability of the �nite volumemethod.1. IntroductionWe present a new �nite volume method for nonlinear hyperbolic systems on un-structured triangular grids inspired by the Lax-Friedrichs and Nessyahu-Tadmor one-dimensional di�erence schemes [5] , and compare it to a recent discontinuous �niteelement method introduced by Ja�r�e, Kaddouri and Gowda ([6],[23]) in the computa-tion of some typical two-dimensional test problems for compressible 
ows.Discontinuous �nite elements were �rst introduced independently, for the neutron trans-port equation and applications to nuclear engineering, by Reed and Hill [7] and Lesaintand Raviart [8], and then adapted to the equations of hydrodynamics and elasticity([9],[10], [11],[12]) or even to such applications as the motion of a load on an ice layer( [13], in joint work with P.Jamet ), reservoir simulation both without slope limiters([14],[15]) and with limitation ([16],[17],[18]), and many other applications where theyproved to be very successful.Numerical analysis of discontinuous �nite element methods can be found e.g. in [8],with improvements in [19] for scalar hyperbolic equations, and in [20].In the �nite element method used in this paper, the solution is approximated by discon-tinuous piecewise linear polynomials; numerical 
uxes are calculated, on the triangleedges, at appropriate integration points through the use of one-dimensional Riemann



114solvers. To prevent spurious oscillations, we use a multidimensional version of vanLeer's limiter borrowed from ([6],[23]).Our �nite volume method ([1],[2],[3],[4]) is a two-dimensional �nite volume schemeinspired by an elegant di�erence scheme proposed, for one-dimensional problems, byNessyahu and Tadmor [5], which is itself a high resolution non-oscillatory Godunov-type method for hyperbolic systems of conservation laws constructed on the principleof the staggered Lax-Friedrichs scheme.It is decomposed in two time steps for second order accuracy in time, performed onalternate, staggered grids, thus allowing a complete by-pass of the (usually expensive)detailed exact or approximate solution of the local Riemann problems generated at thecell interfaces, thanks to the use of staggered form of the Lax-Friedrichs scheme.In [4], we have presented an extension of the Nessyahu-Tadmor di�erence scheme tothe simpler case of rectangular grids; several applications ( linear advection, Burgers'equation, di�raction of a planar shock wave around a 90o corner for the Euler equations[21] , Mach 3 wind tunnel with forward facing step [22]) showed the feasibility of themethod, which led to good results on regular grids without any mesh adaptation.In ([1],[2],[3]), we had constructed a �nite volume scheme for unstructured triangulargrids inspired by the Lax-Friedrichs and Nessyahu-Tadmor one-dimensional di�erenceschemes; some numerical experiments ( Supersonic 
ow around a NACA 0012 airfoil,supersonic 
ow around a double ellipse) showed the high accuracy of the method, butdid not provide a systematic comparison with an already well established method.In this paper we attempt to present such a comparison, and introduce for that purposein section 3 the discontinuous �nite element, second order accurate method recentlyproposed, and successfully tested, by Ja�r�e, Kaddouri and Gowda ( [6],[23],[25]).Notice that in this paper, we used Roe's Riemann solver with an entropy correc-tion recently proposed by Dubois and Mehlman, while the solvers used in references([6],[23],[25]) are the Osher and Osher-Solomon solvers, respectively.In section 2 we describe the mathematical modelling of the problem; in section 3 we givea detailed presentation of the discontinuous �nite element method of Ja�r�e, Kaddouriand Gowda.



115In section 4, we present the �rst two authors' construction [1], for unstructured trian-gular grids, of a �nite volume version of the staggered Lax-Friedrichs scheme, and thendescribe their second order accurate non-oscillatory �nite volume method [1] inspiredby the Nessyahu-Tadmor one-dimensional central di�erence scheme [5].In section 5,we present applications to some typical test problems for supersonic 
ows(supersonic 
ow past a blunt body;supersonic 
ow around a double ellipse [35] ).Finally, section 6 is an appendix describing the solution of the projection problemsgenerated by the slope limitation process.2. Mathematical modelling2.1. Governing equations.We consider the two-dimensional Euler equations for compressible 
ows, writtenin conservation form as:@@tU(x; y; t) + @@xF (U(x; y; t)) + @@yG(U(x; y; t)) = 0 for (x; y; t) 2 
� IR+ (2.1)where 
 is a closed bounded domain of the plane,
U = 0BBBBBBB@ ��u�v�E

1CCCCCCCA ; F (U) = 0BBBBBBB@ �u�u2 + p�uv(�E + p)u
1CCCCCCCA ; G(U) = 0BBBBBBB@ �v�uv�v2 + p(�E + p)v

1CCCCCCCA (2.2)
� is the density, ~V = (u; v) is the velocity vector, E is the total energy by unit mass,and p is the pressure. We assume that the 
uid satis�es the perfect gas law :p = (
 � 1)(�E � 12�(u2 + v2)) (2.3)where 
,the ratio of speci�c heats, is taken equal to 1:4 for air.2.2. Boundary conditions :In the sequel, we consider domains of computation related to external 
ows aroundbodies; in �g.5.53 the body is represented by a double-ellipse [40] which limits the



116

Figure 5.53. Boundary of the computational domaindomain of computation by its wall �B . In order to deal with a bounded computationaldomain, a second (arti�cial) far�eld boundary �1[�S is introduced, with �S = �1S[�2S.The 
ow is assumed to be uniform at in�nity, and we prescribe�1 = 1; V1 = 0B@cos�sin�1CA ; p1 = 1
M 21 (2.4)where � is the angle of attack and M1 denotes the free-stream Mach number.On the wall �B we use the usual "no normal velocity" condition: ~V :~n = 0, where~n 2 R2 is the outer normal vector to �B.Finally, for unsteady calculations, an initial 
ow is prescribed :U(x; y; 0) = U0(x; y) 8 (x; y) 2 
: (2.5)3. A two-dimensional discontinuous �nite element methodIn this section, we give a detailed description of the discontinuous �nite elementmethod proposed by Ja�r�e,Kaddouri and Gowda ( [6], [23],[25]).We consider here a ( P1 )-piecewise linear spatial discretization based on unstruc-tured triangular elements ( the number of elements sharing a common node is not



117constant); the computational domain 
 is subdivided into triangles by a triangulationTh : 
 = Ne[i=1Ki ; Ki 2 Th;where the Ki's are the elements of the triangulation, Ne is the total number of triangles,and h is the largest diameter of all elements.Let Uj;i = U(Aj;i; t) denote the value of the dependent variable vector U , at time t andat the jth vertex Aj;i of element Ki 2 Th (i = 1; : : : ; Ne; j = 1; 2; 3).The degrees of freedom are the components of the vector U at the vertices of all elementsof the triangulation (�g. 5.54). Let W denote the approximation space formed by
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Figure 5.54. Degrees of freedom of the triangulationthe piecewise continuous functions which are linear on each triangle Ki 2 Th ( P1-approximation).The vector U of conservative variables �; �u; �v; �E is approximated by functions inthe product space W 4 and the corresponding approximations will again be denoted by�; �u; �v; �E, elements of W , for simplicity.For each element Ki(i = 1; : : : ; Ne) and each node Aj;i 2 Ki there exists a unique basisor shape function ('j;i) with the property8 i = 1; : : : ; Ne ; 'j;i(Ak;i) = 8><>: 1 if j = k0 otherwiseThe functions ('j;i)j=1;::: ;3i=1;::: ;Ne form a basis of the approximation space W .In the present formulation we shall use an explicit Euler time discretization.



