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Abstract. The nonoscillatory central difference scheme of Nessyahu and Tadmor is a Godunov-
type scheme for one-dimensional hyperbolic conservation laws in which the resolution of Riemann
problems at the cell interfaces is bypassed thanks to the use of the staggered Lax–Friedrichs scheme.
Piecewise linear MUSCL-type (monotonic upstream-centered scheme for conservation laws) cell in-
terpolants and slope limiters lead to an oscillation-free second-order resolution. Convergence to the
entropic solution was proved in the scalar case.

After extending the scheme to a two-step finite volume method for two-dimensional hyperbolic
conservation laws on unstructured grids, we present here a proof of convergence to a weak solution
in the case of the linear scalar hyperbolic equation ut + div(~V u) = 0. Since the scheme is Rie-
mann solver–free, it provides a truly multidimensional approach to the numerical approximation of
compressible flows, with a firm mathematical basis.

Numerical experiments show the feasibility and high accuracy of the method.
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1. Introduction and description of the method.

1.1. Introduction. In recent papers [6], [7], [9], [10], we have presented for
the scalar conservation equation ut + f(u)x + g(u)y = 0 a two-step, two-dimensional
finite volume method, inspired both by earlier work on unstructured triangular grids
[3], [4], [1], [2] and by the nonoscillatory central differencing scheme of Nessyahu
and Tadmor [25], which is a Godunov-type scheme for one-dimensional hyperbolic
conservation laws, where the resolution of Riemann problems [30] at the cell interfaces
is bypassed thanks to the use of the staggered form of the Lax–Friedrichs scheme;
second-order oscillation-free resolution is obtained via the use of van Leer’s piecewise
linear MUSCL-type (monotonic upstream-centered scheme for conservation laws) cell
interpolants combined with slope limiters [22], [23].

The construction of our finite volume scheme is based on a finite volume extension
of the Lax–Friedrichs scheme using two specific grids at alternate time steps. Starting
from an arbitrary finite element triangulation, we use the barycentric cells associated
with this grid at odd time steps and a dual grid of quadrilateral cells at even time
steps. Each time step can itself be viewed as a predictor-corrector process.
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Results of some preliminary numerical experiments [9] using the first author’s ex-
tension of the Nessyahu–Tadmor (NT) scheme to rectangular grids [5] (two-dimensional
linear convection; discontinuous solution of Burgers’ equation for discontinuous initial
data, with shocks and rarefactions; diffraction of a planar shock wave around a 90o

corner, Mach 3 wind tunnel with a forward facing step) confirmed the quality ob-
served for the one-dimensional computations, while numerical experiments with the
new finite volume method for unstructured triangular grids [7], [10] established the
feasibility and high accuracy of the method. In [7], [33], we describe a comparison of
our method with a discontinuous finite element method recently proposed by Jaffré
and Kaddouri [18] for the problems of supersonic flow around a blunt body [28] and
around a double ellipse [34].

For the one-dimensional scalar conservation law ut + f(u)x = 0, convergence to
the unique entropic solution was obtained by Nessyahu and Tadmor in the case of a
genuinely nonlinear equation, with the help of the total variation diminishing (TVD)
property and a cell entropy inequality [25].

In this paper, we obtain an L∞ bound which does not rely on an h-dependent
limiter and, under the assumption of an h-dependent limiter, an estimate of the
weighted total variation (see, e.g., [14] for similar estimates in a different context),
which leads to L∞-weak* convergence of the numerical solution to a weak solution of
the linear scalar equation

ut + div(u
−→
V ) = 0, t ∈ [0, T ], (x, y) ∈ R2,(1.1a)

with initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ R2,(1.1b)

where u0 ∈ L∞(R2) is a given function with compact support, and ~V (x, y) =
(
V1(x, y),

V2(x, y)
)T

is a given continuous vector function such that

div
−→
V = 0.(1.1c)

Similar L∞ bounds (not using h-dependent limiters) have already been given for
unstructured two-dimensional grids and explicit or implicit finite volume schemes
[8], [14] and for MUSCL-type finite volume schemes by Geiben-Wierse [17] and Liu
[24]. In [15], Cockburn, Hou, and Shu have obtained a local maximum principle for
their Runge–Kutta local projection discontinuous Galerkin methods, also defined for
general triangulations.

