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Abstract. Hydrodynamical models are suitable to describe carrier transport in submicron
semiconductor devices. These models have the form of nonlinear systems of hyperbolic conservation
laws with source terms, coupled with Poisson’s equation. In this article we examine the suitability
of a high resolution centered numerical scheme for the solution of the hyperbolic part of these
extended models, in one space dimension. Because of the lack of physically significant exact analytical
solutions, the method is assessed against a benchmark for the system of compressible, unsteady Euler
equations with source terms, which has an exact solution; the latter is shown to be nearly identical
to the numerical one. The method is then used to solve the extended hydrodynamical model (EM)
based on the maximum entropy closure recently introduced by Anile, Romano, and Russo, simulating
a ballistic diode n+ − n − n+, which models a metal oxide semiconductor field effect transistor
(MOSFET) channel. Results are presented for the reduced- and full-equation EM formulation at
steady state, for an initially discontinuous electron density at the junctions. Transient results show
the evolution of highly nonlinear waves emanating from the neighborhood of the junctions.
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1. Introduction. Enhanced functional integration in modern electron devices
requires an accurate modeling of energy transport in semiconductors in order to de-
scribe high-field phenomena such as hot-electron propagation, impact ionization, and
heat generation in the bulk material. Furthermore, when using compound semi-
conductors for high frequency applications, usually one deals with multivalley band
structures and in these cases the transfer of carriers from one valley to the other
must also be modeled. The standard drift-diffusion models cannot cope with high-
field phenomena because they do not comprise energy as a dynamical variable. Also
they do not incorporate dynamical transfer of carriers from one valley to the other
and this renders them ill-suited for simulating time dependent high frequency phe-
nomena. Therefore, generalizations of the drift-diffusion equations have been sought
which would incorporate energy as a dynamical variable and which also could treat
time dependent high frequency phenomena. Because of their mathematical similarity
to the equations of compressible fluid flow, these models are called hydrodynamical
models. Semiconductor hydrodynamical models are obtained from the infinite hier-
archy of moment equations of the semiclassical Boltzmann transport equation (BTE)
by a suitable truncation procedure. This requires making suitable assumptions on (i)
choosing the appropriate moments, (ii) closing the hierarchy of moment equations by
finding appropriate expressions for the N + 1 order moment in terms of the previous
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ones, and (iii) modeling the production terms on the right-hand side of the moment
equations which arise from the moments of the collision terms in the BTE.

Various closure assumptions have been made for the semiconductor transport
moment systems, leading to various classes of hydrodynamical models, e.g., [12, 9, 19,
18]. However, these various closure assumptions are, at best, only phenomenological
and lack a consistent physical and mathematical justification.

Lately a closure assumption based on the maximum entropy principle of extended
thermodynamics [28, 24] or, equivalently, the method of exponential closures [21] has
been applied, in the parabolic band approximation, to the semiconductor moment
equations, leading to a semiconductor hydrodynamical model free from phenomeno-
logical assumptions and enjoying important mathematical properties such as hyper-
bolicity [5, 4, 6, 8].

With this closure the distribution function used to calculate the higher order
moments is assumed to be the one which maximizes the entropy under the constraints
of the given set of moments. The resulting constitutive equations for various moments
have been compared with the results obtained by Monte Carlo (MC) simulations in
[7, 29] and are very encouraging in support of the maximum entropy ansatz. In these
models the production terms are modeled by means of a fitting of the MC data for
both homogeneous and inhomogeneous doped semiconductors.

1.1. Previous work on steady-state model integrations. Apart from the
usual balance equations for carrier density, momentum, and energy, these extended
models (EMs) comprise evolution equations for the heat flux and shear stress. The
resulting system is hyperbolic in a suitable domain of the space of variables.