118We now consider a Galerkin discontinuous �nite element approximation, which proceedsfrom a variational formulation of the Euler equations.Multiplying (2.1) by a shape function 'j;i and integrating by parts the terms withspatial derivatives, we obtain the following system for the piecewise linear vector Un+1of approximate dependent variables to be computed at time tn+1:8>>>>>>>>>><>>>>>>>>>>:
Find Un+1 2W 4ZKi Un+1 � Un�tn 'j;i dS = ZKi �F (Un)@'j;i@x +G(Un)@'j;i@y � dS� Z@Ki �~F(Un) � n�'j;i d� (3.1)

where �tn = tn+1 � tn is the time step, Un = U(x; y; tn) 2 W 4, and ~n = 0B@ nxny 1CA isthe unit outer normal ( directed towards the exterior of Ki).In (3.1), ~F (Un) � ~n = F (Un) �nx+G(Un) � ny � Fn is the (outward) numerical 
uxacross an edge A of @Ki; it will be computed with the help of an approximate Riemannsolver for the Riemann problem generated, in the direction normal to the edge A, bythe limits of the values of the dependent variables on both sides of A as one tends toA along ~n.In this paper, we have used Roe's Riemann solver ([28],[24],[34]) with an entropiccorrection due to Dubois and Mehlman [24].Remarque 5.1. Replacing the above approximation space by the space of piecewiseconstant functions ( constant on each triangle Ki 2 Th ) reduces ( 3.1) to the equationgoverning the standard �nite volume schemeZKi Un+1i � Uni�tn dS + Z@Ki �~F (Un) � n� d� = 0; Ki 2 Th:3.1. Numerical integration.To complete the description of the spatial discretization, we must specify thequadrature formulas which will be used to compute the integrals appearing in (3.1).Numerical experiments for scalar equation ([25],[18],[6]) have suggested the followingquadrature techniques.



119In equation (3.1) the terms containing the spatial derivatives are computed with thehelp of the values at the centroid M of mesh Ki :ZKi�F (Un)@'j;i@x +G(Un)@'j;i@y � dS ' Area(Ki)�F (Uni )@'j;i@x (Mi) +G(Uni )@'j;i@y (Mi)�where Mi is the centroid of Ki and Uni is the average value of Un on Ki :Uni = 13 3Xj=1U(Aj;i)since Un is linear on Ki.For the integral associated with the outward 
uxZ@Ki �~F(Un) � n�'j;i d� = XA2@Ki ZA �~F (Un) � n�'j;i d�we use either the values at the midpoints of the edges A, or the values at both Gausspoints of each edge1st choice : ZA �~F (Un) � n�'j;i d� ' l(A) � FnjA(Ul; Ur) � 'j;i(M)where l(A) and M denote the length and midpoint of edge A, respectively, andFnjA(Ul; Ur) is the numerical 
ux across edge A which separates the states Ul andUr, obtained by taking the limits of U along the normal to A at M ; this numerical 
uxwill be computed with Roe's Riemann solver, as described below.2nd choice :ZA �~F (Un) � n�'j;i d� ' l(A)2 �FnjA(Ul; Ur)(G1)'j;i(G1) + FnjA(Ul; Ur)(G2)'j;i(G2)�where G1; G2 are the Gauss points of edge A.Numerical experiments have shown that the computation at the edge midpoint (1stchoice) is su�cient.For the �rst integral in (3.1) (time derivative) we use the values at the three vertices:ZKi Un+1 � Un�tn 'j;i dS ' Area(Ki)3 Un+1Ki;Aj � UnKi;Aj�tnby the properties of 'j;i.



1203.2. Multidimensional slope limitation.We will describe a multidimensional extension of a slope limitation procedure whichhas been successfully used for scalar equations ([17],[6],[23] ).When dealing with the Euler equations, it has been widely recognized that one shouldlimit the physical variables �; u; v; p rather than the conservative variables�; �u; �v; �E.Let Un 2 W 4 denote the solution previously computed at time tn, and U? 2 W 4 thesolution predicted at tn+1 by solving system (3.1).We want to modify U? and obtain a corrected vector of conservative variables Un+1,by the following procedure.For each triangle Ki 2 Th , let� wK;Ai = wjK (Ai) : i = 1; : : : ; 3 be the value of wjK at node i,� wK = 13 3Xi=1 wK;Ai , the mean value of wjK in element K,� T (A) be the set of element K 2 Th such that vertex A 2 K (Fig. 5.55).
A

T(A)

K

Figure 5.55. The set T (A)For each element K, we compute the mean values of the conservative variables, noted�?K , (�u)?K , (�v)?K , (�E)?K ,which are simply the arithmetic means of these variables atthe three vertices of K.In order to obtain a conservative scheme, the vectors Un+1 and U? must have the samemean value on each element.We then compute the mean values of the physical variables, �?K ; u?K ; v?K ; p?K ( the meanvalue �?K of the density has already been calculated).



121For pressure we also take the arithmetic mean of p at the vertices of K.In contrast, the mean value of the velocity components u; v are de�ned byu?K = (�u)?K�?K ; v?K = (�v)?K�?K : (3.2)For the components of momentum at time tn+1, we will use the following value(�u)n+1K = 13 3Xi=1 �n+1K;Aiun+1K;Ai ; (�v)n+1K = 13 3Xi=1 �n+1K;Aivn+1K;Ai : (3.3)Observe that these values are di�erent from u?K , v?K , as they use the nodal values ofdensity and velocity instead of those of the momentum.Formulas (3.2)-(3.3) have been chosen to ensure existence and uniqueness of the solutionof the minimisation problems to be de�ned below.For every node A of the grid we compute the minimum and maximum of the meanvalues of the physical variables in the elements sharing node A :wmin(A) = minK2T (A)w?K ; wmax(A) = maxK2T (A)w?K ; for w = �; u; v; p (3.4)The slopes of the physical variables �; u; v; p will be limited, in this order, in the fol-lowing way.Let V denote the vector (�; u; v; p)T of physical variables.In each element K with vertices Ai (i = 1; : : : ; 3), V n+1jK is de�ned by :8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
(i) wn+1K = w?K ; for w = �; p; and (�w)n+1K = (�w)?K ; for w = u; v;(ii) For i = 1; : : : ; 3; w = �; u; v; p :(1� �)w?K + �wmin(A) � wn+1K;Ai � (1� �)w?K + �wmax(A) ; 0 � � � 1;(iii) For w = �; u; v; p the distance in IR3 between wn+1 = (wn+1K;Ai)i=1;::: ;3and w? = (w?K;Ai)i=1;::: ;3 is minimum :The computation of V n+1jK from V ?jK thus amounts to four projection problems in IR3( one for each physical variable ); as (i) de�nes a plane, and (ii) a cube, we look for theprojection, on their intersection, of the corresponding variablew? = (w?K;Ai)i=1;::: ;3.



122Condition (i) allows for mass conservation, (ii) limits the variation of �; u; v; p ( inthat order), and (iii) guarantees uniqueness of the solution.After computing the vector of physical variables V n+1 = 0BBBBBBB@ �n+1un+1vn+1pn+1
1CCCCCCCA we return to theconservative variables according toUn+1 = 0BBBBBBBB@ �n+1�n+1un+1�n+1vn+1pn+1(
 � 1) + 12�n+1 h(un+1)2 + (vn+1)2i

1CCCCCCCCA :The slope limitation therefore requires the solution of a series of local minimizationproblems in 3 dimensional space, with the constraints (i) and (ii).These projection problems can easily be solved by duality, as will be shown in theappendix.In order to ensure the existence of a solution for the projection problems, we have tomake sure that the intersection of the corresponding plane and cube is not empty. Fordensity and pressure, it is easily seen that if we let �n+1K;Ai = �?K and pn+1K;Ai = p?K fori = 1; 2; 3, conditions (i) and (ii) are then satis�ed, so that the relevant intersection isnot empty.As regards the velocity components, we can easily check, applying de�nitions (3.2) and(3.3), that if we let un+1K;Ai = u?K (i = 1; 2; 3), then(�u)n+1K = 13 3Xi=1 �n+1K;Aiu?K = 13  3Xi=1 �n+1K;Ai! (�u)?K�?K= (�u)?K :with a similar result for the second velocity component.The parameter � controls the extent of the slope limitation process. For � = 0, we getthe most stringent limitation: the solution V n+1 ( and therefore Un+1 ) is piecewiseconstant, thus reducing the method to the usual ( spatially) �rst order accurate scheme.In our numerical experiments, we have usually chosen � = 0:5, a value which led tooptimal results in the scalar case (cf. [25],[23],[6]).