In [36], a maximum principle for the case of rectangular grids is derived which
is similar to that appearing for scalar equations on unstructured triangular grids in
section 2 but uses more natural limiters. Reference [36] also contains several nontrivial
numerical examples (e.g., a nonstrictly hyperbolic system).

Convergence of formally higher-order accurate MUSCL-type finite volume schemes
on unstructured grids, even for nonlinear scalar conservation laws, was recently shown
by Cockburn, Coquel, and Le Floch [16], Kröner, Noelle, and Rokyta [19], [20], and
Noelle [26], [27]. The convergence results proved there are somewhat more general
than our result since they treat the nonlinear case. Reference [16] also gives an error
estimate, while [26] admits irregular families of grids, where assumption (1.2) of our
paper may be relaxed; moreover, the above-mentioned papers require less restrictive
CFL conditions.
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Fig. 1. Barycentric cells around nodes ai, aj ; quadrilateral cell aiGijajGi,j+1.

However, the additional difficulty which had to be dealt with in our work is that
the scheme is a two-step scheme, which makes the analysis substantially more elab-
orate. The authors are currently working on an extension to nonlinear conservation
equations.

In [37], the rectangular grid scheme is extended to the incompressible Euler equa-
tions for Cartesian grids, while in [12], [13], our finite volume method is developed
into a staggered grid mixed finite volume/finite element method for the compressible
Navier–Stokes equations on unstructured triangular grids, with applications to three
test problems (supersonic flow around a flat plate, a NACA-0012 airfoil, and a double
ellipse).

1.2. Description of the method and notation used in the paper. We
introduce a triangulation T in R2 with the property that the intersection of two
triangles is either empty or consists of one common vertex or side. We assume that
there exist four positive constants a, b, c, and d such that the usual finite element
nondegenerescence conditions{

ah ≤ `(I) ≤ bh for every side I,

ch2 ≤ A(K) ≤ dh2 for every triangleK ∈ T
(1.2)

hold, where `(I) denotes the length of side I and A(K) the area of triangle K, re-
spectively.

The two-dimensional generalization [6], [7] of the NT scheme is a two-step finite
volume scheme defined with the help of two alternate grids. For the first grid, the
nodes are the vertices ai of the triangles K ∈ T, and the finite volume cells are the
barycentric cells Ci, obtained by joining the midpoints Mij of the sides originating
at node ai to the centroids Gij of the triangles of T which meet at ai (Figure 1).
For the second grid the nodes are the midpoints Mij of the sides, while the cells
are the quadrilaterals Lij = aiGijajGi,j+1 obtained by joining two nodes ai, aj to
the centroids of the two triangles of T of which aiaj is a side. We use the following
notation.
Notation.
ai is the ith vertex.
Mij is the midpoint of side aiaj .
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ni is the number of the nodes which are adjacent to ai.
Gij(j = 1, . . . , ni) is the centroid of a triangle of which ai is a vertex.
Ci is the barycentric cell constructed around ai.
Γij is the cell boundary element GijMijGi,j+1.
∂Ci =

⋃ni
j=1Γij is the boundary of cell Ci.

Lij is the quadrilateral cell with vertices ai, Gij , aj , Gi,j+1:

qij =
A(aiGijMij)

A(Lij ∩ Ci) , rij =
A(Lij ∩ Ci)
A(Ci)

.(1.3)

The unknowns are uni , the numerical approximation of the exact value u(ai, t
n) at

node ai and time tn (n = 0, 2, 4, . . . ), and un+1
ij , the numerical approximation of

u(Mij , t
n+1), for each node index i and every j “neighbor of i.” We choose a constant

time step with tn = n∆t, for 0 ≤ n ≤ L with tL = L∆t = T .
To initialize the time marching process we let

u0
i =

1

A(Ci)

∫∫
Ci

u0(x, y)dxdy.(1.4)

The solution u(x, y, t) of the Cauchy problem (1.1) is approximated by a cellwise,
piecewise linear function. At time tn (n even), starting from the known values uni ,

we introduce for each cell Ci an approximate gradient
−→
∆n
i (satisfying some specific

conditions to be described later), and at every point M(x, y) of cell Ci we define

u(x, y, tn) ≡ uCi(x, y, tn) = unCi(x, y) = uni +
−−→
aiM · −→∆n

i (n = 0, 2, 4, . . . ).(1.5)