In the stationary case, by neglecting the viscous stresses and linearizing the heat
flux equation for small temperature gradients (Maxwellian iteration) one obtains an
extension of the Fourier law which includes also a convective term, which we call
the Anile and Pennisi (AP) model [5]. When the convective term in the constitutive
equation for the heat flow is (incorrectly) neglected, one obtains the model of Blotek-
jaer [12] and Baccarani and Wordeman [9] (BBW), which is often used in industrial
simulation studies. Gardner, Jerome, and Rose [16] and Gardner [17] numerically inte-
grated the BBW model for a benchmark case study (1-dimensional (1D) quasiballistic
n+ − n − n+ diode). They discretized the system of equations by using either cen-
tral differences (if the flow is everywhere subsonic) or the second upwind method (for
transonic flow). The discretized system is then linearized by using Newton’s method
with a damping factor. In this way Gardner [17] was able to show evidence for an
electron shock wave in the diode. A method similar to Gardner’s was used by Anile,
Maccora, and Pidatella [3] in order to solve the AP model with viscosity included.
Gardner’s results were also recovered within their approach. A similar approach has
been used by Benvenuti, Coughran, and Pinto [10] in order to solve coupled thermal
hydrodynamical models, using a Galerkin-type formulation.

Another approach which has been used in order to find the steady state for the
BBW or AP model (in 1D and 2D) is that of using an artificial time method and mixed
finite element space discretization. The ensuing time dependent numerical solutions
are evolved until steady state is reached [27].

1.2. Previous work on time dependent calculations. The above approaches
have dealt with the steady-state system of equations. For several practical applications
one has to account for dynamic processes like self-heating of the device, coupling with
mechanical effects, etc. This requires that at least the time derivatives in the particle
and energy balance equations be reinstated. For recent advanced applications, such
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as microwave power generation and optoelectronics, the remaining time derivatives in
the momentum and energy-flux equations have to be taken into account.

Numerical solutions of various unsteady semiconductor hydrodynamical models
have been presented in various articles. The hyperbolic part of the simpler BBW
model coincides with the Euler hydrodynamical equations; shock capturing schemes
have been adopted for its solution [15], achieving the stationary solutions as the limit
of the time dependent one.

Lately Gruzinskis et al. [18] have applied finite difference methods to solve their
hydrodynamical formulation which has a phenomenological closure and obtained wave-
like solutions.

Blokhin and Iordanovich [11] have presented numerical solutions for the AP model
using a flux vector splitting method, marching the algorithm to steady state.

Similar results have been presented in [31], again for the AP equations, using the
Nessyahu–Tadmor (NT) scheme [32] for the convective step, which has the advantage
over upwind-based schemes that it does not require the knowledge of the characteristic
speeds of the system, which are not known analytically in this case. In their paper
Romano and Russo [31] recovered the results obtained by Fatemi, Jerome, and Osher
[15] in the case of the BBW model. Further work using the NT scheme was carried
out by Anile, Romano, and Russo [7] in order to obtain the steady state for the 1D
quasiballistic diode by marching in time the unsteady algorithm.

Since there are no known nontrivial analytical solutions of the EMs against which
to compare the numerical results, confidence on the numerical results is enhanced
by utilizing other unrelated numerical schemes or by solving mathematically similar
problems with known solutions from other disciplines. This motivated recent work on
kinetic schemes [2] (which gave results identical to those obtained with the NT scheme,
although at a higher computational cost) as well as the work presented in this article.

2. Rationale for the current numerical approach. Our intention is to ul-
timately perform accurate multidimensional calculations of the full time dependent
EMs equations to simulate the behavior of realistic devices (bipolar junction transistor
(BJT), MOSFET, resonant diodes, etc.) in both transient and steady-state regimes.
In this context accuracy means being able to capture small scale wave features (e.g.,
related to Gunn-type oscillations), as well as the bulk behavior. In this article we have
considered the case of a 1D quasiballistic n+−n−n+ diode, which is used as a bench-
mark problem for models of submicron electron devices, since the salient features of
its behavior are understood. The modeling of a realistic device of this kind because of
the discontinuous doping profile introduces strong gradients in the initial electron den-
sity at the junctions. The subsequent evolution of the system gives rise to nonlinear
waves, before reaching a steady state. This implies that we must use methods which
do not suffer from excess numerical diffusion or spurious oscillations in the vicinity of
steep gradients. Also, although there are “source terms,” the conservation properties
of the hyperbolic left-hand side must be maintained. These requirements point us to
the high resolution family of methods (see, for example, the textbooks by Hirsch [22],
LeVeque [26], or Toro [33]) and in particular to those who lend themselves to be com-
bined readily with computational techniques like adaptive mesh refinement (AMR)
and modern computer architectures (such as massively parallel computers (MPP)).
A typical method of this family offers a conservative discretization, low numerical
diffusion, and no spurious oscillations near steep gradients.

