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ABSTRACT  We present a new finite volume version ([1],[2],[3]) of the 1-dimensional Lax-
Friedrichs and Nessyahu-Tadmor schemes ([5]) for nonlinear hyperbolic equations on unstructured
grids, and compare it to a recent discontinuous finite element method ([6],[23]) in the computation
of some typical test problems for compressible flows.

The non-oscillatory central difference scheme of Nessyahu and Tadmor, in which the resolution
of Riemann problems at the cell interfaces is by-passed thanks to the use of the staggered Lax-
Friedrichs scheme, is extended here to a two-step, two-dimensional non-oscillatory centered scheme
in finite volume formulation. The construction of the scheme rests on a finite volume extension of the
Lax-Friedrichs scheme, in which the finite volume cells are the barycentric cells constructed around
the nodes of an FEM triangulation, for even time steps, and some quadrilateral cells associated
with this triangulation, for odd time steps. Piecewise linear cell interpolants using least-squares
gradients combined with a van Leer-type slope limiting allow for an oscillation-free second-order
resolution.

The discontinuous finite element method consists of two steps. We first perform a finite element
computation which includes calculation of the fluxes across the edges of the triangular elements
using 1-D Riemann solvers with a modification to satisfy the entropy condition. We then proceed
to a truly multidimensional slope limitation performed on the physical variables.

Numerical applications to several test problems show the accuracy and stability of the finite volume

method.

1. Introduction

We present a new finite volume method for nonlinear hyperbolic systems on un-
structured triangular grids inspired by the Lax-Friedrichs and Nessyahu-Tadmor one-
dimensional difference schemes [5] , and compare it to a recent discontinuous finite
element method introduced by Jaffré, Kaddouri and Gowda ([6],[23]) in the computa-
tion of some typical two-dimensional test problems for compressible flows.
Discontinuous finite elements were first introduced independently, for the neutron trans-
port equation and applications to nuclear engineering, by Reed and Hill [7] and Lesaint
and Raviart [8], and then adapted to the equations of hydrodynamics and elasticity
([9],[10], [11],[12]) or even to such applications as the motion of a load on an ice layer
( [13], in joint work with P.Jamet ), reservoir simulation both without slope limiters
([14],[15]) and with limitation ([16],[17],[18]), and many other applications where they
proved to be very successful.

Numerical analysis of discontinuous finite element methods can be found e.g. in [§],
with improvements in [19] for scalar hyperbolic equations, and in [20].

In the finite element method used in this paper, the solution is approximated by discon-
tinuous piecewise linear polynomials; numerical fluxes are calculated, on the triangle

edges, at appropriate integration points through the use of one-dimensional Riemann
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solvers. To prevent spurious oscillations, we use a multidimensional version of van
Leer’s limiter borrowed from ([6],[23]).

Our finite volume method ([1],[2],[3],[4]) is a two-dimensional finite volume scheme
inspired by an elegant difference scheme proposed, for one-dimensional problems, by
Nessyahu and Tadmor [5], which is itself a high resolution non-oscillatory Godunov-
type method for hyperbolic systems of conservation laws constructed on the principle
of the staggered Lax-Friedrichs scheme.

It is decomposed in two time steps for second order accuracy in time, performed on
alternate, staggered grids, thus allowing a complete by-pass of the (usually expensive)
detailed exact or approximate solution of the local Riemann problems generated at the
cell interfaces, thanks to the use of staggered form of the Lax-Friedrichs scheme.

In [4], we have presented an extension of the Nessyahu-Tadmor difference scheme to

the simpler case of rectangular grids; several applications ( linear advection, Burgers’

equation, diffraction of a planar shock wave around a 90° corner for the Euler equations
[21] , Mach 3 wind tunnel with forward facing step [22]) showed the feasibility of the
method, which led to good results on regular grids without any mesh adaptation.

In ([1],[2],[3]), we had constructed a finite volume scheme for unstructured triangular

_grids inspired by the Lax-Friedrichs and Nessyahu-Tadmor one-dimensional difference
schemes; some numerical experiments ( Supersonic flow around a NACA 0012 airfoil,
supersonic flow around a double ellipse) showed the high accuracy of the method, but
did not provide a systematic comparison with an already well established method.

In this paper we attempt to present such a comparison, and introduce for that purpose
in section 3 the discontinuous finite element, second order accurate method recently
proposed, and successfully tested, by Jaffré, Kaddouri and Gowda ( [6],[23],]25]).
Notice that in this paper, we used Roe’s Riemann solver with an entropy correc-
tion recently proposed by Dubois and Mehlman, while the solvers used in references
([6],[23],[25]) are the Osher and Osher-Solomon solvers, respectively.

In section 2 we describe the mathematical modelling of the problem; in section 3 we give
a detailed presentation of the discontinuous finite element method of Jaffré, Kaddouri

and Gowda.
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In section 4, we present the first two authors’ construction [1], for unstructured trian-
gular grids, of a finite volume version of the staggered Lax-Friedrichs scheme, and then
describe their second order accurate non-oscillatory finite volume method [1] inspired
by the Nessyahu-Tadmor one-dimensional central difference scheme [5].

In section 5,we present applications to some typical test problems for supersonic flows
(supersonic flow past a blunt body;supersonic flow around a double ellipse [35] ).
Finally, section 6 is an appendix describing the solution of the projection problems

generated by the slope limitation process.

2. Mathematical modelling

2.1. Governing equations.
We consider the two-dimensional Euler equations for compressible flows, written

in conservation form as:

0 0 0
EU('Tayat) + %F(U(maya t)) + %G(U(Tayat)) =0 for ('Tayat) € x Ry (21)

where ) is a closed bounded domain of the plane,

p pu pv
U u? + UV
v=| " 1. rn=| ™7 |, evn=| * (2.2)
pv UV pv® +p
pE (pE +p)u (pE + p)v

p is the density, V= (u,v) is the velocity vector, E is the total energy by unit mass,

and p is the pressure. We assume that the fluid satisfies the perfect gas law :

1
p=(y=D(pE = gp(u* + %)) (2.3)
where ,the ratio of specific heats, is taken equal to 1.4 for air.

2.2. Boundary conditions :
In the sequel, we consider domains of computation related to external flows around

bodies; in fig.5.53 the body is represented by a double-ellipse [40] which limits the
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F1GURE 5.53. Boundary of the computational domain
domain of computation by its wall 'y . In order to deal with a bounded computational
domain, a second (artificial) farfield boundary I', UT's is introduced, with I's = TLUT'%.

The flow is assumed to be uniform at infinity, and we prescribe

L v cosa 1
P = 1, o — y Poo =
sino YME,

(2.4)

where « is the angle of attack and M., denotes the free-stream Mach number.
On the wall I'g we use the usual "no normal velocity” condition: Vi = 0, where
7t € R? is the outer normal vector to I'p.

Finally, for unsteady calculations, an initial flow is prescribed :

3. A two-dimensional discontinuous finite element method

In this section, we give a detailed description of the discontinuous finite element
method proposed by Jaffré, Kaddouri and Gowda ( [6], [23],[25]).
We consider here a ( P, )-piecewise linear spatial discretization based on unstruc-

tured triangular elements ( the number of elements sharing a common node is not
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constant); the computational domain 2 is subdivided into triangles by a triangulation

Th -

Ne
Q:UKi ; Ki € T,

i=1
where the K;’s are the elements of the triangulation, IV, is the total number of triangles,
and h is the largest diameter of all elements.
Let U; ; = U(A;;;t) denote the value of the dependent variable vector U, at time t and
at the j'" vertex A;; of element K; € T, (i=1,... ,N.;5 =1,2,3).
The degrees of freedom are the components of the vector U at the vertices of all elements

of the triangulation (fig. 5.54). Let W denote the approximation space formed by

FIGURE 5.54. Degrees of freedom of the triangulation

the piecewise continuous functions which are linear on each triangle K; € T, ( Pi-
approximation).
The vector U of conservative variables p, pu, pv, pE is approximated by functions in
the product space W* and the corresponding approximations will again be denoted by
p, pu, pv, pE, elements of W, for simplicity.
For each element K;(i = 1,... ,N.) and each node A;; € K; there exists a unique basis
or shape function (¢;,;) with the property

1 ifj=k

Vi=1,... ,N., ¢;i(A:) =

0 otherwise

The functions (p;,)!=)"" % form a basis of the approximation space W.