Integrating this linear function on the quadrilateral cell Lij leads to the first (and
further odd-numbered) time step of the scheme:

un+1
ij =

1

2
(uni +unj )+

1

6
(
−−−→
Vecti · −→∆n

i +
−−−→
Vectj · −→∆n

j )− ∆t

A(Lij)

∑
I∈∂Lij

u
n+1/2
I V (I),(1.6)

where

−−−→
Vecti =

−−−→
aiMij + qij

−−−→
aiGij + (1− qij)−−−−−→aiGi,j+1 = 2qij

−−−→
aiM

−
ij + 2(1− qij)

−−−→
aiM

+
ij ,(1.7)

M−ij = midpoint of GijMij ,

M+
ij = midpoint of MijGi,j+1,

∂Lij = {aiGij , ajGij , ajGi,j+1, aiGi,j+1},
∂Lij ∩ Ci = {aiGij , aiGi,j+1},
∂Lij ∩ Cj = {ajGij , ajGi,j+1},
I is a side of quadrilateral Lij ,−→nI = unit outer normal to Lij , for I ∈ ∂Lij ,−→
VI = average value of ~V along the side I ∈ ∂Lij ,
V (I) =

−→
VI · −→nI `(I) with `(I) = length of I,

and

u
n+1/2
I =

{
uni + 1

2 (
−→
I −∆t

−→
VI ) · −→∆n

i if I ∈ (∂Lij) ∩ Ci,
unj + 1

2 (
−→
I −∆t

−→
VI ) · −→∆n

j if I ∈ (∂Lij) ∩ Cj .
(1.8)
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In preparation for the second (even) time step, we now compute for each cell Lij an

approximate gradient
−−−→
∆n+1
ij (satisfying specific conditions to be described later), and

at each point M(x, y) of the quadrilateral cell Lij we define

u(x, y, tn+1) = un+1(x, y) = un+1
ij +

−−−→
MijM ·

−−−→
∆n+1
ij (n = 0, 2, 4, . . . ).(1.9)

Integrating this linear function on the barycentric cell Ci leads to the second (even)
time step of the scheme:

un+2
i =

ni∑
j=1

riju
n+1
ij +

1

3

ni∑
j=1

rij
−−−→
Vectij ·

−−−→
∆n+1
ij − ∆t

A(Ci)

∑
I∈∂Ci

u
n+3/2
I V (I),(1.10)

where {−−−→
Vectij =

−−−→
Mijai + qij

−−−−→
MijGij + (1− qij) −−−−−−→MijGi,j+1

= 2qij
−−−−→
Mija

−
ij + 2(1− qij)

−−−−→
Mija

+
ij ,

(1.11)

a−ij = midpoint of aiGij ,

a+
ij = midpoint of aiGi,j+1,
∂Ci = {GijMij ,MijGi,j+1, j = 1, . . . , ni},
(∂Ci) ∩ Lij = {GijMij ,MijGi,j+1},−→nI = unit outer normal to Ci for I ∈ ∂Ci,−→
VI = average value of

−→
V along the side I ∈ ∂Ci,

V (I) =
−→
VI · −→nI `(I),

and

u
n+3/2
I = un+1

ij +
1

2
(
−→
I −∆t

−→
VI ) · −−−→∆n+1

ij for I ∈ (∂Ci) ∩ Lij .(1.12)

The numerical solution of (1.1) is then defined by

uT,∆t(x, y, t) = u(x, y, tn) for tn ≤ t < tn+1,(1.13)

where u(x, y, tn) is given by (1.5) (n even) and (1.9) (n odd), respectively.
In section 2, we prove that if we consider a sequence {Tk,∆tk}k∈N such that Tk

satisfies (1.2), with h = hk, where hk and ∆tk tend to zero while ∆tk
hk

remains bounded

(CFL-like condition), the corresponding sequence of approximate solutions {uTk,∆tk}
defined by (1.13) is then bounded in L∞(R2 × R+).

Therefore there exists a subsequence, again written {uTk,∆tk}, which converges
to some function u in L∞(R2 × R+)-weak*.