123For one-dimensional problems, the limitation procedure reduces to the usual van Leersolpe limitation ([26],[41]).3.3. The numerical scheme.The above description of the Ja�r�e-Kaddouri-Gowda discontinuous �nite elementmethod can be summarized within the frame of a two-step scheme.Assuming for simplicity that we use an explicit Euler time discretization, let Un 2W 4be the solution obtained at time t = tn. In the �rst step (predictor), we compute anapproximation U? 2W 4 of the solution at time tn+1. This predictor step consists in a�nite element calculation, but features the use of Riemann solvers.In the second step, which can be viewed as a correction step, we limit the vector U? toobtain an approximate solution Un+1.1 - Predictor step : Finite element calculation8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
Compute U? 2W 4 such thatZKi U? � Un�tn 'j;i dS = ZKi �F (Un)@'j;i@x +G(Un)@'j;i@y � dS� Z@Ki �~F (Un) � n�'j;i d�for each Ki 2 Th and 'j;i(j = 1; 2; 3) (3.5)

2 - Limitation stepThis step limits the variation range of components of the vector of physical variablesV ? = 0BBBBBBB@ �?u?v?p?
1CCCCCCCA obtained in the predictor step. It leads to V n+1 and then Un+1, the �nalapproximation of the vector of conservative variables at time tn+1.We observe that the two steps are independent from each other, and the limitation pro-cess is distinct from the 
ux calculation, contributing to the originality of the method.3.4. Riemann solver.



124In this subsection we present a short description of Roe's approximate Riemannsolver, which will be used here in conjunction with an entropic correction recentlyproposed by Dubois and Mehlman ([24]) described below.Let A be an edge in the grid, and ~nA a unit vector normal to A; let Fn(U) be the
ux in the direction of ~nA, with U 2 W 4 . Let Ul and Ur be the limiting values of Uobtained when approaching the edge A along ~nA from the upwind and downwind side,respectively, with respect to the direction of ~nA; for the description of Roe's numerical
ux, we will provisionally assume that Ul and Ur are two constant states along eachside of A ( while we will later use limits of piecewise linear functions, see below).Let eFA(Ul; Ur) denote the numerical 
ux of a speci�c Riemann solver. It satis�es theconsistency relation eFA(U;U) = Fn(U) ; for all U 2W 4, whereFn(U) = n1F (U) + n2G(U) = ~F (U):~n : (3.6)is the physical 
ux across A , and~n = ~nA = 0B@ n1n2 1CA = 0B@ cos �sin � 1CA 2 IR2� (~n 6= ~0)If ~V = 0B@ uv 1CA denotes the velocity, we can write it in the edge-normal to edge localbasis formed by ~n and a unit vector ~a along edge A (�g.5.56) as~Vn = 0B@ un = u cos � + v sin �vn = �u sin � + v cos � 1CA : (3.7)We can then de�ne an invertible linear transformation T in IR4 :
T = 266666664 1 0 0 00 cos � sin � 00 � sin � cos � 00 0 0 1

377777775 ; T�1 = 266666664 1 0 0 00 cos � � sin � 00 sin � cos � 00 0 0 1
377777775 : (3.8)
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Figure 5.56. Local basis for the calculation of the 
uxAn arbitrary state vector U = 0BBBB@ ��~V�E 1CCCCA is then mapped into bU :
U �! T � U = 0BBBB@ �� ~Vn�E 1CCCCA = bU : (3.9)The 
ux in the direction ~nA Fn(U) = n1F (U) + n2G(U) :can be written in the edge-normal to edge local basis asFn(U) = cos�0BBBBBBB@ �up+ �u2�uv(�E + p)u

1CCCCCCCA+ sin�0BBBBBBB@ �v�uvp+ �v2(�E + p)v
1CCCCCCCA = 0BBBBBBB@ �un(�u)un + p cos �(�v)un + p sin �(�H)un

1CCCCCCCA ;(3.10)where H = E + p� is the speci�c total enthalpy ( per unit mass).It can be easily veri�ed that if Û = TU = ��; � ~Vn; �E�T , thenFn(U) = T�1 � F (Û ) (3.11)



126where F (Û) = ��un; p+ �u2n; �unvn; (�E + p)un�T (3.12)This relation allows for the computation of Fn(U) with the help of the �rst (vector)component F of the 
ux ~F only, without resorting to G.This leads to a reduction of the computing time, since the calculation of the matri-ces T and T�1 and the 
ux component F requires fewer operations than the calculationof the global 
ux Fn from its original de�nition.In the sequel, the 
ux calculations will therefore be performed for n1 = 1, n2 = 0(corresponding to � = 0 ).3.5. Numerical 
ux of Roe's original scheme.In Roe's scheme for the one-dimensional Euler equations Ut + F (U)x = 0, onecomputes the exact solution of the linearized Riemann problem de�ned at the cellinterface xi+ 12 between cells Ci and Ci+1 with corresponding constant states Ui; Ui+1, byreplacing the Jacobian matrix @F (U)@U = A(U), computed at xi+ 12 , by a special constantmatrix �Ai+ 12 = �A(Ui; Ui+1) called Roe' average matrix, with the properties(i) F (Ui+1)� F (Ui) = �Ai+ 12 (Ui+1 � Ui)(ii) For Ui = Ui+1 = U , we have �A(U;U) = A(U) � @F (U)@U(iii) The eigenvalues �k of �A are real and its eigenvectors rk are linearly independant( k = 1; : : : ; 3 ).It can be shown that �Ai+ 12 = �A(Ui; Ui+1) is in fact equal to A( �U )i+ 12 � @F (U)@U jU=�Ui+ 12(see [27] ) where �Ui+ 12 = (��i+ 12 ; �ui+ 12 ; �Hi+ 12 ) is a speci�c average of the vectors Ui; Ui+1called Roe's average, de�ned by��i+ 12 = p�i�i+1; �ui+ 12 = (up�)i + (up�)i+1p�i +p�i+1 ; �Hi+ 12 = (Hp�)i + (Hp�)i+1p�i +p�i+1In the present context of the two-dimensional Euler equations, and owing to the pre-vious remarks at the end of section 3.4, we will consider two adjacents states Ul; Urseparated by a triangle edge A. Roe's average matrix will be given by ( see [27] for adescription of this matrix) �A(Ul; Ur) = @F (U)@U jU=�Ulr (3.13)



127where Roe's average vector �Ulr = (��; �u; �v; �H) (3.14)is de�ned by 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
� = p�l�rand for a = u, v or H�a = alp�l+arp�rp�l+p�r (3.15)

The Roe averages of the remaining dependent variables E, p and c are then computedfrom �; u; v;H : 8>>>><>>>>: �E = 1
 �H + 
�12
 (�u2 + �v2)�c = �(
 � 1)( �H � 12(�u2 + �v2))	 12�p = ���c2
Properties (i),(ii) above now read(i) F (Ul)� F (Ur) = �A(Ul; Ur)(Ur � Ul)(ii) �A(U;U) = dF (U) � @F (U)@UWe write �k(Ul; Ur)(k = 1; : : : ; 4) and rk(Ul; Ur) for the eigenvalues and eigenvec-tors of �A(Ul; Ur) (see [27]) and let 4U � Ur � Ul.Since the rk(Ul; Ur) are linearly independent, there exists (�k)k=1;:::;4 2 R4 such that4U � Ur � Ul = 4Xk=1�krk(Ul; Ur) (3.16)the numerical 
ux of Roe's scheme can then be written ([28],[29])~FA(Ul; Ur) = 12(F (Ul) + F (Ur))� 12d(Ul; Ur) (3.17)where d(Ul; Ur) is the viscous term, given byd(Ul; Ur) = j �A(Ul; Ur)j(Ur � Ul) = 4Xk=1�kj�k(Ul; Ur)jrk(Ur; Ul) (3.18)Unfortunately, Roe's scheme does not satisfy an entropy inegality ([27],[29],[30]) andallows non-physical expansion shocks in the vicinity of sonic points ([21]), violatingthe Lax-Oleinik entropy condition; it is not an E-scheme ([43],[30],[27] ), so that the