In the present formulation we shall use an explicit Euler time discretization.
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We now consider a Galerkin discontinuous finite element approximation, which proceeds
from a variational formulation of the Euler equations.

Multiplying (2.1) by a shape function ¢;; and integrating by parts the terms with
spatial derivatives, we obtain the following system for the piecewise linear vector U™+

of approximate dependent variables to be computed at time £"*':

f Find U™ e W*

urtt —gn 0p; 09
. Z p..dS = ny 2t " ~ | d 1
/K ;S /K (F(U) oo G ) as  (3.1)

; ./;)Ki (ﬁ(Un) ) ’n) ;i do

ny |
where At" = ¢"*! — " is the time step, U™ = U(z,y;t") € W*, and 71 = ' is

Ty

the unit outer normal ( directed towards the exterior of K;).

In (3.1), FU") -5 = F(U") -n, + G(U")- n, = F, is the (outward) numerical flux
across an edge A of 0K;; it will be computed with the help of an approximate Riemann
solver for the Riemann problem generated, in the direction normal to the edge A, by
the limits of the values of the dependent variables on both sides of A as one tends to
A along 7i.

In this paper, we have used Roe’s Riemann solver ([28],[24],[34]) with an entropic

correction due to Dubois and Mehlman [24].

REMARQUE 5.1. Replacing the above approzimation space by the space of piecewise
constant functions ( constant on each triangle K; € T, ) reduces (3.1) to the equation
governing the standard finite volume scheme

yrtt _pyn .
i T Ti F(U™) - -0. K, )
/m- A dS + axi((U) n)da 0, K;eTh

3.1. Numerical integration.

To complete the description of the spatial discretization, we must specify the
quadrature formulas which will be used to compute the integrals appearing in (3.1).
Numerical experiments for scalar equation ([25],[18],[6]) have suggested the following

quadrature techniques.
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In equation (3.1) the terms containing the spatial derivatives are computed with the

help of the values at the centroid M of mesh K; :

ny 095 n 3%,1) N < =y 09;; 7 99 >
'/Kl(F(U it G ) dS ~ Area(K) (F(UD) 2 (M) + G(U)) 222 (0)

where M, is the centroid of K; and U? is the average value of U" on K; :

Jj=1

Lo | =

since U" is linear on K;.
For the integral associated with the outward flux
/8K (F(U”) . n) @j.ido = A;}:Ki '/A (F(U") n) ;i do
we use either the values at the midpoints of the edges A, or the values at both Gauss
points of each edge

15t choice :

/A (FU") ) pyudo = 1(A) - FL (UL U,) - 0,.(M)

where 1(A) and M denote the length and midpoint of edge A, respectively, and

.ﬁ’;(Ul, U,) is the numerical flux across edge A which separates the states U, and
U,, obtained by taking the limits of U along the normal to A at M; this numerical flux
will be computed with Roe’s Riemann solver, as described below.

ond ) sice

/A (FU™) - n) p;ido =~ @ (1 (UL U (G 4(Gh) + F (U, U,) (Ga)pi(Go))

where GG, G, are the Gauss points of edge A.
Numerical experiments have shown that the computation at the edge midpoint (1St
choice) is sufficient.

For the first integral in (3.1) (time derivative) we use the values at the three vertices:

ntl _ Area(K;) U™ —UR 4
/ U U (pjidS ~ rea( Z) Ki A Ki A
K Atn ’ 3 Atn

by the properties of ¢; ;.
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3.2. Multidimensional slope limitation.

We will describe a multidimensional extension of a slope limitation procedure which
has been successfully used for scalar equations ([17],[6],[23] ).
When dealing with the Euler equations, it has been widely recognized that one should
limit the physical variables p, u, v, p rather than the conservative variables

p, pu, pv, pk.
Let U™ € W* denote the solution previously computed at time t", and U* € W* the
solution predicted at ¢"*! by solving system (3.1).
We want to modify U* and obtain a corrected vector of conservative variables U™ !
by the following procedure.
For each triangle K; € T, , let

o wi o, =w, (4;): i=1,...,3 be the value of wy, at node i,
1 3
o Wy = 3 ZwK’Ai , the mean value of w), in element K,

i=1

e T(A) be the set of element K € T}, such that vertex A € K (Fig. 5.55).

/S

FIGURE 5.55. The set T'(A)

For each element K, we compute the mean values of the conservative variables, noted

e, (pu) }(, (pv) }(, (pE) ;(,Which are simply the arithmetic means of these variables at
the three vertices of K.

In order to obtain a conservative scheme, the vectors U™ and U* must have the same
mean value on each element.

We then compute the mean values of the physical variables, o, Tk, U, P) ( the mean

value pj, of the density has already been calculated).
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For pressure we also take the arithmetic mean of p at the vertices of K.

In contrast, the mean value of the velocity components u, v are defined by

@, = Pk e ()i (3.2)
Pk PK

For the components of momentum at time "', we will use the following value

S DI T/ S o R (5.

Observe that these values are different from @}, , U}, as they use the nodal values of
density and velocity instead of those of the momentum.

Formulas (3.2)-(3.3) have been chosen to ensure existence and uniqueness of the solution
of the minimisation problems to be defined below.

For every node A of the grid we compute the minimum and maximum of the mean

values of the physical variables in the elements sharing node A :

wmzn(A) = Kren”}&) wKu Wmaz (A) = KIS’IQJ(),(CI) wK7 fOI' w = pP,u,v,p (34)

The slopes of the physical variables p,u,v,p will be limited, in this order, in the fol-
lowing way.

Let V denote the vector (p,u,v,p)” of physical variables.

In each element K with vertices A; (1 =1,...,3), Vle is defined by :

( (@) ot =wy, for w=p, p, and (pfw)z+1 = @;, for w=u, v,
(i) Fori=1,...,3, w=p, u, v, p:
3 (1 — )Wj + QWi (A) S WL, < (1 — )W + @Wmea(A), 0<a <1,
(iii) For w = p, u, v, p the distance in R® between w"*' = (Wi} )izy,.. 3
{ and w* = (W 4,)i=1,...,3 is minimum .

The computation of V‘ZH from V}; thus amounts to four projection problems in R?
( one for each physical variable ); as (i) defines a plane, and (ii) a cube, we look for the

projection, on their intersection, of the corresponding variable

wr = (w;(,Ai)izl,...,S-
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Condition (i) allows for mass conservation, (ii) limits the variation of p, u, v, p ( in

that order), and (iii) guarantees uniqueness of the solution.

pn+1

un+1

After computing the vector of physical variables V"' = we return to the
,UnJr]

pn+1
conservative variables according to

n+1
P

pn+1 un+1
Un+] —

pn+1,Un+1

e 30" [y ]

The slope limitation therefore requires the solution of a series of local minimization

n+1

problems in 3 dimensional space, with the constraints (i) and (ii).

These projection problems can easily be solved by duality, as will be shown in the
appendix.