In section 3, we obtain a so-called “weighted total variation” estimate (cf. [14]),
weaker than an estimate on the total variation of the numerical solution but sufficient
to prove (section 4) that the limit u of the above subsequence is indeed a weak solution
of problem (2.1).

As correctly observed by one referee, the limiters used in the convergence proof
allow no variation within cell Lij if ui − uj = 0.

This might lead to a substantial loss of accuracy in problems where, e.g., the
triangulation makes many ij segments parallel to the x-direction while the exact
solution is x-independent. But these limiters are never used in practice. Limiters
used in actual numerical simulations, described in [7], [33], are much less severe than
those introduced in sections 2–4 to prove convergence, so that the overall accuracy
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of our method is not exposed to the degradation which would result from the use of
these “theoretical” limiters.

While we intend in the future to try to design a limiter following, e.g., [15], [17],
which would at the same time be truly multidimensional (as the limiters we use in [7],
[33]) and allow a very high level of accuracy, we have concentrated here on a limiter
which makes the convergence proof more accessible. In fact, in section 2 we give an
example of one such possible choice of limiter, less restrictive than the one we use in
the convergence proof presented here (Remark 2.5.5).

In section 5, we present a systematic comparison of our method with a discon-
tinuous finite element method developed at INRIA [18] by Jaffré and Kaddouri, in a
typical test selected from the numerical experiments described in [7], [10], [33], which
include several comparisons with other methods and give a rather favorable overview
of the properties of our method: whenever a comparison was possible, the capture
of shocks was sharper, without breach of monotonicity, and the convergence history
much faster; finally, the computing times were also significantly shorter.

2. An L∞-estimate of the numerical solution. We shall prove that under
an appropriate CFL condition, un+1

ij is a convex combination of uni and unj (n even)

and un+2
i is a convex combination of the values un+1

ij at all adjacent midpoints Mij

(1 ≤ j ≤ ni). This will imply that

‖un‖L∞(R2) ≤ ‖ u0 ‖L∞(R2)<∞,
since we have assumed that u0 ∈ L∞(R2).

2.1. Analysis of the first step of the scheme. The first step of the scheme
consists in writing un+1

ij as a function of uni and unj according to (1.6). In order to

prove that |un+1
ij | ≤ max

{|uni |, |unj |}, we shall write un+1
ij as a convex combination of

uni and unj .
Let us first factor out uni and unj in (1.6) by multiplying (1.6) by (unj −uni )/(unj −

uni ):

(2.1a)

un+1
ij = uni

1

2
−
1

6

−−−→
Vecti · −→∆n

i +
−−−→
Vectj · −→∆n

j

unj − uni
− ∆t

A(Lij)

∑
I∈∂Lij

u
n+1/2
I

unj − uni
V (I)


+ unj

1

2
+

1

6

−−−→
Vecti · −→∆n

i +
−−−→
Vectj · −→∆n

j

unj − uni
− ∆t

A(Lij)

∑
I∈∂Lij

u
n+1/2
I

unj − uni
V (I)

 .
un+1
ij will therefore be a convex combination of uni and unj provided that∣∣∣∣∣∣16

−−−→
Vecti · −→∆n

i +
−−−→
Vectj · −→∆n

j

unj − uni
− ∆t

A(Lij)

∑
I∈∂Lij

u
n+1/2
I

unj − uni
V (I)

∣∣∣∣∣∣ ≤ 1

2
.(2.1b)

In the rest of this paragraph, we shall show that inequality (2.1b) holds under a

CFL-type condition and some appropriate slope limitation for
−→
∆n
i . For simplicity we

rewrite (2.1.b) as ∣∣∣∣16T1 − ∆t

A(Lij)
T2

∣∣∣∣ ≤ 1

2
(2.1c)

and omit the time index n.
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2.1.1. Estimate for T1. We introduce a slope limitation for the gradients
−→
∆ i

of the piecewise linear approximation (1.5):∥∥∥∥∥
−→
∆ i

uj − ui

∥∥∥∥∥ ≤ 6

7b
· ε
h
, ε ≥ 0, j neighbor of i,(2.2a)

−−−→
aiM

−
ij · −→∆ i

uj − ui ≥ 0,

−−−→
aiM

+
ij · −→∆ i

uj − ui ≥ 0, j neighbor of i.(2.2b)