128numerical solution does not necessarily converge to the (unique) entropy solution of theoriginal nonlinear initial value problem.To modify Roe's scheme so as to satisfy an entropy inequality, several ideas havebeen proposed (e.g. [29],[32],[33],[44],[45]), which are based on the representation ofsonic rarefaction waves, and are equivalent to introducing a certain amount of arti�cialviscosity, the exact amount depending on a parameter which requires a case-dependentadjustment.Dubois and Mehlman ([24]) have recently introduced a parameter-free modi�ca-tion of Roe's scheme based on nonlinear Hermite interpolation of an approximate 
uxfunction, leading to an entropic scheme.3.6. Dubois-Mehlman's entropic correction of Roe's scheme.This approach is based on a nonlinear modi�cation of the 
ux function de�ned by(3.17) , in the neighbourhood of sonic points only.For a given state U we write U � Ul and Ur � Ul as linear combinations of theeigenvectors.Denoting by (wk)k=1;::: ;4 and (�k)k=1;::: ;4 the characteristic variables associated1with U � Ul and Ur � Ul, respectively, we haveU � Ul = 4Xk=1wk � rk(Ul; Ur) (3.19)Ur � Ul = 4Xk=1�k � rk(Ul; Ur) (3.20)Following [29], we de�ne the intermediate states8>>>>>>>>>>><>>>>>>>>>>>:
U0 = Ul...Uk = Uk�1 + �krk(Ul; Ur)...U4 = Ur (3.21)

Let S denote the set of sonic indicesS= fi; �i(Ui�1) < 0 < �i(Ui)g (3.22)1In this quasi one-dimensional context ( due to the remarks following (3.12)) we can assume the existenceof characteristic variables as in the purely one-dimensional case (cf. [27] Vol II p.155).



129We now introduce the Dubois-Mehlman modi�ed 
ux function, parameterized by thestates Ul and Ur Fdm(Ul; Ur;U) = F (Ul) + 4Xk=1 gk(wk) � rk(Ul; Ur) (3.23)where the w0ks are the characteristic variables introduced in (3.19), and the g0ks areparameterized by the state (Uj)j=1;:::;4, and de�ned as follows:if k =2 S then gk(w) = �k(Ul; Ur) � w 8wif k 2 S gk(w) = 8>><>>: pk(w) for 0 < w < �k�k(Ul; Ur) � w for w =2 (0; �k) (3.24)where pk(w) is the unique Hermite polynomial of degree 3 determined by the conditionspk(0) = 0; pk(�k) = �k(Ul; Ur) � �k; p0k(0) = �k(Uk�1); p0k(�k) = �k(Uk)We recall that �k(Uj) denotes the k-th eigenvalue of the jacobian matrix A(U) � @F@Ucalculated at the intermediate state Uj , while �k(Ul; Ur) is the k-th eigenvalue of theRoe matrix Â(Ul; Ur): It can be veri�ed that away from sonic points, the modi�ed 
uxF dm coincides with Roe's linearized 
ux:FR(U) = F (Ul) + Â(Ul; Ur)(U � Ul) (3.25)If the original physical 
ux F (U) is at least continuously di�erentiable and if Â(Ul; Ur)is a continuous function of Ul and Ur, Fdm is a continuous function of Ul, Ur and U.Lemma 3.1.The Riemann problem 8>>>>>>>>><>>>>>>>>>:
@U@t + @F dm(Ul; Ur;U)@x = 0U(x; 0) = 8>>><>>>: Ul x < 0Ur x > 0has a unique entropy solution.See [24] for the proofs of lemmas 3.1 and 3.2.



130Lemma 3.2. For k 2 S, the Hermite polynomial pk(w) is de�ned bypk(w) = akw3 + bkw2 + ckw ;with ak = �k(Uk) + �k(Uk�1)� 2�k(Ul; Ur)�2kbk = 3�k(Ul; Ur)� 2�k(Uk�1)� �k(Uk)�kck = �k(Uk�1)The modi�ed numerical 
ux can be written aseFdmA (Ul; Ur) = F (Ul) + Xk=2S;�k(Ul;Ur)<0�k � �k(Ul; Ur) � rk +Xk2Sgk(w?k) � rk (3.26)wherew?k = ��k(Uk�1) � �k3�k � 2�k(Uk�1)� �k(Uk) +q(3�k � �k(Uk�1)� �k(Uk))2 � �k(Uk�1) � �k(Uk)(3.27)is the argument of the unique extremum of gk(w) in the interval 0 < w < �k, and �kin ( 3.27) denotes �k(Ul; Ur).Description of the eigenvectors rk(Ul; Ur) and characteristic variables �kTo complete our description of the Dubois-Mehlman entropy correction to Roe's scheme,we must de�ne the eigenvectors rk(Ul; Ur) and coe�cients �k appearing in (3.19),(3.20),(3.27).From [28], we have
r1 = 0BBBBBBB@ 1bu� bcbvbH � bubc

1CCCCCCCA ; r2 = 0BBBBBBB@ 00bvbv2
1CCCCCCCA ; r3 = 0BBBBBBB@ 1bubv12(bu2 + bv2)

1CCCCCCCA ; r4 = 0BBBBBBB@ 1bu+ bcbvbH + bubc
1CCCCCCCA



131For w = �; �u; �v et �E, we set �w = wr �wl. Equation (3.20) de�nes a linear systemin the 4 unknowns �1; : : : ; �4. For bv 6= 0 , the unique solution is given by8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
�1 = 
 � 12 bc2 ��(�E)�bv�(�v)��bu+ bc
 � 1��(�u)+� bc � bu
 � 1+12(bu2 + bv2)�����2 = 1bv�(�v)����3 = �1 + bubc���� 1bc�(�u)� 2�1�4 = �1 + 1bc (�(�u)� bu��)If bv = 0 ; �2 is indeterminate. One can set it equal to 0, in which case there exists aunique (�k)k=1;::: ;4 2 IR4 satisfying (3.20), given by8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�1 = 
 � 12 bc2 ��(�E)� �bu+ bc
 � 1��(�u) + � bc � bu
 � 1 + bu22 �����2 = 0�3 = �1 + bubc���� 1bc�(�u)� 2�1�4 = �1 + 1bc (�(�u)� bu��)The Dubois-Mehlman correction has proved to be useful for explicit schemes, but dif-�cult to implement for implicit schemes, owing to the di�culty of the linearizationprocess.3.7. Note on the implementation of the time discretization.In this paper, we limit our applications to the computation of stationary solutions,and will therefore use a local time stepping process described below.Introducing the diagonal matrix � = diag �Area(Ki)�tni �Ki2Th , we can write (3.5) asfollows: 8>>>>><>>>>>: Find U? 2W 4 such thatU? � Un = ���1 R(Un) (3.28)



132where R(Un) is the residual de�ned from the right-hand side of (3.5)R(Un) = Z@Ki �~F(Un) � n��j;i d� � ZKi �F (Un)@�j;i@x +G(Un)@�j;i@y � dS :(3.29)The scheme (3.28) is stable under an appropriate CFL� condition.Let � denote the CFL�number ( assumed to be uniform on the whole grid). Foreach element Ki 2 Th we note� �i : mean value, in element Ki, of the characteristic speed corresponding to thelargest eigenvalue �i = qu2i + v2i + ci ;� hi : ratio of the area of Ki by its perimeterhi = Area(Ki)L(Ki) :The local time step is then chosen so that�tni � �hi�i : (3.30)In most cases we have used a CFL� number � = 0:5.In the numerical experiments presented in this paper, we study the distributionon the body B (�g.1) and the isolines of the Mach number M, the pressure p, or thepressure coe�cient Cp, de�ned byCp = p1 � p12�1 kV 1 k2 (3.31)To study the convergence of the method, we will present graphs of the L2 -norm of theresidual R(Un) as a function of the number of iterations.4. Finite volume methods on unstructured triangular grids4.1. A two-dimensional �nite volume method inspired by the Lax-Friedrichs scheme.We consider the solution U(x; y; t) of the two-dimensional Euler equations (2.1)-(2.2) Ut + F (U)x +G(U)y = 0 (4.1)