In order to ensure the existence of a solution for the projection problems, we have to

make sure that the intersection of the corresponding plane and cube is not empty. For

1 = n+l _ —%
= px and py',, = py for

density and pressure, it is easily seen that if we let p"+
i =1,2,3, conditions (i) and (ii) are then satisfied, so that the relevant intersection is
not empty.
As regards the velocity components, we can easily check, applying definitions (3.2) and
(3.3), that if we let uf') =u}) (i = 1,2,3), then
3 —*
Zp%ﬁ_} = %(Z ) p)

K

*

= (pu)g
with a similar result for the second velocity component.
The parameter « controls the extent of the slope limitation process. For a = 0, we get
the most stringent limitation: the solution V™! (' and therefore U™ ) is piecewise
constant, thus reducing the method to the usual ( spatially) first order accurate scheme.
In our numerical experiments, we have usually chosen o = 0.5, a value which led to

optimal results in the scalar case (cf. [25],[23],[6]).
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For one-dimensional problems, the limitation procedure reduces to the usual van Leer

solpe limitation ([26],[41]).

3.3. The numerical scheme.

The above description of the Jaffré-Kaddouri-Gowda discontinuous finite element
method can be summarized within the frame of a two-step scheme.
Assuming for simplicity that we use an explicit Euler time discretization, let U” € W*
be the solution obtained at time ¢ = ¢". In the first step (predictor), we compute an
approximation U* € W* of the solution at time ¢t"*!. This predictor step consists in a
finite element calculation, but features the use of Riemann solvers.
In the second step, which can be viewed as a correction step, we limit the vector U* to
obtain an approximate solution U"*!.

1 - Predictor step : Finite element calculation

f Compute U* € W* such that

u--un 0p;i 0p;.;
P — () i ny 9Pj.i
/Ki NI /K( (U™ 2 + QU™ 7 ) ds

_ /wﬂ (F(U") . ’n) pjido (3.5)

for each K; € T, and <,0j,¢(j =1,2,3)

2 - Limitation step

This step limits the variation range of components of the vector of physical variables

*

p

u
V* = obtained in the predictor step. It leads to V"' and then U"*', the final

v*

p*
approximation of the vector of conservative variables at time ¢"*!,
We observe that the two steps are independent from each other, and the limitation pro-

cess is distinct from the flux calculation, contributing to the originality of the method.

3.4. Riemann solver.
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In this subsection we present a short description of Roe’s approximate Riemann
solver, which will be used here in conjunction with an entropic correction recently
proposed by Dubois and Mehlman ([24]) described below.

Let A be an edge in the grid, and 724 a unit vector normal to A; let F,,(U) be the
flux in the direction of 7 4, with U € W* . Let U; and U, be the limiting values of U
obtained when approaching the edge A along 7i 4 from the upwind and downwind side,
respectively, with respect to the direction of 7i 4; for the description of Roe’s numerical
flux, we will provisionally assume that U; and U, are two constant states along each
side of A ( while we will later use limits of piecewise linear functions, see below).

Let F '4(U;,U,.) denote the numerical flux of a specific Riemann solver. It satisfies the

consistency relation ﬁ’A(U, U)=F,(U), foral U € W*, where

F(U) =mFU) 4+ n,GU) = FU).7i. (3.6)

. . Ny cos 6 0 L
n="ny= = e R, (n #0)
Ty sin 6
4 u . . . .
v = denotes the velocity, we can write it in the edge-normal to edge local

v

basis formed by 71 and a unit vector @ along edge A (fig.5.56) as

o u, = ucosf+ vsinf
V, = . (3.7)

v, = —usinf + v cosf

We can then define an invertible linear transformation 7" in R* :

1 0 0 0 1 0 0 0
0 cos@ sinf O 1 0 cosf® —sinf O
T = , T— = (3.8)
0 —sinf cosf 0 0 sinf cos6 O
0 0 0 1 0 0 0 1
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FIGURE 5.56. Local basis for the calculation of the flux

p
An arbitrary state vector U = pf/" is then mapped into U:
poE
p
U-—T-U=| pv, |=0. (3.9)
pE
The flux in the direction 72 4
F,(U)=nF{U)+n,GU).
can be written in the edge-normal to edge local basis as
pu pv PUn
+ pu? uv )1, + pcosf
F,(U) = cosb pp + sind P = (o) P ,
) + pv? v) U, + psinf
p p+p (pv)un +p (3.10)
(PE + p)u (PE + p)v (pH)uy,

where H = E + % is the specific total enthalpy ( per unit mass).
. S T
It can be easily verified that if U = TU = (p, oV, pE) , then

F,(U)=T* o F(U) (3.11)
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where

F(U) = (ptin, p + pti2, punvn, (pE + p)u,) " (3.12)

This relation allows for the computation of F,(U) with the help of the first (vector)
component F of the flux F only, without resorting to G.

This leads to a reduction of the computing time, since the calculation of the matri-
ces T and T+! and the flux component F requires fewer operations than the calculation
of the global flux Fj, from its original definition.

In the sequel, the flux calculations will therefore be performed for n, =1, ny, =0

(corresponding to 6 =0 ).

3.5. Numerical flux of Roe’s original scheme.

In Roe’s scheme for the one-dimensional Euler equations U; + F(U), = 0, one
computes the exact solution of the linearized Riemann problem defined at the cell
interface x; 41 between cells C; and C;,; with corresponding constant states U;, U;;1, by

OF(U) _

replacing the Jacobian matrix =5 = A(U), computed at T;y 1, by a special constant

matrix A, 1= A(U;,Ui4q) called Roe’ average matrix, with the properties

(i) F(Ui+1) - F(Uz) = Az’—}—%(Ui—}—l - Ui)
(ii) For U; = Uy, = U , we have A(U,U) = A(U) = OF(U)

oU

(iii) The eigenvalues ) of A are real and its eigenvectors r;, are linearly independant
(k=1,...,3).

It can be shown that AH% = A(U;,U;4,) is in fact equal to A(U)H% = 81:;;?) |U:U+

1
2
(see [27] ) where UH% = (Pip1, Uiy s, _H%) is a specific average of the vectors U;, U; 4

called Roe’s average, defined by

(uy/p)i + (uy/P)isa i (H\/p)i + (H\/D)it1

VR R Vi +\/Pirt

In the present context of the two-dimensional Fuler equations, and owing to the pre-

Pi+ly = \/PiPit1, Uipl =

vious remarks at the end of section 3.4, we will consider two adjacents states U, U,
separated by a triangle edge A. Roe’s average matrix will be given by ( see [27] for a

description of this matrix)

: _OF(U)

A(Ul, Ur) — Whj:f]ﬁ (313)



127

where Roe’s average vector
Uy, = (ﬁ,ﬂ,’lj,ﬁ) (314)

is defined by

and for a = u, vor H

(3.15)

a1\/pi+ar~/pr
VPi++/Pr

Is]

\

The Roe averages of the remaining dependent variables E, p and ¢ are then computed

from p, %, v, H :

Properties (i),(ii) above now read
(i) F(U) - F(U,)=AU,U,)(U, -U)
(i) A(UU) =dF(U) = 258
We write A\, (U, U, )(k = 1,...,4) and r(U,;, U,) for the eigenvalues and eigenvec-
tors of A(U,,U,) (see [27]) and let AU = U, — U,.