Lemma 2.1. Under conditions (2.2), we have |T1| ≤ ε.
Proof. In order to interpret the slope limitation conditions (2.2), we observe that

the value of our linear interpolant (1.5) in cell Ci at the point M = M−ij (midpoint of
GijMij) is given by

uCi(M
−
ij ) = ui +

−−−→
aiM

−
ij · −→∆i.(2.3a)

Condition (2.2b) then means that

uCi(M
−
ij )− ui

uj − ui ≥ 0,(2.3b)

while condition (2.2a) implies

uCi(M
−
ij )− ui

uj − ui ≤ ‖−−−→aiM
−
ij ‖

6

7b
· ε
h
.(2.3c)

On the other hand we have from (1.2)

‖−−−→aiM
−
ij ‖ ≤

1

2

(‖−−−→aiGij‖+ ‖−−−→aiMij‖
) ≤ 1

2

(
2

3
+

1

2

)
bh =

7

12
bh

and therefore

0 ≤ uCi(M
−
ij )− ui

uj − ui ≤ ε

2
(2.3d)

(with the same bounds for M+
ij ).

Choosing, for instance, ε = 2 then forces the piecewise linear cell values at M−ij
and M+

ij to lie between ui and uj . (Specific conditions on ε will be described later.)
Writing T1 as a difference,

T1 =

−−−→
Vecti · −→∆i

uj − ui −
−−−→
Vectj · −→∆j

ui − uj ≡ T11 − T12,(2.4a)

where, by (1.7),

T11 =
2 qij
−−−→
aiM

−
ij · −→∆i + 2(1− qij)

−−−→
aiM

+
ij · −→∆i

uj − ui ,(2.4b)

we see from (2.3) that 0 ≤ T11 ≤ ε, and the same inequalities hold for T12. T1 is
therefore the difference of two positive numbers each of which is less than ε. We
conclude that |T1| ≤ ε.



CONVERGENCE OF A FINITE VOLUME METHOD 745

2.1.2. Estimate for T2. Let ‖−→V ‖∞ ≡ sup
{‖−→V I‖ for I ∈ ∂Lij or I ∈ ∂Ci, for

arbitrary nodes i, j
}

. We introduce the following CFL condition:

∆t

h
‖−→V ‖∞ ≤ β, β > 0.(2.5)

(Appropriate conditions on β will be specified later.)
Lemma 2.2. If (2.2) and the CFL condition (2.5) are satisfied, then

∆t

A(Lij)
|T2| ≤ 2b

c
β
(

1 +
4

7
ε+

6

7b
εβ
)
.

Proof. From the definition introduced between (1.7) and (1.8), we have∑
I∈∂Lij

V (I) =
∑

I∈∂Lij

−→
V I · −→nI `(I) =

∫
∂Lij

−→
V · −→n dσ =

∫
Lij

div ~V dA = 0,

since we have assumed that div
−→
V = 0; T2 can thus be rewritten as

T2 =
∑

I∈∂Lij

u
n+1/2
I − uni
unj − uni

V (I) =
∑

I∈(∂Lij)∩Ci

1

2

(
−→
I −∆t

−→
VI ) · −→∆n

i

unj − uni
V (I)

+
∑

I∈(∂Lij)∩Cj

(
1 +

1

2

(
−→
I −∆t

−→
VI ) · −→∆n

j

unj − uni

)
V (I)

by (1.8) and after inserting −unj +unj in the numerator of the summation on ∂Lij∩Cj .
Applying (1.2), (2.2a), and the triangular inequality now gives

|T2| ≤
(

4 · 1

2

(
2

3
bh+ ∆t‖−→V ‖∞

)
6

7b

ε

h
+ 2

)
2

3
bh‖−→V ‖∞

so that (1.2) and (2.5) finally lead to

∆t

A(Lij)
|T2| ≤ 2b

c
β

(
4ε

7
+

6εβ

7b
+ 1

)
.

Remark 2.3. Condition (2.2a) can be replaced by a condition on the relative
increments

unCi(M
−
ij )− uni

unj − uni
,
unCi(M

+
ij )− uni

unj − uni
,
u
n+1/2
I − uni
unj − uni

for I ∈ ∂Lij .