High resolution upwind methods are most suitable for the numerical solution of
systems of hyperbolic conservation laws because they introduce characteristic informa-
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tion (regarding the local directionality of the flow) in the evaluation of the numerical
fluxes. A great number of upwind high resolution schemes use the solution of the
Riemann problem to evaluate the intercell fluxes. However, when the solution of the
Riemann problem is not known, it is possible to construct centered schemes which do
not compromise the qualities of the high resolution family, albeit at a small loss of
“sharpness” of the solution.

The solution is updated by evaluating a finite volume formula derived by consid-
ering the integral form of the conservation laws. In particular, for a 1D system of
the form

Ut + F(U)x = 0,(2.1)

where U and F(U) are the vectors of the conserved variables and the fluxes, respec-
tively, and the equivalent integral formulation∮

[Udx+ F(U)dt] = 0,(2.2)

the resulting update formula is (see [34])

Un+1
i = Un

i +
∆t

∆x
[Fi−1/2 − Fi+1/2],(2.3)

where Un+1
i and Un

i are the solutions at the next and current time-levels, n + 1
and n, respectively. Fi−1/2, Fi+1/2 are the numerical fluxes1 at the interfaces of the
computational cells of the discretized space; see Figure 2.1. For a given cell width,
∆x, and timestep, ∆t, the values of the numerical fluxes need to be evaluated in
formula (2.3) in order to compute the conserved variables at the next time-level.

To this end centered schemes can be constructed using a nonlinear combination
of a good second (or higher) order scheme with a first order monotone scheme.
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Fig. 2.1. Geometrical representation of the finite volume update formula.

2.1. The slope limiter centered scheme. The centered method we use for
the calculations presented in this article, namely the slope limiter centered (SLIC)
scheme [33], uses a version of the second order MUSCL–Hancock [36] (where MUSCL
stands for monotone upstream-centered scheme for conservation laws) and the first-
order centered (FORCE) scheme [33]. Since the scheme has been presented elsewhere,
we summarize below only its main points, and in particular the ones necessary for
our discussion.

1The numerical fluxes are approximations to the physical fluxes.
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The MUSCL–Hancock approach achieves a second order extension of Godunov’s
first order scheme by reconstructing the data as piecewise linear functions in every
cell. The left and right cell boundary extrapolated values for cell i

UL
i = Un

i − 1

2
∆i, UR

i = Un
i +

1

2
∆i

(where ∆i is a slope vector), are evolved in time by half a timestep as linear combi-
nations of the conserved variables and the fluxes:

ULnew
i = UL

i +
1

2

∆t

∆x
[F(UL

i )− F(UR
i )],

URnew
i = UR

i +
1

2

∆t

∆x
[F(UL

i )− F(UR
i )].

However, the intercell fluxes are evaluated using the FORCE scheme, instead of using
the solution of the Riemann problem. FORCE is a result of a combination of the Lax–
Friedrichs and the Richtmyer schemes (see [33] and references therein). In particular,
the flux at the interface of two states UL, UR is

F force
i+1/2 ≡ F force

i+1/2(UL, UR) = 0.5
[
FLF
i+1/2(UL, UR) + FRi

i+1/2(UL, UR)
]
.(2.4)

In the above expressions, the first order Lax–Friedrichs flux, FLF , is given by

FLF
i+1/2 ≡ FLF

i+1/2(UL, UR) = 0.5 [F (UL) + F (UR)] + 0.5
∆x

∆t
[UL + UR].

The second order Richtmyer scheme (which computes a numerical flux by first defining
an intemediate state) is

URi
i+1/2 ≡ URi

i+1/2(UL, UR) = 0.5(UL + UR) + 0.5
∆t

∆x
[F (UL)− F (UR)],

setting FRi = F (URi
i+1/2).

The resulting scheme is second order accurate in space and time, so to avoid
spurious oscillations in the vicinity of steep gradients, the slopes ∆i are replaced
by limited slopes ∆̄i, using slope limiter functions. For a detailed exposition of the
scheme, the slope limiter functions, and validation problems, see the textbook by
Toro [33].