Since the 7 (U;, U,) are linearly independent, there exists (ay)p—1....4 € R* such that

ANU=U,-U = Zakrk U, U (3.16)
the numerical flux of Roe’s scheme can then be written ([28],[29])
(U, U,) = 5(F(T) + F(U,)) ~ 5d(U;,0)) (317)
where d(U;,U,) is the viscous term, given by
d(U,,U,) = | AU, U)|(U, — U,) Zamk (U, U | (U, U) (3.18)

Unfortunately, Roe’s scheme does not satisfy an entropy inegality ([27],[29],[30]) and
allows non-physical expansion shocks in the vicinity of sonic points ([21]), violating

the Lax-Oleinik entropy condition; it is not an E-scheme ([43],[30],[27] ), so that the
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numerical solution does not necessarily converge to the (unique) entropy solution of the
original nonlinear initial value problem.

To modify Roe’s scheme so as to satisfy an entropy inequality, several ideas have
been proposed (e.g. [29],[32],[33],[44],[45]), which are based on the representation of
sonic rarefaction waves, and are equivalent to introducing a certain amount of artificial
viscosity, the exact amount depending on a parameter which requires a case-dependent
adjustment.

Dubois and Mehlman ([24]) have recently introduced a parameter-free modifica-
tion of Roe’s scheme based on nonlinear Hermite interpolation of an approximate flux

function, leading to an entropic scheme.

3.6. Dubois-Mehlman’s entropic correction of Roe’s scheme.

This approach is based on a nonlinear modification of the flux function defined by
(3.17) , in the neighbourhood of sonic points only.

For a given state U we write U — U; and U, — U, as linear combinations of the
eigenvectors.

Denoting by (wp)g=1... 4 and (a)r—1... 4 the characteristic variables associated’

yens

with U — U, and U, — U, respectively, we have

4

U-U = > wy-r(U,U,) (3.19)
k=1
4

U ~U = Y a,-m(U,U,) (3.20)
k=1

Following [29], we define the intermediate states

(

Uo = Ul
U, = Upii +ayre(U,U,) (3.21)
U4 = Ur

\

Let S denote the set of sonic indices

n this quasi one-dimensional context ( due to the remarks following (3.12)) we can assume the existence
of characteristic variables as in the purely one-dimensional case (cf. [27] Vol 1T p.155).
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We now introduce the Dubois-Mehlman modified flux function, parameterized by the

states U; and U,

de(Ul,UT;U) = F(U)) —l—ﬁ:gk(wk) -r(U;,U,) (3.23)

k=1
where the wj s are the characteristic variables introduced in (3.19), and the g,s are

parameterized by the state (U;);—1.._ 4, and defined as follows:

.....

if k¢S then  gp(w) = X\ (U,U,) -w  Yw

pr(w) for 0 < w < oy (3.24)
Me(U,U) -w - forw ¢ (0, )

where p,(w) is the unique Hermite polynomial of degree 3 determined by the conditions

pk(o) =0, pk(ak) = )\k(Ul,Ur) - O, Plk(o) = >\k(UM1), plk(Oék) = Ak(Uk)

We recall that A\, (U;) denotes the k-th eigenvalue of the jacobian matrix A(U) = 3£
calculated at the intermediate state U;, while A\, (U,,U,) is the k-th eigenvalue of the
Roe matrix A(U;, U,). It can be verified that away from sonic points, the modified flux

F%™ coincides with Roe’s linearized flux:
FYU) = F(U) + AU, U,)(U - U) (3.25)

If the original physical flux F(U) is at least continuously differentiable and if A(U;,U,)

is a continuous function of U; and U,., F’ dm js 5 continuous function of U, U, and U.

LEMMA 3.1.

The Riemann problem

(U AFM™ (U, U, U)
o -0
ot " oz

4 U z<0
U(z;0) =

U x>0

has a unique entropy solution.

See [24] for the proofs of lemmas 3.1 and 3.2.
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LEMMA 3.2. For k € S, the Hermite polynomial p;(w) is defined by

pr(w) = apw® + byw® + cw |

with
 M(Uk) + Me(Ugia) = 20U, UL)
ap - B}
ay,
k a
Cp = )\k(UkLl)

The modified numerical flur can be written as

FIU, ) =FO)+ Y a MULT) -+ S gi(w)) i (3.26)

kES A(U1,U-)<0 kes

where

* —Ak(Uku) s Oy
w,, =

- 3)\19 - 2)\k(UkL1) - )\k(Uk) + \/(3>\k - )‘k(Ukll) - Ak(Uk))z - Ak(UkLl) ) Ak&UQ})

is the argument of the unique extremum of g,(w) in the interval 0 < w < «y, and A

in (3.27) denotes A\ (U, U,.).

Description of the eigenvectors 7., (U;, U,) and characteristic variables oy,

To complete our description of the Dubois-Mehlman entropy correction to Roe’s scheme,

we must define the eigenvectors r,,(U;, U,.) and coefficients «;, appearing in (3.19),(3.20),
(3.27).

From [28], we have

1 0 1 1
u—=c 0 u u+c
ry = , P2 = , T3 = R , Ty =
v [ v v

1 . . ~
H —uc 02 E(uz—HJZ) H +ue
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For w = p, pu, pv et pE, we set Aw = w, — w;. Equation (3.20) defines a linear system

in the 4 unknowns «ay,...,ay. For ¥ # 0 , the unique solution is given by
( v—1 N . c cu 1,
o = S5 A(pE)-1A(pv)—(u+ — | Apu)+ +5@ +0%) ) Ap
2¢? v—1 y—1 2

1
ay = 5A(pfu) —Ap

u 1
o3 = (1 + %) Ap — EA('O“) — 2

1 _
ar = on+ = (A(pu) —ulp)

If v =0, as is indeterminate. One can set it equal to 0, in which case there exists a
unique (o) g—1.... 4 € R* satisfying (3.20), given by

~

2

( v—1 N C c-u u
= A(pE) — — A — A
Y { (PE) <u+’y—1> (”“)+<v—1+2> ”}
Qy = 0
m 1
as; = (1 + :) Ap— =A(pu) — 2
c c
1 .
| o = ozl—i-é(A(pu)—uAp)

The Dubois-Mehlman correction has proved to be useful for explicit schemes, but dif-
ficult to implement for implicit schemes, owing to the difficulty of the linearization

process.

3.7. Note on the implementation of the time discretization.
In this paper, we limit our applications to the computation of stationary solutions,

and will therefore use a local time stepping process described below.
Area(K;)

we can write (3.5) as
At;ﬂ :|Ki€77L’

Introducing the diagonal matrix ¥ = diag{

follows:

Find U* € W* such that

(3.28)
Ur—U" = -3 R(UM)
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where R(U™) is the residual defined from the right-hand side of (3.5)

'mwﬂzé&@ﬁm'@¢mw"LKFWﬂ%%+GWﬂ%%>&M&%)

The scheme (3.28) is stable under an appropriate CF L — condition.
Let p denote the CFL — number ( assumed to be uniform on the whole grid). For
each element K; € 7, we note

e 1; : mean value, in element K, of the characteristic speed corresponding to the

92 ) —
Vi =\/U; +U; +¢

e h; : ratio of the area of K; by its perimeter

largest eigenvalue

_ Area(K;)
"L

The local time step is then chosen so that
no
At < p—. (3.30)
Vi
In most cases we have used a CFL — number p = 0.5.
In the numerical experiments presented in this paper, we study the distribution
on the body B (fig.1) and the isolines of the Mach number M, the pressure p, or the
pressure coefficient C,, defined by

Cp = 1130.;]) (3.31)

a Moo ‘/oo2
S0 Vel

To study the convergence of the method, we will present graphs of the I,-norm of the

residual R(U™) as a function of the number of iterations.