2.1.3. Conclusion.
Lemma 2.4. If conditions (1.2), (2.2), and (2.5) hold and if ε and β satisfy

P (ε, β) ≡ 12

7c
εβ2 +

(
1 +

4

7
ε

)
2b

c
β +

ε− 3

6
≤ 0,(2.6)

then

|un+1
ij | ≤ max

{|uni |, |unj |}.(2.7)

Proof. From the remarks at the beginning of section 2, we know that (2.7) will
be satisfied if (2.1c) holds. This follows directly from Lemmas 2.1 and 2.2.
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Remark 2.5.
1. The case when ε = 0, i.e.,

−→
∆n
i = 0, corresponds to our finite volume two-

dimensional extension of the Lax–Friedrichs scheme [7], [10], for which condition (2.6)
takes the form

P (ε, β) =
2b

c
β − 1

2
≤ 0.(2.8a)

In view of (2.5), this is a CFL condition:

∆t‖−→V ‖∞
h

≤ 1

4

c

b
.(2.8b)

2. The desired bounds for un+1
ij for the two-dimensional NT scheme are obtained

if there exist ε > 0 and β > 0 such that P (ε, β) ≤ 0. If we consider the roots β1 and
β2 of the quadratic polynomial P (·, β), then the product β1β2 is equal to 7c

72 · ε−3
ε ,

while β1 + β2 = 7b(1 + 4
7ε)/6ε < 0. A positive solution β > 0 of (2.6) will exist if and

only if the discriminant of P (ε, β) is positive and at least one of its roots is strictly
positive, which will be true if ε < 3. On the other hand a solution of (2.6) with ε > 0
can clearly exist only if β < 1

4
c
b .

3. Condition (2.2b) can be omitted; we then get the bound |T1| ≤ 2ε instead of
|T1| ≤ ε, since the signs of the terms T11 and T12 in (2.4) are no longer necessarily
the same. We then obtain a solution β > 0 if and only if ε < 3

2 .
4. Condition (2.2) can be replaced by a condition providing explicit bounds for

the value of the numerical solution on the boundary of cell Ci:

0 ≤ uCi(M)− ui
uj − ui ≤ ε

2
for M ∈ {Gij ,Mij , Gi,j+1

}
, j neighbor of i,(2.2′)

where

uCi(M) = ui +
−−→
aiM · −→∆i.

Writing (2.2) in the form

0 ≤
−−→
aiM · −→∆i

uj − ui = ‖−−→aiM‖
∥∥∥∥∥
−→
∆i

uj − ui

∥∥∥∥∥ cos(
−−→
aiM,

−→
∆i) ≤ ε

2
(2.2′′)

and using a lower bound for the cosine obtained from (1.2), we get∥∥∥∥∥
−→
∆ i

uj − uj

∥∥∥∥∥ ≤ b2

ac

ε

h
.

The inequality in Lemma 2.2 then takes the form

∆t

A(Lij)
|T2| ≤ b

c
β

(
2 + ε+

2b2

ac
βε

)
,

which leads to the condition

P (ε, β) =
2b3

ac2
εβ2 + (2 + ε)

b

c
β +

ε− 3

6
≤ 0

in Lemma 2.4.
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5. One drawback of limiter (2.2), with its consequence (2.3d), is that it allows no
variation in the whole cell Lij if uj = ui. It is possible to allow the solution to vary
in Lij by modifying the limiter as follows.

In view of (1.7), we can limit the variation of the cell value of u at Mij , Gij , and
Gi,j+1 instead of M−ij and M+

ij . For example, we can impose{
0 ≤ uCi (Mij)−ui

uj−ui ≤ ε
2 ,

uCi(Gij)− ui = λ1(uj − ui) + λ2(uj−1 − ui), λ1, λ2 ≥ 0 , λ1 + λ2 ≤ ε
2 ,

and some complementary conditions, which corresponds, if 0 ≤ ε ≤ 2, to forcing
uCi(Mij) to be comprised between ui and uj and the value uCi(Gij) to fall within the
interval determined by ui, uj−1, uj . This would then lead to a maximum principle
in the form

|un+1
ij ≤ max{|ui|, |uj−1|, |uj |, |uj+1|}.