An advantage of the scheme is that every flux component is “limited” indepen-
dently, using the appropriate conserved variable. This is of paramount importance
because normally a single function is used to limit all components; since there is no
formal theory on the selection of these functions, this can compromise the perfor-
mance of the scheme, especially if one flux is continuous at a point in space and time,
while another is discontinuous at the same point. Even if a suitable global function
is empirically found, this will have to be changed if the equations are altered.

From the above discussion it is evident that once a skeleton algorithm for the
scheme is coded, any system of hyperbolic conservation laws can be solved simply by
typing the vectors of the conserved variables and the fluxes. For our purposes this is
very important because the effects of altering the terms in the conservation laws on the
physics of the problem can be readily investigated. For example, in this article we solve
the full as well as the reduced EM semiconductor equations; see the following sections.

Also, because the scheme uses a conventional finite volume update formula on a
conventional computational mesh, it can be implemented in existing computer pro-
gram for 2D extensions with or without source terms, as explained in the next section.



1538 A. M. ANILE, N. NIKIFORAKIS, AND R. M. PIDATELLA

2.2. Fractional steps. The equations for our problem are of the form

∂U

∂t
+

∂F(U)

∂x
= S(U),(2.5)

coupled with the Poisson equation

∂2Φ

∂x2 = S1.(2.6)

We adopt the method of fractional steps to evaluate (2.5) and (2.6), where the homo-
geneous hyperbolic part

∂U

∂t
+

∂F

∂U
= 0

is solved using SLIC (with initial and boundary conditions as specified for the complete
system), and then we evaluate the remaining ordinary differential equation

∂U

∂t
= S(U)

and the Poisson equation (2.6) using conventional techniques (e.g., Runge–Kutta and
tridiagonal matrix solver). Calling R the relaxation step operator, C the convection
step operator, and P the Poisson operator, and assuming that the numerical schemes
used are at least second order accurate, a Strang splitting [30] which maintains this
level of accuracy is

Un+1 = R(∆t/2)P (∆t/2)C(∆t)P (∆t/2)R(∆t/2)Un.

The accuracy of this splitting and the performance of SLIC for arbitrary source-term
driven flow is evaluated using a combustion problem which has an exact solution.

3. A validation case study. The scheme has been validated in open literature
only for homogeneous systems of equations [33]. Before attempting to implement the
semiconductor equations, we validate the scheme against exact solutions of the com-
pressible unsteady Euler equations with source terms using a simplified combustion
problem described in some detail by Clarke [13]. It considers flow generated by the
action of source terms and is rich in wave structures similar to the ones anticipated
in the unsteady evolution of electron flow in semiconductor devices. The governing
equations are of the form

Ut + F(U)x = S(U),

where the vectors U, F(U), and S(U) are

U =




ρ

ρu

E


 , F(U) =




ρu

ρu2 + p

(E + p)u


 , S(U) =




G

F

H


 .(3.1)

The right-hand sides G, F , and H represent general sources of mass, momentum,
and energy, while the last two can be written as functions of G:

F = uG, H = (E + p/ρ)G.
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Fig. 3.1. Superimposed numerical (using SLIC) profiles for pressure and velocity at different
times, showing the evolution of the flow for the combustion problem formulated in section 3. An
expansion wave propagates to the left in a region of increasing pressure, while a compression wave
propagates to the right, eventually turning to a shock wave. Sonic flow is observed at the middle of
the domain.
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Fig. 3.2. Superimposed exact (line) and numerical (points) solutions using SLIC for the com-
bustion problem formulated in section 3.

An exact solution can be derived if the source term G is chosen to be such that

(aG/ρ) = Ḡ = const. in x < 0, and Ḡ = 0 in x > 0.

Part of the exact solution can be found in the paper by Clarke and Toro [14]. Initially
pressure is one atmosphere, u = 0, and a = a0, while the values of the constants are
a0 = 330m/sec and Ḡ = 1294301.0m/sec2.