4. Finite volume methods on unstructured triangular grids

4.1. A two-dimensional finite volume method inspired by the Lax-Friedrichs scheme.

We consider the solution U(z,y,t) of the two-dimensional Euler equations (2.1)-

(2.2)

U, + F(U), + G(U), =0 (4.1)
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in some region Q of the z — y plane. In one space dimension [5], both the staggered
form of the Lax-Friedrichs scheme and the Nessyahu-Tadmor scheme use two alternate
grids {z;} and {z;41,»} at odd and even time steps, respectively. In two dimensions,
we proceed in a similar way, starting from an arbitrary FEM triangular grid 7, such

that

¢
Q= U T and TNT' = 1 one vertex for any T,T" € Ty (4.2)
TeTh
one side

The nodes of the FEM triangulation are the vertices a; of the triangles, and in this
subsection the degrees of freedom are the vector values of U at the nodes, which can
also be considered as cell average values for the cell C; centered at each individual node
a; (defined below).

For the first grid associated with our finite volume extension of the Lax-Friedrichs
scheme, the nodes are the vertices a; of T, while the finite volume cells are the barycen-
tric cells C; associated with these nodes, obtained by joining the midpoints M;; of
the sides originating in a, to the centroids G;; of the triangles of 7, which meet at a;

(fig.5.57).

For the second grid the nodes are the midpoints M;; of the sides of the original
triangulation, while the cells are the quadrilaterals of the form L;; = a,G;;a;G; 11
having M;; as midpoint of one diagonal, obtained by joining two adjacent nodes a;, a;
to the centroids of the two triangles of 7, of which a;a; is a side.

Let U = Ul(a;,t") and U = U(M;;,t"™") denote the nodal (or cell average)

vector values in the first and second grid at time ¢ = t" and ¢ = "', respectively (n

even).

For the barycentric cell C;, let 7/}

j

to G;;M;; and M;;G, ;1 respectively, pointing out of cell C; (fig.5.58) , and for the

and 77 denote the unit outer normal vectors

quadrilateral cell L;;, let @', ... ,ﬁfj be the normal vectors to the cell edges a;G;.

Gi;a;, a;G; ;41 and G, j11a4, respectively, pointing out of cell L;; (fig.5.59).
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FIGURE 5.57. Barycentric cells around nodes a;, a;; quadrilateral cell a;G;ja;Gi ji1-

We must also define the elementary flux vectors

— — .
— — -1 -9
Mij = / vdo = |G Mi;|7;; + | My;Gi jia |05 (4.3)
T;=Gi; M;;G; j41
and
- — -
_ =1 =4
0 = laiGijlri; + |aiGi il (4.4)
- — — |
_ =2 =3
Gji = |(le,‘j|’n,ij + |ajGi7j+1|nij.
We write furthermore
k k
v, n,.
gh=| """ fork=12, @t=| "] fork=1,...,4
vk nk.
1JYy 3y
. Nija = Oiju
and 7;; = , 0= . (4.5)
Nijy Oijy

An advantage of using a finite volume formulation where the degrees of freedom are
values of the unknown function at the triangulation vertices lies in the possibility to

couple (4.1) with an elliptic equation. This can be very convenient in the case of a
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FIGURE 5.58. Barycentric cell boundary element I';; = G;;M;; U MGy 544
scalar conservation law where

f(u) = wi h(u)

9(w) = w; h(u)

(4.6)

i.e. when (4.1) can be written as u, + div(W h(u)) = 0 with W = (wy,w,)” and
W stems from an elliptic problem. This situation arises in the study of polyphase
flows in porous media, where fluid mechanical and thermodynamical considerations are
combined, leading to coupled hyperbolic and elliptic equations [42].

The first step of the two-dimensional finite volume extension of the Lax-Friedrichs
scheme is defined by integrating (4.1) on the 3-dimensional cell L;; x [¢", "], assuming
that the (barycentric) cell values U at the vertices a; of the original triangulation are

known:

tn+1

) / (U, + F(U), + G(U),)dzdy dt = 0. (4.7)

t
Applying the divergence theorem and observing that L;; = (L;; N C;) U (L;; N C;) we
get
/ U(xayatn+1)dA - U('Tayatn)dA - U(.’E,y,tn)dA
L .

ij L;;NC; L;;NC;
gt

+[ /E)L__(F(U)nz+G(U)ny)dadt:o. (4.8)
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FIGURE 5.59. Quadrilateral cells Ls;.

Since U(z,t) is approximated by U in C;, U}' in C;, we can choose the approxi-
mation Uj" on 9L;; N C; and U} on 9L;; N C;, whence the first step of our finite volume

Lax-Friedrichs scheme:

A(LiUI = A(Li; 0 Cy) - UP — A(Li; N Cy) - U

2

We note that this approximation corresponds to choosing the approximate time deriva-

tive

A(L; N Cy) -UP + A(L;; N C;) -U?
E<U3+1_ ( J ) + ( J J) ]>/At. (4_10)

U, =
t A(Lyj)
For the second step we proceed similarly with the help of the barycentric cells C;:

A(C)UM? — > A(Ly nC)USH

j neighbour of ¢

+AL > (PUE M. + GUE )nygy) =0 (4.11)

j neighbour of ¢

where the value of U(z,y,t""") on the boundary 0C; = U I';; is approximated
locally, on 9C; N L;; = Ty, by U™ (ie. the applgonxeilrgrlll;zr O\fallue of U™ on the
quadrilateral cell L;;. We thus alternately define an approximate solution U{]’.H which
is piecewise constant on the quadrilateral cells L;;, at odd time steps (n = 0,2,...),

and a solution U;"*? constant on the barycentric cells C;, at even time steps.
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4.2. A two-dimensional finite volume inspired by the Nessyahu-Tadmor scheme.

The construction of a finite volume method inspired by [5] implies the computation
of gradients of piecewise linear functions, and the limitation of the gradients. To sim-
plify the presentation, we shall describe our finite volume method in the case of scalar
conservation laws in this subsection. The extension to the vector case is obtained from
a field by field decomposition (see, e.g. [47] ,[46],[48]).
We consider a scalar nonlinear conservation equation
(4.17) w + F(u), + gu), = 0

At the beginning of the (n+ 1) time step (n even), we have obtained approximate
barycentric cell values u!" (a; : a vertex of 7;). We must now, in order to follow the
van Leer MUSCL approach used by Nessyahu and Tadmor, construct a piecewise linear
profile on the barycentric cells C; this can be achieved as follows.

We first construct a piecewise linear approximant on each triangle 7' of the original
triangulation, continuous on the whole computational domain €2, with the help of the
barycentric cell/nodal values u}: if T' € 7T, is a triangle with vertices a;,, (j = 1,2, 3),

we construct p; € P! such that

pT(a‘ij) = UZ (.7 = 17 27 3)
pr(x,y) is easily obtained from the barycentric coordinates of (x,y) with respect to the
vertices of T":

pr(7) = Z )‘j(f)u}l

j=1

where the vertices of T have been relabelled 1,2,3 or ay,ay,a3, and ¥ = (z,y) € T.
The gradient of the (barycentric) cellwise piecewise linear interpolant L(z,y,t™)

to be defined will now be chosen (as e.g. in [39] p.28), for cell C;, as the arithmetic

average of the gradients of the polynomials pr for all triangles T' such that a; € T": on
C; we take
L=Li(z,y,t") = ui + (z =) P + (y —9:)Q  (,9) €Ci (4.12)
where
pr

K2

= Average {grad pr}. (4.13)
Qr) e
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Contrary to what prevailed in the one-dimensional case, where the average value
uj of the piecewise linear interpolant L; (z,1™) was also its value at the node z;, we can
no longer identify the average value of the piecewise linear interpolant (4.12) , on cell
C;, with its nodal value u at the “center” a; of C;, since a; need not be the centroid
of C;, and ﬁ Je, Li(z,y,t")dA # uj in general.