133in some region 
 of the x � y plane. In one space dimension [5], both the staggeredform of the Lax-Friedrichs scheme and the Nessyahu-Tadmor scheme use two alternategrids fxjg and fxj+1=2g at odd and even time steps, respectively. In two dimensions,we proceed in a similar way, starting from an arbitrary FEM triangular grid Th suchthat

 = [T2Th T and T \ T 0 = 8>>>>>><>>>>>>:�one vertex for any T; T 0 2 Thone side (4.2)

The nodes of the FEM triangulation are the vertices ai of the triangles, and in thissubsection the degrees of freedom are the vector values of U at the nodes, which canalso be considered as cell average values for the cell Ci centered at each individual nodeai (de�ned below).For the �rst grid associated with our �nite volume extension of the Lax-Friedrichsscheme, the nodes are the vertices ai of Th while the �nite volume cells are the barycen-tric cells Ci associated with these nodes, obtained by joining the midpoints Mij ofthe sides originating in ai to the centroids Gij of the triangles of Th which meet at ai(�g.5.57).For the second grid the nodes are the midpoints Mij of the sides of the originaltriangulation, while the cells are the quadrilaterals of the form Lij = aiGijajGi;j+1having Mij as midpoint of one diagonal, obtained by joining two adjacent nodes ai, ajto the centroids of the two triangles of Th of which aiaj is a side.Let Uni �= U(ai; tn) and Un+1ij �= U(Mij ; tn+1) denote the nodal (or cell average)vector values in the �rst and second grid at time t = tn and t = tn+1, respectively (neven).For the barycentric cell Ci, let ~� 1ij and ~� 2ij denote the unit outer normal vectorsto GijMij and MijGi;j+1 respectively, pointing out of cell Ci (�g.5.58) , and for thequadrilateral cell Lij , let ~n 1ij ; : : : ; ~n 4ij be the normal vectors to the cell edges aiGij ,Gijaj , ajGi;j+1 and Gi;j+1ai, respectively, pointing out of cell Lij (�g.5.59).
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Figure 5.57. Barycentric cells around nodes ai, aj; quadrilateral cell aiGijajGi;j+1.We must also de�ne the elementary 
ux vectors~�ij = Z�ij=GijMijGi;j+1 ~�d� = j����!GijMij j~� 1ij + j������!MijGi;j+1j~� 2ij (4.3)and 8>><>>:~�ij = j���!aiGij j~n 1ij + j�����!aiGi;j+1j~n 4ij~�ji = j���!ajGij j~n 2ij + j�����!ajGi;j+1j~n 3ij : (4.4)We write furthermore~� kij = 0B@�kijx�kijy1CA for k = 1; 2; ~n kij = 0B@nkijxnkijy1CA for k = 1; : : : ; 4and ~�ij = 0B@�ijx�ijy1CA ; ~�ij = 0B@�ijx�ijy1CA : (4.5)An advantage of using a �nite volume formulation where the degrees of freedom arevalues of the unknown function at the triangulation vertices lies in the possibility tocouple (4.1) with an elliptic equation. This can be very convenient in the case of a
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Figure 5.58. Barycentric cell boundary element �ij = GijMij [MijGi;j+1.scalar conservation law where 8>><>>:f(u) = w1 h(u)g(u) = w2 h(u) (4.6)i.e. when (4.1) can be written as ut + div� ~W h(u)� = 0 with ~W = (w1; w2)T and~W stems from an elliptic problem. This situation arises in the study of polyphase
ows in porous media, where 
uid mechanical and thermodynamical considerations arecombined, leading to coupled hyperbolic and elliptic equations [42].The �rst step of the two-dimensional �nite volume extension of the Lax-Friedrichsscheme is de�ned by integrating (4.1) on the 3-dimensional cell Lij�[tn; tn+1], assumingthat the (barycentric) cell values Uni at the vertices ai of the original triangulation areknown: Z tn+1tn ZLij�Ut + F (U)x +G(U)y�dxdy dt = 0: (4.7)Applying the divergence theorem and observing that Lij = (Lij \ Ci) [ (Lij \ Cj) wegetZLij U(x; y; tn+1)dA� ZLij\Ci U(x; y; tn)dA � ZLij\Cj U(x; y; tn)dA+ Z tn+1tn Z@Lij�F (U)nx +G(U)ny�d� dt = 0: (4.8)
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Figure 5.59. Quadrilateral cells Lij.Since U(x; t) is approximated by Uni in Ci, Unj in Cj , we can choose the approxi-mation Uni on @Lij \Ci and Unj on @Lij \Cj , whence the �rst step of our �nite volumeLax-Friedrichs scheme:A(Lij)Un+1ij �A(Lij \ Ci) � Uni �A(Lij \ Cj) � Unj+�t�F (Uni )�ijx +G(Uni )�ijy�+�t�F (Unj )�jix +G(Unj )�jiy� = 0: (4.9)We note that this approximation corresponds to choosing the approximate time deriva-tive Ut �=  Un+1ij � A(Lij \ Ci) � Uni +A(Lij \Cj) � UnjA(Lij) ! . �t: (4.10)For the second step we proceed similarly with the help of the barycentric cells Ci:A(Ci)Un+2i � Xj neighbour of iA(Lij \Ci)Un+1ij+�t Xj neighbour of i�F (Un+1ij )�ijx +G(Un+1ij )�ijy� = 0 (4.11)where the value of U(x; y; tn+1) on the boundary @Ci = Sj neighbour of i�ij is approximatedlocally, on @Ci \ Lij = �ij , by Un+1ij (i.e. the approximate value of Un+1 on thequadrilateral cell Lij . We thus alternately de�ne an approximate solution Un+1ij whichis piecewise constant on the quadrilateral cells Lij , at odd time steps (n = 0; 2; : : : ),and a solution Un+2i constant on the barycentric cells Ci, at even time steps.



1374.2. A two-dimensional �nite volume inspired by the Nessyahu-Tadmor scheme.The construction of a �nite volume method inspired by [5] implies the computationof gradients of piecewise linear functions, and the limitation of the gradients. To sim-plify the presentation, we shall describe our �nite volume method in the case of scalarconservation laws in this subsection. The extension to the vector case is obtained froma �eld by �eld decomposition (see, e.g. [47] ,[46],[48]).We consider a scalar nonlinear conservation equation(4:10) ut + f(u)x + g(u)y = 0At the beginning of the (n+1)st time step (n even), we have obtained approximatebarycentric cell values uni (ai : a vertex of Th). We must now, in order to follow thevan Leer MUSCL approach used by Nessyahu and Tadmor, construct a piecewise linearpro�le on the barycentric cells Ci; this can be achieved as follows.We �rst construct a piecewise linear approximant on each triangle T of the originaltriangulation, continuous on the whole computational domain 
h, with the help of thebarycentric cell/nodal values uni : if T 2 Th is a triangle with vertices aij , (j = 1; 2; 3),we construct pT 2 P 1 such thatpT (aij ) = unij (j = 1; 2; 3)pT (x; y) is easily obtained from the barycentric coordinates of (x; y) with respect to thevertices of T : pT (~x) = 3Xj=1 �j(~x)unjwhere the vertices of T have been relabelled 1; 2; 3 or a1; a2; a3, and ~x = (x; y) 2 T .The gradient of the (barycentric) cellwise piecewise linear interpolant L(x; y; tn)to be de�ned will now be chosen (as e.g. in [39] p.28), for cell Ci, as the arithmeticaverage of the gradients of the polynomials pT for all triangles T such that ai 2 T : onCi we take L = Li(x; y; tn) = uni + (x� xi)P ni + (y � yi)Qni (x; y) 2 Ci (4.12)where 0B@P niQni 1CA = Averageai2T fgrad pT g: (4.13)