2.2. Analysis of the second step of the scheme. The second step of the
scheme consists of writing un+2

i (n even) as a function of the neighboring values
un+1
ij (1 ≤ j ≤ ni) at time tn+1, with the help of (1.10). To show that |un+2

i | ≤
max1≤j≤ni

{|un+1
ij |

}
, we shall write un+2

i as a convex combination of the values un+1
ij .

Starting from (1.10) and (1.11), we get

(2.9) un+2
i =

ni∑
j=1

riju
n+1
ij +

1

3

ni∑
j=1

rij(2qij
−−−−→
Mija

−
ij + 2(1− qij)

−−−−→
Mija

+
ij) ·
−−−→
∆n+1
ij

− ∆t

A(Ci)

ni∑
j=1

(
u
n+3/2
MijGij

V (MijGij) + u
n+3/2
MijGi,j+1

V (MijGi,j+1)
)
.

Multiplying the two terms depending on Gij by (un+1
i,j−1 − un+1

ij ) / (un+1
i,j−1 − un+1

ij ) and

the terms depending on Gi,j+1 by (un+1
i,j+1−un+1

ij ) / (un+1
i,j+1−un+1

ij ), we can factor out

un+1
ij (whereby the summation index j is being shifted; the time index n is partly

omitted for simplicity):

(2.10a) un+2
i =

ni∑
j=1

1

3
un+1
ij

{
3rij + 2rijqij

−−−−→
Mija

−
ij · −→∆ij

uij − ui,j−1
+ 2rij(1− qij)

−−−−→
Mija

+
ij · −→∆ij

uij − ui,j+1

+ 2ri,j+1qi,j+1

−−−−−−−−→
Mi,j+1a

−
i,j+1 · −−−−→∆i,j+1

uij − ui,j+1
+ 2ri,j−1(1− qi,j−1)

−−−−−−−−→
Mi,j−1a

+
i,j−1 · −−−−→∆i,j−1

uij − ui,j−1

−3

2

∆t

A(Ci)

(
(
−→
I −∆t

−→
VI ) · −→∆ij

uij − ui,j−1
V (I)

∣∣∣
I=MijGij

+
(~I −∆t~VI) · −−−−→∆i,j+1

uij − ui,j+1
V (I)

∣∣∣
I=Mi,j+1Gi,j+1

+
(
−→
I −∆t

−→
VI ) · −→∆ij

uij − ui,j+1
V (I)

∣∣∣
I=MijGi,j+1

+
(
−→
I −∆t

−→
VI ) · −−−−→∆i,j−1

uij − ui,j−1
V (I)

∣∣∣
I=Mi,j−1Gij

)
− 3

∆t

A(Ci)

[
V (MijGij) + V (MijGi,j+1)

]}
.

For quick reference to the individual terms of this expression, we rewrite (2.10a) as

un+2
i =

ni∑
j=1

1

3
un+1
ij

{
3rij − T3 − 3

2

∆t

A(Ci)
T4 − 3

∆t

A(Ci)
T5

}
.(2.10b)
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The sum of the brackets for j = 1, . . . , ni is equal to 3 since
∑ni
j=1 rij = 1,

∑ni
j=1 T3 =∑ni

j=1 T4 = 0 due to pairwise cancellations, and
∑ni
j=1 T5 = 0 since div

−→
V = 0.

Therefore un+2
i will be a convex combination of the values un+1

ij at the neighboring
staggered cells Lij , provided that

T3 +
3

2

∆t

A(Ci)
T4 + 3

∆t

A(Ci)
T5 ≤ 3rij .(2.11)

2.2.1. Estimate for T3. We introduce slope limitations for the gradients
−→
∆ ij :∥∥∥∥∥

−→
∆ ij

uij − ui,j−1

∥∥∥∥∥ ≤ 2

5b
· γ
h
,

∥∥∥∥∥
−→
∆ ij

uij − ui,j+1

∥∥∥∥∥ ≤ 2

5b
· γ
h
, γ ≥ 0, j neighbor of i,(2.12)

from which we derive the following lemma.
Lemma 2.6. Under conditions (2.12), we have |T3| ≤ 2

3rijγ.
Proof. To interpret the slope limitations (2.12) we write

uLij (a
−
ij) = uij +

−−−−→
Mija

−
ij · −→∆ij .