The new cell values at "1 and ¢"*2 will nevertheless again be defined by formulas
similar to (4.9) (first step), and (4.11) (second step), obtained by integrating (4.1’) on
L;; x [t",t"*!] for the first step, and on C; x [t", "] for the second step:

A(Lj;)ui™! = numerical approximation of /L u(z,y, t" ") dA (4.14)

A(C;)u** = numerical approximation of / u(z,y, t"?)dA. (4.15)
JC;

For the first step of our scheme we write

n41

/t: /L(Ut + f(u)y + g(u),)dAdt =0 (4.16)

which leads to

/ u(z,y,t")dA = L(z,y,t")dA + L(z,y,t")dA
Lij L;;NC; L;;NC;
n+41

_ /t: /E)Lij (f (w)n, + g(u)n,)dodt. (4.17)

n+1

The numerical approximation of the right-hand side, and (4.14), will thus lead to u;;

which will be our cell value for the quadrilateral cell L;;.

4.3. Approximation of fLiani L(z,y,t™)dA.

L(z,y,t") is the piecewise linear function defined, on cell C;, by (4.12) . Let
A;A;;B;; A; j+1 be the points of the plane defined by the linear function L; on C; which
correspond to the four vertices of L;; N C; = [a;G;;M;;G,; j1+1] where [...] denotes the
quadrilateral generated by the corresponding vertices (fig. 5.60).

The integral of L on L;; N C; is equal to the total volume of the two prisms
with triangular base a;G;;M;; A;A;;B;; and a;M;;G; j11A;B;;A; j+1, constructed on the
triangular bases L}, N C; and L{, N C; where L}, = triangle (a;Gy;a;) and Li; =

triangle (a;a;G; j1+1); 7, £ stand for right, left (for an observer at a;).
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FIGURE 5.60. Prismatic regions for the computation of fLiani L(z,y,t")dA.

The volume of the first prism, for instance, is given by
1
1
=3 Area (Lj; N Ci){u; +ui + (zq,, — =) P

1
= Area (Lj; N Cy){u} + g(.TGiJ. + xu,, — 2x;) P

1

where

Area (Lj; N C;) = Area triangle (a;G; M)

1

= 5{(35&,- —23) (Y, — ¥i) — (@, — 23) (Was;, —vi) b (4.19)

Similarly, the volume of the second prism is
Vol{aiMiij_,_l AiBiin,j+1} = Area(ij N Cz) .
1 1
{u? + g(xMij + TG, 41 — 2‘771)13: + g(yMij + YGi 1 — 2yl)} (4'20)
Summing (4.18) and (4.20), we get
1 1
L;;NC; 3 3
1
+ gArea(Lj; N Co{(za;; — ) P + (yay; — y) Q7' (4.21)

1
+ gArea‘(ij N Ci){(‘TGi,jJrl - ml)Pzn + (yGi,jJrl - yl)Q?}
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with

1
Area(ij N Cl) = 5{($Mij - xi)(yGi,j+1 - yz) - (wGi,j+1 - xl)(yM” - yz)} (422)
4.4. Approximation of fLiij L(z,y,t™)dA.

Proceeding in the same way we find

1 1
/L ., L(z,y,t")dA = Area(L;; N Cy){u] + 3@y — 23) B+ o (yar; — y;)Q7 }
JLi;Ne;

1 T n n

+ gArea(L;; N Ci{(zay; — 2) P} + (Yo, — y;)QF } (4.23)
1 n n

+ gArea(ij N Cj){(mGi,j+1 - 'Tj)Pj/ + (yGi,J’+1 - U])Q]}

where

Area(Lj; N Cy) = %{(JJMU — ;) (Was; — i) — (@ay — )Yy —y;) ) (4.24)

4.5. Approximation of [/ [, {f(u)ne + g(u)n,}dodt.

This is achieved with the midpoint rule for integration with respect to time:

n41

/t: /BLi- (f(w)n, + g(u)n,)dodt
= A /aLi,{f(“(x’W"H/?))"z + glulw,y, "/)n, fdo  (4.25)

where a first order Taylor expansion is used for u(z,y,t"+/?); using (4.1’) we write

(e, 707) 2 iy, ) = S e, £ (0,2
+9'(u(w,y, t"))uy (w,y,8")}  (4.26)

On L;;NC; we have chosen u, = P" and u,, = Q7, but we must find an approximate
value of u(z,y,t") on the line segments a;G;; and a;G; ;41 (and similarly on a;G;; and
a;G; j41). One possible choice consists in choosing the value of L(z,y,t"), our linear

interpolant, at the midpoints of these segments; we then take, for any (z,y) on a;G;;:

1 1
U(IE, Y, tn) = IU‘? + i(mGi]‘ - xl)Pzn + §(yGi]‘ - yz)Q? = u2i7Gij (427)

thus defining our value uy, ¢, - for the side a;G;; of L;;.
In view of (4.26), we can now define an approximate average value of u(z,y, t"*/?)

along the side a;G;; to be used in (4.25):

uaj(;li/]? = uai,Gij - T{fl(uai,Gij)‘P’i + gl(uai,Gij)Qi } (428)
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Introducing these values in (4.25), we finally get

g+l

A7 / (u)n, + g(u)n, }dodt (4.29)

HL”

= f(a n+1/2) ; “la; G7.7| + f(u n+1/2 )”z;z |la; G J+1|

e, Gy /' ije az Gij+1

+f( “+1/2) 7]7‘ |CL G17| +f( "+1/2 ) ‘I]’I‘ |a’ G,7+1|

a;,Gij Gi 41

n+1/2 n+1/2
+g( aj{) 171; |CL G27|+g( ai/”“) zyu |G‘G77+1|

n+1/2

n+1/2) 2
Gt

Gij /" iy

+ q(“ |(1 G7]| + Q(“ )nzyu |(1 G7 ]+1|

4.6. First step of the finite volume extension of the Nessyahu-Tadmor scheme.
Collecting our approximations (4.21),(4.23),(4.29 ) of the three terms appearing in
the R.H.S. of (4.17) and taking (4.14) into account, we obtain the following approxi-

mation uZH for the first (odd) time step of our scheme:

Area(Ly;)ul' = R.H.S.(4.21) + R.H.S.(4.23) — At- {R.H.S.(4.29)}  (4.30)

where u”+1

can be considered as a cell value for cell L;; at time t"*', or as a nodal
value at the midpoint M;;, at time ¢"*'.
In preparation for the second (even) time step, we now construct a piecewise linear

approximation of u on the quadrilaterals L;;:

u(z,y, ") = L© (z,y, ") = w5 + (2 — z 0, )P"+1 + (Y —yms;) n(4.31)

1] z]

where the slopes P"H, Q"+1 can be computed as follows.

First we construct a piecewise linear approximate function defined on the triangles
T € T, of the original triangulation. On triangle T' = a;a;a;, we can use for that
purpose the newly obtained values u;]; ! at the midpoints of the sides of 7. We then
compute the average of the slopes of the linear interpolants in the two triangles T, T" €

Th sharing a;a; as a common side (fig. 5.59), and use these averages in (4.31).

4.7. Second step of the finite volume Nessyahu-Tadmor scheme.

The second step is obtained by integrating (4.1’) on the cylindric region C; x
[t"1 ¢72], using the same finite volume approach as for the first step, to define a cell
average value u}" on cell C;:

Area(Cy)ult? — / (z,y,t" ") dzdy
Li;NC;

7 nelghbour of i
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= —At Z / {f (u(z,y, ")) v, + g(ulz, y, ")) v, Yo (4.32)
j neighbour of i 7 Lii
where u(z,y,t""") is approximated, on L;; N C;, by the piecewise linear interpolant
(4.31). Its integral on L;; N C; is computed as described in section 4.3.
To obtain an approximate value of u(z,y,t""%/?) we use a Taylor expansion with
respect to time combined with (4.1’), and we subdivide the cell-boundary element I';;

into G“MM U Mi]‘Gz’7j+‘l . On G“MM (resp. Mz’jGi,j+])7 U(.’E, Y, t) is then approximated

by its value of the midpoint of the line segment G;; M;; (resp. M;;G; j11).