Profiles of pressure and velocity at different times, mapping the evolution of the
flow, are shown in Figure 3.1; these results were obtained using SLIC. The source-
driven flow is isentropic up to the time of shock formation (t = (4a0)/((γ + 1)Ḡ)) at
the head of the wave propagating to the right. Sonic flow conditions appear at x = 0
at t = (4a0)/((3− γ)Ḡ).
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Salient features of interest in the context of scheme validation are the rising
pressure and the expansion wave in the left (source-filled) part of the domain and
the propagating pressure wave in the right part of the domain, which steepens to
form a shock wave. An interesting feature of this problem is that the flow “chokes” in
the middle of the domain when sonic conditions appear, as indicated by the velocity
curves which reach a limit at x = 0 and cusp to the right of the domain.

The accuracy of the method and the correct coupling of the hyperbolic and source-
term module is demonstrated in Figure 3.2, which shows superimposed exact (lines)
and numerical (points) results at t = 0.505 × 10−3; the two solutions are nearly
identical.

4. Semiconductor equations. The EMs which we consider here were formu-
lated by Anile, Romano, and Russo [7, 6]. The equations are of the form

Ut + F(U)x = S(U),

where the vectors U,F (U), and S(U) are

U =




n

nv

nv2 + 3p/m∗
2
3nv

2 + σ/m∗
nv3 + 5vp/m∗ + 2σv/m∗ + 2q/m∗



,(4.1)

F(U) =




nv

nv2 + p/m∗ + σ/m∗
nv3 + 5vp/m∗ + 2σv/m∗ + 2q/m∗
2
3nv

3 + 4
3vp/m∗ + 7

3vσ/m∗ + 8
15q/m∗

nv4 + 5p2/n(m∗)2 + 7σp/n(m∗)2 + 32
5 qv/m∗+

v2(8p/m∗ + 5σ/m∗) + 148
25 q2/m∗p



,(4.2)

S(U) =




0

−nv/τp − neE/m∗
−2(W −W0)/m∗τW − 2nevE/m∗
−1/m∗τσ(nv2 + σ/m∗)− 4nevE/3/m∗
−1/τq(nv3 + 5vp/m∗ + 2σv/m∗ + 2q/m∗)

−eE/m∗(3nv2 + 5p/m∗ + 2σ/m∗)



.(4.3)

Depending on the strength of the electric field, some of the nonlinear terms in the
deviation from local thermal equilibrium can be neglected, as well as the anisotropic
stresses. Thereby one obtains the following set of equations, which we refer to as the
reduced EM. In this case the vectors U, F(U), and S(U) are

U =




n

nv

3p/m∗
2q/m∗


 ,(4.4)
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F(U) =




nv

p/m∗
2q/m∗
5p2/n(m∗)2


 ,(4.5)

S(U) =




0

−nv/τp − neE/m∗
−2(W −W0)/m∗τW − 2nevE/m∗
−1/τq(2q/m∗)− 5eEp/(m∗)2


 .(4.6)

We remark that for the reduced model the interpretation of q is not that of heat
flux but of total energy flux.

In both cases we solve Poisson’s equation:

ε
∂2Φ

∂x2 = −e(ND −NA − n), E = −∂Φ

∂x
.(4.7)

Here n is the electron density, v is the electron velocity, p is the electron fluid
pressure, m∗ is the effective electron mass (taken to be 0.32 me), σ is the anisotropic
stress, q is the heat flux, τp is the relaxation time for momentum, τw is the relaxation
time for energy, τσ stands for anisotropic stresses, τq is the relaxation time for the
energy flux, e is the absolute value of the electron charge, E is the electric field, W is
the energy density, W = (1/2)m∗v2 + (3/2)KBT , and W0 is the thermal equilibrium
energy density.

In both cases the relaxation times are obtained as functions of energy W from
fitting to MC simulation for the same benchmark device (see [29]). The reduced
model resembles strongly the so-called energy-transport models obtained from the
semiclassical BTE by a Chapman–Enskog-like procedure [1].

5. A benchmark case study. As a test problem we consider a ballistic diode
n+ − n − n+, which models a MOSFET channel. The diode is made of silicon, and
the bulk temperature is supposed to be 300◦K. The n+ regions are 0.1µm long and
the channel length Lc we consider is 0.4µm. The doping profile is N+

D = 1. × 1018

cm−3, ND = 0.01× 1018 cm−3.
For the electron effective mass in the approximation of parabolic band we use

m∗ = 0.32 me, where me is the electron mass [35]. The silicon dielectric constant is
given by ε = εrε0, where εr =11.7 is the relative dielectric constant and ε0 = 8.85 ×
10−12F/m µm is the dielectric constant of vacuum.