138Contrary to what prevailed in the one-dimensional case, where the average value�unj of the piecewise linear interpolant Lj(x; tn) was also its value at the node xj , we canno longer identify the average value of the piecewise linear interpolant (4.12) , on cellCi, with its nodal value uni at the \center" ai of Ci, since ai need not be the centroidof Ci, and 1A(Ci) RCi Li(x; y; tn)dA 6= uni in general.The new cell values at tn+1 and tn+2 will nevertheless again be de�ned by formulassimilar to (4.9) (�rst step), and (4.11) (second step), obtained by integrating (4.1') onLij � [tn; tn+1] for the �rst step, and on Ci � [tn; tn+1] for the second step:A(Lij)un+1ij � numerical approximation of ZLij u(x; y; tn+1)dA (4.14)A(Ci)un+2i � numerical approximation of ZCi u(x; y; tn+2)dA: (4.15)For the �rst step of our scheme we writeZ tn+1tn ZLij (ut + f(u)x + g(u)y)dAdt = 0 (4.16)which leads toZLij u(x; y; tn+1)dA = ZLij\Ci L(x; y; tn)dA+ ZLij\Cj L(x; y; tn)dA� Z tn+1tn Z@Lij�f(u)nx + g(u)ny�d�dt: (4.17)The numerical approximation of the right-hand side, and (4.14), will thus lead to un+1ij ,which will be our cell value for the quadrilateral cell Lij .4.3. Approximation of RLij\Ci L(x; y; tn)dA.L(x; y; tn) is the piecewise linear function de�ned, on cell Ci, by (4.12) . LetAiAijBij Ai;j+1 be the points of the plane de�ned by the linear function Li on Ci whichcorrespond to the four vertices of Lij \ Ci = [aiGijMijGi;j+1] where [...] denotes thequadrilateral generated by the corresponding vertices (�g. 5.60).The integral of L on Lij \ Ci is equal to the total volume of the two prismswith triangular base aiGijMijAiAijBij and aiMijGi;j+1AiBijAi;j+1, constructed on thetriangular bases Lrij \ Ci and Lìj \ Ci where Lrij = triangle (aiGijaj) and Lìj =triangle (aiajGi;j+1); r; ` stand for right, left (for an observer at ai).
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Figure 5.60. Prismatic regions for the computation of RLij\Ci L(x; y; tn)dA:The volume of the �rst prism, for instance, is given byVolfaiGijMijAiAijBijg = 13 Area (aiGijMij) � [aiAi +GijAij +MijBij ]= 13 Area (Lrij \Ci)�uni + uni + (xGij � xi)P ni+ (yGij � yi)Qni + uni + (xMij � xi)P ni+ (yMij � yi)Qni 	= Area (Lrij \ Ci)�uni + 13(xGij + xMij � 2xi)P ni+ 13(yGij + yMij � 2yi)Qni 	 (4.18)whereArea (Lrij \ Ci) � Area triangle (aiGijMij)= 12�(xGij � xi)(yMij � yi)� (xMij � xi)(yGij � yi)	: (4.19)Similarly, the volume of the second prism isVolfaiMijGi;j+1 AiBijAi;j+1g = Area(Lìj \Ci) ��uni + 13(xMij + xGi;j+1 � 2xi)P ni + 13(yMij + yGi;j+1 � 2yi)	 (4.20)Summing (4.18) and (4.20), we getZLij\CiL(x; y; tn)dA = Area(Lij \ Ci)�uni + 13(xMij � xi)P ni + 13(yMij � yi)Qni 	+ 13Area(Lrij \ Ci)�(xGij � xi)P ni + (yGij � yi)Qni 	 (4.21)+ 13Area(Lìj \ Ci)�(xGi;j+1 � xi)P ni + (yGi;j+1 � yi)Qni 	



140withArea(Lìj \ Ci) = 12�(xMij � xi)(yGi;j+1 � yi) � (xGi;j+1 � xi)(yMij � yi)	: (4.22)4.4. Approximation of RLij\Cj L(x; y; tn)dA.Proceeding in the same way we �ndZLij\CjL(x; y; tn)dA = Area(Lij \ Cj)�unj + 13(xMij � xj)P nj + 13(yMij � yj)Qnj 	+ 13Area(Lrij \ Cj)�(xGij � xj)P nj + (yGij � yj)Qnj 	 (4.23)+ 13Area(Lìj \ Cj)�(xGi;j+1 � xj)P nj + (yGi;j+1 � yj)Qnj 	where Area(Lrij \Cj) = 12�(xMij � xj)(yGij � yj)� (xGij � xj)(yMij � yj)	: (4.24)4.5. Approximation of R tn+1tn R@Lijff(u)nx + g(u)nygd�dt.This is achieved with the midpoint rule for integration with respect to time:Z tn+1tn Z@Lij�f(u)nx + g(u)ny�d�dt�= �t Z@Lijnf�u(x; y; tn+1=2)�nx + g�u(x; y; tn+1=2)�nyod� (4.25)where a �rst order Taylor expansion is used for u(x; y; tn+1=2); using (4.1') we writeu(x; y; tn+1=2) �= u(x; y; tn)� �t2 �f 0�u(x; y; tn)�ux(x; y; tn)+ g0�u(x; y; tn)�uy(x; y; tn)	 (4.26)On Lij\Ci we have chosen ux � P ni and uy � Qni , but we must �nd an approximatevalue of u(x; y; tn) on the line segments aiGij and aiGi;j+1 (and similarly on ajGij andajGi;j+1). One possible choice consists in choosing the value of L(x; y; tn), our linearinterpolant, at the midpoints of these segments; we then take, for any (x; y) on aiGij :u(x; y; tn) �= uni + 12(xGij � xi)P ni + 12(yGij � yi)Qni � unai;Gij (4.27)thus de�ning our value unai;Gij for the side aiGij of Lij .In view of (4.26), we can now de�ne an approximate average value of u(x; y; tn+1=2)along the side aiGij to be used in (4.25):un+1=2aiGij = unai;Gij � �t2 �f 0(unai;Gij )P ni + g0(unai;Gij )Qni 	: (4.28)



141Introducing these values in (4.25), we �nally get1�t Z tn+1tn Z@Lijff(u)nx + g(u)nygd�dt (4.29)�= f(un+1=2ai;Gij )n1ijx � jaiGij j+ f(un+1=2ai;Gi;j+1)n4ijx � jaiGi;j+1j+ f(un+1=2aj ;Gij )n2ijx � jajGij j+ f(un+1=2aj ;Gi;j+1)n3ijx � jajGi;j+1j+ g(un+1=2ai;Gij )n1ijy � jaiGij j+ g(un+1=2ai ;Gi;j+1)n4ijy � jaiGi;j+1j+ g(un+1=2aj ;Gij )n2ijy � jajGij j+ g(un+1=2aj ;Gi;j+1)n3ijy � jajGi;j+1j:4.6. First step of the �nite volume extension of the Nessyahu-Tadmor scheme.Collecting our approximations (4.21),(4.23),(4.29 ) of the three terms appearing inthe R.H.S. of (4.17) and taking (4.14) into account, we obtain the following approxi-mation un+1ij for the �rst (odd) time step of our scheme:Area(Lij)un+1ij = R.H.S.(4.21) + R.H.S.(4.23) ��t � fR.H.S.(4.29)g (4.30)where un+1ij can be considered as a cell value for cell Lij at time tn+1, or as a nodalvalue at the midpoint Mij , at time tn+1.In preparation for the second (even) time step, we now construct a piecewise linearapproximation of u on the quadrilaterals Lij :u(x; y; tn+1) �= L(o)(x; y; tn+1) � un+1ij + (x� xMij )P n+1ij + (y � yMij )Qn+1ij (4.31)where the slopes P n+1ij , Qn+1ij can be computed as follows.First we construct a piecewise linear approximate function de�ned on the trianglesT 2 Th of the original triangulation. On triangle T = aiajak, we can use for thatpurpose the newly obtained values un+1ij at the midpoints of the sides of T . We thencompute the average of the slopes of the linear interpolants in the two triangles T; T 0 2Th sharing aiaj as a common side (�g. 5.59), and use these averages in (4.31).4.7. Second step of the �nite volume Nessyahu-Tadmor scheme.The second step is obtained by integrating (4.1') on the cylindric region Ci �[tn+1; tn+2], using the same �nite volume approach as for the �rst step, to de�ne a cellaverage value un+2i on cell Ci:Area(Ci)un+2i � Xj neighbour of i ZLij\Ci u(x; y; tn+1)dxdy