4.8. Approximation of the slopes.

In order to compute the gradient (P/",Q") of the piecewise linear interpolant
L(z,y,t") for the cell C;, we must first compute the gradient of the first degree polyno-
mials Py for all triangles T' € T, such that a; € T. Although we could then in principle
directly take the average of the gradients of the polynomials P;, obtained as described
at the beginning of section 4.2, we shall consider here a least-squares technique (cf.
[40]). For simplicity, we shall describe it for the case of triangular (finite volume) cells.

Let T be a triangle with centroid G, and let T}, 7 = 1,2,3 be the neighbouring
triangles, with centroids G;(j = 1,...,3) (fig.5.61); assume the values of the numerical
approximation of the solution u at the four points {G,G;}7_, are known at time ¢”,
equal to ufp, uf, (j =1,...,3) (these values can be considered as cell values playing for
the triangular cells T, T} the same role as u, uj; for the cells Cj, Ly;).

The least-squares gradient (g?a\c_i/u)’% = (a7, b7) for triangle T will then be chosen
such as to minimize the functional

3 1
I= Z{u’} + GG - (grad u)p — ug, }? (4.33)

=1

where
(grad u)y = (af, bF)
The minimum is obtained when

o1 oI
dal  Obl

and is shown in [40] to lead to the following least-squares gradient:

=0 (4.34)

3
2

(ug, —ur)(ze; — 2a)
1

J

1S
ar = 5 Z(ij - yG)
j=1
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FI1GURE 5.61. Computation of the least-squares gradient for a triangu-

lar cell T.
13 -
- Slaw, — ), ) S, ), ) (435)
=1 =1
- 13 >
by = 52(1'0 —16)* Y (uf, — uf)(ye, — ya)
=1 j=1
1 3
- 3o, — ), — ) Y0y o, ) (43
i=1 =t

where the denominator

w

(za, —xG)2Z Ya, —ya)? Z Ta;, — za¢) (Yo, —yG)]2 (4.37)

1 j=1 j=1

3

D =
j=

is strictly positive for any non-degenerated triangle.

For the barycentric cells C; or the quadrilateral cells L;;, the procedure is quite

ijs
similar to the one described above for triangular cells. Alternately, for a barycentric cell
C; with center a;, we could first compute the least squares gradient grad u|r;, = (a7, , 5%)
of each neighbouring triangle T; (such that a; € T};), and then take the cell gradient
grad u|c, = average{grad u|r, }, with a similar procedure for a quadrilateral cell L;;.
Unfortunately, this procedure does not preserve monotonicity of the data in the
usual van Leer sense described below, and allows the creation of local extremas between

the nodes; this phenomenon may lead to (or amplify already existing ) spurious oscil-

lations, with the associated loss of stability and convergence difficulties in the case of



144

steady flows. We have therefore introduced some slope limitation in the computation

of the gradients.

4.8.1. Slope limitation.

To ensure the stability of the scheme and prevent the generation of oscillations in
regions of strong gradients, we must perform a slope correction. Following van Leer’s
approach ([26], [25]), in which the value at some interface point z; /> (in the one dimen-
sional case) must fall within the range of values spanned by the adjacent grid averages,
u;11 and w;q, we limit the slopes of the linear interpolant L defined by (4.12) (resp.
L) defined by (4.31) to ensure that its value at the boundary points Gij, Mij, G ja
of OC; (resp. at the vertices a;,a;, Gi;, G j+1 of OL;;) are bounded by the values at the

cell center u? (resp. u?j“) and the value u] at the corresponding neighbouring node a;

(vesp uj'f], and u}'T}; at the adjacent quadrilateral cell“midpoints” M; ;11 and M; j1).

The limitation procedure is implemented on each cell as follows. Let

(grad u); = (P;, Qz)T

denote the gradient for cell i, where P, = u, , Q; = u, at node i. If u satisfies the van

Leer requirement we choose

P/™ = minmod {P;
; min o 1P}
4

min; ¢ as) [Pj]-(common sign of all values P;)

if all the values P; (j € N(4)) have the same sign

0 otherwise
\

where N (i) is the set of nodes j adjacent to node i. If u does not satisfy the van Leer
requirement, we set Pi™ = ( . The computation of Q™ is done in the same manner.

For quadrilateral cells L;; we proceed in a similar way.

5. Numerical Experiments

In order to assess the relative advantages of both methods , we applied them to several
typical test problems; we present results for

e Euler flow around a Double-ellipse at supersonic regime.
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e Supersonic flow past a blunt body at 0° of angle of attack and M, = 2

Both methods, which are second-order accurate and non-oscillatory thanks to the use
of limiters, have been applied on the same grids, to compute the steady flows by sta-
tionarization, with the help of grid adaptation to improve the resolution. For the grid
adaptation, we have used a procedure developed by M.J.Castro Diaz and F.Hecht at
INRIA (France) ([37],[38]).For the finite volume method, the extension of section 4.2 to
two-dimensional systems of conservation laws is achieved by the procedure described
in ([46],[47],[48]).

On the whole, the finite volume version of the Nessyahu-Tadmor scheme has proved
to be less time-consuming and significantly more accurate, for given grids. . The dis-
continuous finite element method required more computing time to reach convergence.
Nevertheless, both methods seem to provide a reliable alternative to other well estab-
lished schemes, and lend themselves to an extension to three-dimensional problems for
unstructured grids.

Example 1 Supersonic flow past a double-ellipse at 20° of angle of attack and

M, =2
For this problem inspired by ([35]), but with Mach number M., = 2 instead of the
range of hypersonic Mach numbers considered there, and 20° of angle of attack, the

geometry is a double ellipse ([35]), defined by

(

~

<0 <

z>0 z=0.025
0<z<0.016

z2<0 z = —0.015

\ \
For this steady flow problem we used the same three grids with both methods.We
present the results obtained with the initial and final grid only.

For the initial mesh (1558 vertices), both methods give fairly comparable results;
notice that the C), curves can be nearly superposed, which is an indication that both
methods are indeed doing some reasonable calculation. The same is true for the pressure
contours of both methods, with perhaps a very small advantage for our finite volume

method (FV) which gives slightly sharper shocks.
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The final grid (5055 vertices) shows a clear advantage for the FV method, which gives
a nearly perfect shock resolution with very smooth contours, while the DFE method
shows a serious breach of monotonicity in the lower part of the bow shock.

As was the case with the initial grid, the C}, curves can again be nearly exactly super-
posed.

The major difference between the two methods appears to lie in the convergence history
and computing times. Fig. 5.64 shows a clear advantage for our finite volume method,
for the initial grid (1558 vertices). Computing times for the initial grid (CPU : 3564 for
FV and 48288 for DFE) confirm the advantage of the proposed Finite Volume Method.