The initial electron temperature is the lattice temperature T0 = 300◦K, and the
charges are at rest. A bias voltage of 1 volt is applied and this determines a charge
flux in the semiconductor.

Solutions for the full and the reduced formulation of the equations are shown in
this section. In both cases all of the variables are assumed to be initially constant
across the computational domain, save for the density of the electrons, which varies
discontinuously at the junctions

T (x, 0) = 300◦K, v(x, 0) = 0, q(x, 0) = 0, σ(x, 0) = 0.

The initial density profile is the doping profile, which is an inverted top hat. The
total length of the device is L = Lc + 0.2µm. Transmissive boundary conditions are
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Fig. 5.1. Numerical solutions using SLIC method solving the reduced model n+−n−n+ diode
formulation. The initial density distribution was discontinuous at the location of the junctions.

applied at both ends of the computational domain. The boundary conditions for the
Poisson’s equation are

eΦ(xleft) = KBT ln(ND/ni), eΦ(xright) = KBT ln(ND/ni) + eVbias,

where ni =1.45× 1010cm−3 is the intrinsic concentration.
The system is left to evolve, preserving time accuracy, until steady state is reached

(results shown at t = 5 picoseconds). The hyperbolic and the source terms are
allowed to evolve at different timesteps, which are, however, matched at the end of
every iteration. In this way the lower timestep of the source terms does not burden



A HIGH RESOLUTION SCHEME FOR SEMICONDUCTORS 1543

Fig. 5.2. SLIC method solving the full EM for zero bias (discontinuous initial density). After
the initial waves attenuate, velocity reaches a steady-state value of nearly zero (compared with the
initial magnitude of the waves), while there is evidence of a small value of current at the location
of the junctions.

the speed of execution of the complete code. It should be noted here that apart
from the efficiency issue, marching any method for hyperbolic conservation laws at a
timestep smaller than the optimum one, as dictated by the Courant–Friedrichs–Levy
(CFL) condition, significantly increases the truncation error of the calculation, which
manifests as excessive numerical diffusion.

The thickness of the junctions is of importance to the calculations because, as we
will demonstrate in a future communication, it affects some of the salient features in
the steady-state profiles of the primitive variables. In any case, the method allows
one to vary the junction thickness down to the width of a computational cell, i.e., a
genuine discontinuous profile of the initial density, which can match the true physical
width of a real device where the doping is obtained by epitaxial growth (and not
by ion diffusion). To the best of our knowledge, in all other published results the
junctions are smeared over several computational cells and therefore, the resulting
simulations apply only to the cases in which the initial profile is obtained by some
sort of diffusion.

5.1. Reduced EM calculations. The qualitative behavior of the solutions is
the same as for the “energy transport” models studied by several researchers [1, 27, 25]
under steady-state conditions. The new feature of our approach is that we use a
method suitable for hyperbolic systems with source terms, and in this particular
case study we evolved the solution as an unsteady problem marched to steady state,
preserving time as well as space accuracy. Therefore, our code could be used to
investigate the transient behavior of the system from an academic and an engineering
point of view. The results of the simulations are shown in Figure 5.1; the initial
doping profile is discontinuous at the junctions and the qualitative behavior of the
fields is what is expected on physical grounds. Similar results have been obtained
where the initial doping is smoothed with a convolution or hyperbolic tangent. In
these latter cases the results have been compared with those obtained by a direct
solution of the stationary equations using mixed finite elements [37]; the two sets of
results agree completely within computer arithmetic. It appears that the current is
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Fig. 5.3. SLIC method solving the full EM for 1 volt bias (discontinuous initial density);
steady-state profiles for various physical variables.

not exactly constant in the vicinity of the junctions. Previous studies have shown
that the magnitude of the error is related to the order of accuracy of the method and,
consequently, to the width of the computational cells, i.e., the error can be decreased
by using a method of higher order of accuracy. Alternatively, for a given order of
accuracy, the error can be decreased by increasing the number of computational cells.
The error apparent from Figure 5.1 is of the same order as for similar second order
methods and tends to vanish as the number of computational cells increases.