142= ��t Xj neighbour of i Z�ij�f�u(x; y; tn+3=2)��x + g�u(x; y; tn+3=2)��y	d� (4.32)where u(x; y; tn+1) is approximated, on Lij \ Ci, by the piecewise linear interpolant(4.31). Its integral on Lij \Ci is computed as described in section 4.3.To obtain an approximate value of u(x; y; tn+3=2) we use a Taylor expansion withrespect to time combined with (4.1'), and we subdivide the cell-boundary element �ijinto GijMij [MijGi;j+1. On GijMij (resp. MijGi;j+1), u(x; y; t) is then approximatedby its value of the midpoint of the line segment GijMij (resp. MijGi;j+1).4.8. Approximation of the slopes.In order to compute the gradient (P ni ; Qni ) of the piecewise linear interpolantL(x; y; tn) for the cell Ci, we must �rst compute the gradient of the �rst degree polyno-mials PT for all triangles T 2 Th such that ai 2 T . Although we could then in principledirectly take the average of the gradients of the polynomials PT , obtained as describedat the beginning of section 4.2, we shall consider here a least-squares technique (cf.[40]). For simplicity, we shall describe it for the case of triangular (�nite volume) cells.Let T be a triangle with centroid G, and let Tj , j = 1; 2; 3 be the neighbouringtriangles, with centroids Gj(j = 1; : : : ; 3) (�g.5.61); assume the values of the numericalapproximation of the solution u at the four points fG;Gjg3j=1 are known at time tn,equal to unT , unTj (j = 1; : : : ; 3) (these values can be considered as cell values playing forthe triangular cells T; Tj the same role as uni , unij for the cells Ci, Lij).The least-squares gradient (ĝrad u)nT = (~anT ;~bnT ) for triangle T will then be chosensuch as to minimize the functionalI = 3Xj=1funT + �!GGj � (grad u)nT � unTjg2 (4.33)where (grad u)nT = (anT ; bnT )The minimum is obtained when @I@anT = @I@bnT = 0 (4.34)and is shown in [40] to lead to the following least-squares gradient:~anT = 1D 3Xj=1(yGj � yG)2 3Xj=1(unTj � unT )(xGj � xG)
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Figure 5.61. Computation of the least-squares gradient for a triangu-lar cell T: � 1D 3Xj=1(xGj � xG)(yGj � yG) 3Xj=1(unTj � unT )(yGj � yG) (4.35)~bnT = 1D 3Xj=1(xGj � xG)2 3Xj=1(unTj � unT )(yGj � yG)� 1D 3Xj=1(xGj � xG)(yGj � yG) 3Xj=1(unTj � unT )(xGj � xG) (4.36)where the denominatorD = 3Xj=1(xGj � xG)2 3Xj=1(yGj � yG)2 � � 3Xj=1(xGj � xG)(yGj � yG)�2 (4.37)is strictly positive for any non-degenerated triangle.For the barycentric cells Ci or the quadrilateral cells Lij , the procedure is quitesimilar to the one described above for triangular cells. Alternately, for a barycentric cellCi with center ai, we could �rst compute the least squares gradient grad ujTj = (~anTj ;~bnTj )of each neighbouring triangle Tj (such that ai 2 Tj), and then take the cell gradientgrad ujCi = averagefgrad ujTjg, with a similar procedure for a quadrilateral cell Lij .Unfortunately, this procedure does not preserve monotonicity of the data in theusual van Leer sense described below, and allows the creation of local extremas betweenthe nodes; this phenomenon may lead to (or amplify already existing ) spurious oscil-lations, with the associated loss of stability and convergence di�culties in the case of



144steady 
ows. We have therefore introduced some slope limitation in the computationof the gradients.4.8.1. Slope limitation.To ensure the stability of the scheme and prevent the generation of oscillations inregions of strong gradients, we must perform a slope correction. Following van Leer'sapproach ([26], [25]), in which the value at some interface point xi+1=2 (in the one dimen-sional case) must fall within the range of values spanned by the adjacent grid averages,ui�1 and ui+1, we limit the slopes of the linear interpolant L de�ned by (4.12) (resp.L(o) de�ned by (4.31) to ensure that its value at the boundary points Gij ;Mij ; Gi;j+1of @Ci (resp. at the vertices ai; aj ; Gij ; Gi;j+1 of @Lij) are bounded by the values at thecell center uni (resp. un+1ij ) and the value unj at the corresponding neighbouring node aj(resp un+1i;j�1 and un+1i;j+1 at the adjacent quadrilateral cell\midpoints"Mi;j�1 and Mi;j+1).The limitation procedure is implemented on each cell as follows. Let(grad u)i = (Pi; Qi)Tdenote the gradient for cell i, where Pi � ux , Qi � uy at node i. If u satis�es the vanLeer requirement we chooseP limi = minj 2 N (i)mod fPjg
= 8>>>>>>>>>><>>>>>>>>>>:

minj 2 N (i) jPj j:(common sign of all values Pj)if all the values Pj (j 2 N (i)) have the same sign0 otherwisewhere N (i) is the set of nodes j adjacent to node i. If u does not satisfy the van Leerrequirement, we set Plimi = 0 . The computation of Qlimi is done in the same manner.For quadrilateral cells Lij we proceed in a similar way.5. Numerical ExperimentsIn order to assess the relative advantages of both methods , we applied them to severaltypical test problems; we present results for� Euler 
ow around a Double-ellipse at supersonic regime.



145� Supersonic 
ow past a blunt body at 0o of angle of attack and M1 = 2Both methods, which are second-order accurate and non-oscillatory thanks to the useof limiters, have been applied on the same grids, to compute the steady 
ows by sta-tionarization, with the help of grid adaptation to improve the resolution. For the gridadaptation, we have used a procedure developed by M.J.Castro Diaz and F.Hecht atINRIA (France) ([37],[38]).For the �nite volume method, the extension of section 4.2 totwo-dimensional systems of conservation laws is achieved by the procedure describedin ([46],[47],[48]).On the whole, the �nite volume version of the Nessyahu-Tadmor scheme has provedto be less time-consuming and signi�cantly more accurate, for given grids. . The dis-continuous �nite element method required more computing time to reach convergence.Nevertheless, both methods seem to provide a reliable alternative to other well estab-lished schemes, and lend themselves to an extension to three-dimensional problems forunstructured grids.Example 1 Supersonic 
ow past a double-ellipse at 20o of angle of attack andM1 = 2For this problem inspired by ([35]), but with Mach number M1 = 2 instead of therange of hypersonic Mach numbers considered there, and 20o of angle of attack, thegeometry is a double ellipse ([35]), de�ned by8>>>>>>>>>><>>>>>>>>>>:
x � 0 8>><>>:z � 0 � x0:06�2 + � z0:015�2 = 1z � 0 � x0:035�2 + � z0:025�2 = 10 � x � 0:016 8>><>>:z � 0 z = 0:025z � 0 z = �0:015For this steady 
ow problem we used the same three grids with both methods.Wepresent the results obtained with the initial and �nal grid only.For the initial mesh (1558 vertices), both methods give fairly comparable results;notice that the Cp curves can be nearly superposed, which is an indication that bothmethods are indeed doing some reasonable calculation. The same is true for the pressurecontours of both methods, with perhaps a very small advantage for our �nite volumemethod (FV) which gives slightly sharper shocks.



146The �nal grid (5055 vertices) shows a clear advantage for the FV method, which givesa nearly perfect shock resolution with very smooth contours, while the DFE methodshows a serious breach of monotonicity in the lower part of the bow shock.As was the case with the initial grid, the Cp curves can again be nearly exactly super-posed.The major di�erence between the two methods appears to lie in the convergence historyand computing times. Fig. 5.64 shows a clear advantage for our �nite volume method,for the initial grid (1558 vertices). Computing times for the initial grid (CPU : 3564 forFV and 48288 for DFE) con�rm the advantage of the proposed Finite Volume Method.