FIGURE 5.62. Euler flow around a double ellipse. Original grid,

barycentric cells C; and quadrilateral cells L;;
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FIGURE 5.63. Double ellipse : Initial grid (1558 vertices) and solution
(pressure contours) (FV, middle) and (DFE, right)

Example 2 Supersonic flow past a blunt body at 0° of angle of attack. see ([4]).
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FIGURE 5.64. Residual for initial grid (1558 vertices)(1=FV,2=DFE)
and C, body cuts (FV, middle) and (DFE, right) (Double ellipse)

FIGURE 5.65. Double ellipse : Final grid (5055 vertices) and solution

(pressure contours) (FV, middle) and (DFE, right)
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This is a standard test problem which has been considered by many authors. The
problem definition is borrowed from [4].The Mach number is M., = 2.0 with an inci-
dence a@ = 0°. The initial and final grid had 2737 and 7039 nodes, respectively. Fig.5.68
and 5.69 show the corresponding pressure contours. Our results, obtained with grid
adaptation ([37],[38]), sustain comparison with other results for which grid adaptation

has also been used.

RESIDUAL RESIDUAL
T T

log10(Residual)
| .
log10(Residual)

0 500 1000 1500 2000 2500 0 1000 2000 3000 4000 5000 6000 7000 8000
Iterations

FIGURE 5.67. Convergence histories for Finite Volume scheme (left)

and Discontinuous finite element method (right) (Blunt body)

FIGURE 5.68. Initial grid and solution (pressure contours) FV (middle)

and DFE (right)

Fig. 5.67 , which presents the residuals for both methods, shows a strong advantage
in favour of our finite volume method, considering the results on fig.5.68 and 5.69, a
fact which is confirmed by table 5.5: both the CPU-times and the speed of convergence

are substantially better.
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FIGURE 5.69. Final grid and solution (pressure contours) FV (middle)

and DFE (right)

Method | CPU | nodes | elements Solution
F.V 2701 | 2737 5244 without adaptation

D.F.EM | 11700 | 2737 5244 without adaptation
F.V 16905 | 7039 13801 with adaptation

D.F.E.M | 46886 | 7039 13801 with adaptation

TABLE 5.5. Characteristics of F.V and D.F.EM ( Initial and
Grids, Blunt Body)

Final
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This test case displays the robustness and the accuracy of the finite volume method,
given the fact that the discontinuous finite element method is already an excellent and
well established method.
Concluding remarks
The examples presented here suggest that the finite volume method proposed by the
authors is capable of a very high resolution, with a clear advantage, as compared
with the discontinuous finite element method studied here, at least at the level of
the convergence histories, computing times, smoothness of the pressure contours, and
monotonicity enforcement.
We are presently adapting the finite volume method to a mixed finite volume/Galerkin
finite element method for the Navier-Stokes equations ([49]) where the convective part
of the Navier-Stokes equations are treated with the finite volume method presented
here while the diffusive term will be handled by a finite element method.

In another paper ([50],[51]) we consider the particular case of the linear equation
u; + div(uV) = 0 where V = (Vl(ac,y),%(ac,y))T with div V = 0; we obtain an L*
bound for the numerical solution, from which we deduct the existence of a subsequence
{ur, at,} which converges weakly to some function u in L>®(R?* x R")-weak. Using
another set of inequalities, we obtain a total variation-type bound, slightly weaker
than a classical bound on the total variation of the numerical solution, called a bound
on the “weighted total variation”, from which we are then able to show that the above

weak limit function v is indeed a weak solution of u, + div(uV) = 0.
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6. APPENDIX

Solution of the projection problem for the slope limitation

The slope limitation process consists in solving a series of local minimization prob-
lems of dimension nv(K) = 3, with two constraints.
In this appendix we will show how these minimization problems can be solved; we
follow the description given in [6] for the scalar case.
For w = p, u, v, p: we denote by
e Py, the plane with equation

3
—%

E X, =30y = wi 4, + Wk 4, + Wk 4,

i=1

e (Qx, the cube

2 in(4;) = (1-a)wkg + awnpin(Ai
H [wmin(A4;), wmazx(A;)] with wmin(4;) (1= Qe+ otmin ()
i=1 wmaz(4;) = (1 — @)Wk + awa.(A;)
where Wi, (A;), Wnae (A;) are defined by (3.4).

For 0 < o <1, wy satisfies the inequalities

wmin(4;) <wy <wmaz(A;),i=1,...,3 (6.1)
1
e J(X)= §||X — wi||* where w}, = (Wi a,)i=1.... 3
1
e V=1 1 | is a vector normal to Pg
1

With these notations, the computation of w™ amounts to the following minimization

problem:

Find wit' € Px N Qg such that

J(wE) = min_ J(X)

XePkNQk
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This is a convex minimization problem which has a unique solution since P N Qg # 0
( the point X = (X;);—;
) .

In order to solve the minimization problem (6.2), we dualize the constraint X € Py.

3 with X; = wy.,i=1,...,3, belongs to Px N Qx by (6.1)

......

We introduce the Lagrangian L defined in R* x R by

L(X,p) = J(X {(ZX) } (6.3)

Problem (6.2) is then equivalent to the following associated saddle point problem:

Find the saddle point (wj™, A ) € Qx x R such that

(6.4)

L(wt', \) = min max L(X, ) = max mlnLXu
( ) XePr ,eR ( ) pelR X€Px ( )

To solve problem (6.4), we first solve, for any given ;1 € R , the minimization problem

Find X (1) € Qx such that

(6.5)
L(X(p),n) = min L(X, )
We observe that wj, = (wgk a,)i=1... 3 € Pk,s0 that < V,wj >= 3w}
The Lagrangian can therefore be written as
(X, ) = 5 {IX = wiclP +2u < V. X — wj >}
or
L(X —lX— *—VQ—'M—QVQ 6.6
(X, 1) = SIIX = (Wi = uV)I" = SV (6.6)

The minimization problem (6.5) is thus equivalent to minimizing the distance between
— pV and the cube Q; the solution X (u) is therefore given by the projection of
—pV on Qi X(n) =Projq,) (wi —uV).

X (1) can be obtained by truncation of the components of w¥ — puV:

(i Wy 4, — 1 € [lwmin(4;),wmaz(4;)] then (X'(u)) = Wk A, — M

if wi 4, —p > wmaz(A;) then ()?(u)) = wmaz(A;) (6.7)

(3

\ if wy 4, — p < wmin(4;) then ()Z'(,u))l = wmin(A;)
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To complete the solution of problem (6.4), we must now find the real number A which

maximizes the real function

pr— F(p) = L(X(p), )

The desired limited vector wi'' = (w}gfji),;:l _____ 3 will then be given by

wit' = X(\) where X yields max F(u)
ue]R

To find the maximum of F', let us write its first and second derivatives:

3
F'(p) =<V, X(p) — wj >= Z (Xi(:u) - 7”;(7Ai)
i=1

3

—1

F'(p) =YX (n)

i=1
where X (1) is given by (6.7), so that
if w4, — p € [wmin(A;), wmaz(A;)], then X'(p) =1
otherwise, X'(u) =0.

We therefore get
F"(n) = — card {z €{0,1,... .3} /w4, —p € [wmin(Ai),wmax(Ai)]} <0.

F' is thus a continuous and differentiable, piecewise quadratic concave function.
F" has 2 x 3 = 6 points of discontinuity which arise when X (1) crosses a face of the
cube Qk.
The function F' is therefore unambiguously defined and readily available, so that one
can easily find the value A for which is attains its maximum.

Fig.5.70 shows how the duality method works in the case of the slope limitation of
a variable w in the one-dimensional case (nv(K) = 2).
Conclusion
The limitation process, for the slopes of the physical variables, reduces to the maxi-
mization, for each element K of the grid, of a piecewise quadratic function of one real
variable, which is differentiable and easy to calculate; as the limitation is only active
in the neighborhood of strong gradients or fronts of the vector of physical variables,
it turns out to be a simple, relatively inexpensive part of the Jaffré-Kaddouri-Gowda

discontinuous finite element method.
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