5.2. Full EM calculations. The full system of equations was integrated at
a zero and a finite-value bias. The former can be used to calculate the junction
capacitance and the voltage across the junction. Also, since the velocity and current
must go to zero, it also serves as an indication of the accuracy of the numerical model.
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Fig. 5.4. SLIC method solving the full EM for 1V bias (discontinuous initial density); transient
profiles for velocity and current.

The evolution of the field can be seen in Figure 5.2; electrons expand in both directions
of the channel, creating electron waves which reach steady state by t = 3 picoseconds.
There are no oscillations present in the velocity field, as was reported in the paper by
Fatemi, Jerome, and Osher [15]. There is, however, a residual value of current at the
location of the junctions, albeit of an order of magnitude smaller than the maximum
value reached during this test.

A bias of 1 volt was then applied across the device. Figure 5.3 shows the distri-
bution of the variables at steady state (t=5 picoseconds), while results as a function
of time are shown in Figure 5.4. The steady-state plots show no spurious oscillations
near steep gradients of the field variables. The small unphysical negative velocity usu-
ally observed in the region of the left junction is absent from these calculations. The
“bump” usually observed in the vicinity of the right junction is just visible, but not
pronounced; initial results suggest that its magnitude and spacial extent is a function
of the initial thickness of the junction (the wider the junction, the more pronounced
the bump is).

The time-evolution plots show that during the initial stages of the evolution, the
strong shock waves (emanating from the locations of the initial density discontinuities)
propagate from the junctions towards the middle of the channel. At approximately
t =1.5 they begin to attenuate; the wave propagating from the left adds to the constant
increase of the velocity in the middle of the channel, to form the “ramp” of the steady-
state velocity profile, while the one from the right contributes to the formation of the
pronounced “spike.” The evolution of the latter coincides with the formation of a spike
in the current distribution, which persists even after steady state has been reached.
If the transient behavior is to be studied in detail, the existence of these strong shock
waves necessitates the use of TVD methods.

These results compare favorably to the ones presented in the paper by Anile
and Muscato [4], where a direct solution of the steady-state equations is reached us-
ing a method similar to Gardner’s [17]. A similar calculation for the transients has
been performed by Jerome and Shu [23], albeit for a different model (Baccarani and
Wordeman [9]) using an essentially nonoscillatory (ENO) scheme. In both case stud-
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ies nonlinear waves arise, but detailed comparison is not meaningful because of the
substantial differences in the models.

By comparing the results of the reduced model and of the full model with the same
physical and computational parameters, we notice that they differ only slightly (the
reduced model shows a higher velocity peak and a lower energy peak), but otherwise
the bulk features are essentially the same. Therefore, since the full model presents
a more significant computational challenge (in terms of the singularities arising from
the nonlinearity and the added computational expense), the reduced model can be
used for parametric studies, and once the relevant parameters have been estimated,
more detailed simulations can be carried out using the full model.

6. Conclusions. A second order scheme for the solution of hyperbolic conserva-
tion laws, namely SLIC, has been implemented to solve the extended hydrodynamical
semiconductor equations. Other conventional methods have been used to evaluate the
source terms and the Poisson equation which is coupled with this system. The scheme
is second order accurate in space and time, and it belongs to the high-resolution class
of methods. As it is expected from schemes of this class, it is conservative, monotone,
and it can resolve discontinuous solutions over very few computational cells.

Our motivation to use this scheme stems from its low computational cost, ease of
implementation, and lack of arbitrary, user-adjusted parameters. The current imple-
mentation has an automatic selection of the optimum timestep, so that every iteration
remains as close as possible to the scheme’s stability limit, thus reducing truncation
errors and keeping the CPU time as low as possible. Test problems which have an
exact solution show that SLIC retains these qualities when used for the integration
of a system as complex as the extended hydrodyamical semiconductor equations. Be-
cause the scheme does not have user-adjusted parameters and it does not need a
special computational stencil, it can be used for multidimensional discretizations on
domains of arbitrary geometry and can also be used in conjuction with adaptive mesh
refinement software without any implementation complications.

The latest developments in semiconductor technology for ultrafast phenomena
in electron devices require new approaches for their numerical simulation. In this
article we have implemented a method used in other disciplines which deal with highly
nonlinear phenomena and have shown that it is effective in accurately capturing the
transient evolution of the electron flow to steady state in a submicron diode.
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