Figure 5.62. Euler 
ow around a double ellipse. Original grid,barycentric cells Ci and quadrilateral cells Lij
Figure 5.63. Double ellipse : Initial grid (1558 vertices) and solution(pressure contours) (FV, middle) and (DFE, right)Example 2 Supersonic 
ow past a blunt body at 0o of angle of attack. see ([4]).
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Figure 5.65. Double ellipse : Final grid (5055 vertices) and solution(pressure contours) (FV, middle) and (DFE, right)
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148This is a standard test problem which has been considered by many authors. Theproblem de�nition is borrowed from [4].The Mach number is M1 = 2:0 with an inci-dence � = 0o. The initial and �nal grid had 2737 and 7039 nodes, respectively. Fig.5.68and 5.69 show the corresponding pressure contours. Our results, obtained with gridadaptation ([37],[38]), sustain comparison with other results for which grid adaptationhas also been used.
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Figure 5.67. Convergence histories for Finite Volume scheme (left)and Discontinuous �nite element method (right) (Blunt body)

Figure 5.68. Initial grid and solution (pressure contours) FV (middle)and DFE (right)Fig. 5.67 , which presents the residuals for both methods, shows a strong advantagein favour of our �nite volume method, considering the results on �g.5.68 and 5.69, afact which is con�rmed by table 5.5: both the CPU-times and the speed of convergenceare substantially better.



149

Figure 5.69. Final grid and solution (pressure contours) FV (middle)and DFE (right)

Method CPU nodes elements SolutionF.V 2701 2737 5244 without adaptationD.F.E.M 11700 2737 5244 without adaptationF.V 16905 7039 13801 with adaptationD.F.E.M 46886 7039 13801 with adaptationTable 5.5. Characteristics of F.V and D.F.E.M ( Initial and FinalGrids, Blunt Body)



150This test case displays the robustness and the accuracy of the �nite volume method,given the fact that the discontinuous �nite element method is already an excellent andwell established method.Concluding remarksThe examples presented here suggest that the �nite volume method proposed by theauthors is capable of a very high resolution, with a clear advantage, as comparedwith the discontinuous �nite element method studied here, at least at the level ofthe convergence histories, computing times, smoothness of the pressure contours, andmonotonicity enforcement.We are presently adapting the �nite volume method to a mixed �nite volume/Galerkin�nite element method for the Navier-Stokes equations ([49]) where the convective partof the Navier-Stokes equations are treated with the �nite volume method presentedhere while the di�usive term will be handled by a �nite element method.In another paper ([50],[51]) we consider the particular case of the linear equationut + div(u~V ) = 0 where ~V = �V1(x; y); V2(x; y)�T with div ~V = 0; we obtain an L1bound for the numerical solution, from which we deduct the existence of a subsequencefuTk ;�tkg which converges weakly to some function u in L1(R2 � R+ )-weak. Usinganother set of inequalities, we obtain a total variation-type bound, slightly weakerthan a classical bound on the total variation of the numerical solution, called a boundon the \weighted total variation", from which we are then able to show that the aboveweak limit function u is indeed a weak solution of ut + div(u~V ) = 0.
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154[51] M.C. Viallon and P. Arminjon, Convergence of a �nite volume extension of theNessyahu-Tadmor scheme on unstructured grids for a two-dimensional linear hyper-bolic equation, Rapport de recherche, No. 2239, Centre de Recherches math�ematiques,Universit�e de Montr�eal, january 1995, to appear in SIAM J.Num.Anal.6. APPENDIXSolution of the projection problem for the slope limitationThe slope limitation process consists in solving a series of local minimization prob-lems of dimension nv(K) = 3, with two constraints.In this appendix we will show how these minimization problems can be solved; wefollow the description given in [6] for the scalar case.For w = �; u; v; p : we denote by� PK , the plane with equation3Xi=1Xi = 3w?K = wK;A1 +wK;A2 + wK;A3� QK , the cube3Yi=1 [wmin(Ai); wmax(Ai)] with 8><>: wmin(Ai) = (1� �)w?K + �wmin(Ai)wmax(Ai) = (1� �)w?K + �wmax(Ai)where wmin(Ai); wmax(Ai) are de�ned by (3.4).For 0 � � � 1 ; w?K satis�es the inequalitieswmin(Ai) � w?K � wmax(Ai) ; i = 1; : : : ; 3 (6.1)� J(X) = 12kX � w?Kk2 where w?K = (wK;Ai)i=1;::: ;3� V = 0BBBB@ 111 1CCCCA is a vector normal to PKWith these notations, the computation of wn+1K amounts to the following minimizationproblem: 8>>><>>>: Find wn+1K 2 PK \QK such thatJ(wn+1K ) = minX2PK\QK J(X) (6.2)



155This is a convex minimization problem which has a unique solution since PK \ QK 6= ;( the point X = (Xi)i=1;::: ;3 with Xi = �w?K ; i = 1; : : : ; 3; belongs to PK \ QK by (6.1)) .In order to solve the minimization problem (6.2), we dualize the constraint X 2 PK .We introduce the Lagrangian L de�ned in IR3 � IR byL(X;�) = J(X) + �( 3Xi=1Xi!� 3w?K) (6.3)Problem (6.2) is then equivalent to the following associated saddle point problem:8>>>><>>>>: Find the saddle point ( wn+1K ; � ) 2 QK � IR such thatL(wn+1K ; �) = minX2PK max�2IRL(X;�) = max�2IR minX2PK L(X;�) (6.4)To solve problem (6.4), we �rst solve, for any given � 2 IR , the minimization problem8>>><>>>: Find bX(�) 2 QK such thatL( bX(�); �) = minX2QK L(X;�) (6.5)We observe that w?K = (wK;Ai)i=1;::: ;3 2 PK ; so that < V;w?K >= 3w?K .The Lagrangian can therefore be written asL(X;�) = 12 �kX � w?Kk2 + 2� < V;X � w?K >	or L(X;�) = 12kX � (w?K � �V )k2 � �22 kV k2 (6.6)The minimization problem (6.5) is thus equivalent to minimizing the distance betweenw?K � �V and the cube QK ; the solution bX(�) is therefore given by the projection ofw?K � �V on QK : bX(�) = Proj(QK) (w?K � �V ).bX(�) can be obtained by truncation of the components of w?K � �V :8>>>>>>>>><>>>>>>>>>:
if w?K;Ai � � 2 [wmin(Ai); wmax(Ai)] then � bX(�)�i = w?K;Ai � �if w?K;Ai � � > wmax(Ai) then � bX(�)�i = wmax(Ai)if w?K;Ai � � < wmin(Ai) then � bX(�)�i = wmin(Ai) (6.7)



156To complete the solution of problem (6.4), we must now �nd the real number � whichmaximizes the real function � 7�! F (�) = L � bX(�); ��The desired limited vector wn+1K = (wn+1K;Ai)i=1;::: ;3 will then be given bywn+1K = bX(�) where � yields max�2IRF (�)To �nd the maximum of F , let us write its �rst and second derivatives:F 0(�) =< V; bX(�)� w?K >= 3Xi=1 �cXi(�)� w?K;Ai�F 00(�) = 3Xi=1 cXi0(�)where bX(�) is given by (6.7), so that8><>: if w?K;Ai � � 2 [wmin(Ai); wmax(Ai)] ; then bX 0(�) = �1otherwise; bX 0(�) = 0 :We therefore getF 00(�) = � card ni 2 f0; 1; : : : ; 3g=w?K;Ai � � 2 [wmin(Ai); wmax(Ai)]o � 0 :F is thus a continuous and di�erentiable, piecewise quadratic concave function.F 00 has 2 � 3 = 6 points of discontinuity which arise when bX(�) crosses a face of thecube QK .The function F is therefore unambiguously de�ned and readily available, so that onecan easily �nd the value � for which is attains its maximum.Fig.5.70 shows how the duality method works in the case of the slope limitation ofa variable w in the one-dimensional case (nv(K) = 2).ConclusionThe limitation process, for the slopes of the physical variables, reduces to the maxi-mization, for each element K of the grid, of a piecewise quadratic function of one realvariable, which is di�erentiable and easy to calculate; as the limitation is only activein the neighborhood of strong gradients or fronts of the vector of physical variables,it turns out to be a simple, relatively inexpensive part of the Ja�r�e-Kaddouri-Gowdadiscontinuous �nite element method.
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^Figure 5.70. Determination of wn+1K by the duality method in the one-dimensional case (nv(K) = 2)