Since

‖−−−−→Mija
−
ij‖ ≤

1

2

(
‖−−−→Mijai‖+ ‖−−−−→MijGij‖

)
≤ 1

2

(
1

2
+

1

3

)
bh =

5

12
bh,

we see that condition (2.12) implies

∣∣∣∣∣uLij (a
−
ij)− uij

ui,j−1 − uij

∣∣∣∣∣ ≤ 5

12
bh · 2

5b
· γ
h

=
γ

6
,(2.13a)

as well as ∣∣∣∣∣uLij (a
+
ij)− uij

ui,j+1 − uij

∣∣∣∣∣ ≤ γ

6
.(2.13b)

These two conditions, which restrict the variation of uLij (a
−
ij) and uLij (a

+
ij) about the

value uij , are sufficient to establish Lemma 2.6. Indeed, we can write

|T3| ≤ 2rijqij
γ

6
+ 2rij(1− qij)γ

6
+ 2ri,j+1qi,j+1

γ

6
+ 2ri,j−1(1− qi,j−1)

γ

6
≤ 2

3
rijγ

(2.13c)

since qijrij = (1− qi,j−1)ri,j−1 and (1− qij)rij = qi,j+1ri,j+1.

2.2.2. Estimate for T4. We introduce the following CFL condition:

∆t‖−→V ‖∞
h

≤ η, η > 0.(2.14)

Lemma 2.7. If the slope limitations (2.12) and the CFL condition (2.14) are
satisfied, we have

∆t

A(Ci)
|T4| ≤ b

c
· 1

ni
· ηγ

(
8

15
+

8

5b
η

)
.
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Proof. From (1.2) and (2.12) we get

|T4| ≤ 4

(
1

3
bh+ ∆t‖−→V ‖∞

)
2

5b

γ

h

1

3
bh‖−→V ‖∞,

and thus by (1.2)

∆t

A(Ci)
|T4| ≤ 3

∆t

ch2

1

ni
|T4| ≤ b

c

1

ni
ηγ

(
8

15
+

8

5b
η

)
.

Remark 2.8. Condition (2.12) can be replaced by a condition on the increment
ratios ∣∣∣∣∣u

n+3/2
I −un+1

ij

un+1
ij −un+1

i,j−1

∣∣∣∣∣, I=MijGij , and

∣∣∣∣∣u
n+3/2
I −un+1

ij

un+1
ij −un+1

i,j+1

∣∣∣∣∣, I=MijGi,j+1,(2.12′)

whereby conditions (2.13) are conserved.

2.2.3. Conclusion.
Lemma 2.9. Assume conditions (2.12) and (2.14) are satisfied; if γ and η are

such that

Q(γ, η) ≡ 12

5c

1

ni
γη2 +

2

ni

b

c

(
3 +

2

5
γ

)
η +

(
2

3
γ − 3

)
rij ≤ 0(2.15)

for each j neighbor of i, then we have

|un+2
i | ≤ max

1≤j≤ni

{|un+1
ij |

}
.(2.16)

Proof. Inequality (2.16) will hold if (2.11) is satisfied, which will be the case, in
view of Lemmas 2.6 and 2.7, if

2

3
rijγ +

3

2

b

c

1

ni
ηγ

(
8

15
+

8

5b
η

)
+ 9

∆t

ch2

1

ni

2

3
bh‖−→V ‖∞ ≤ 3rij ,

which, together with the CFL condition (2.14), is equivalent to (2.15).
Remark 2.10.
1. The particular case γ = 0, i.e.,

−−−→
∆n+1
ij = 0, corresponds to the finite volume

extension of the Lax–Friedrichs scheme, for which condition (2.15) takes the form

Q(0, η) =
6

ni

b

c
η − 3rij ≤ 0

for each j neighbor of i, or equivalently

nirij ≥ 2
b

c
η.(2.17a)

Bounds for the value of ni, rij can be obtained from (1.2) and geometric considerations.

We have defined rij =
A(Lij∩Ci)
A(Ci)

, which is therefore equal to the ratio of the area of two

subtriangles such as aiGijMij and the area of 2ni subtriangles covering Ci; applying
(1.2), we have

1

6
ch2 ≤ A(aiGijMij) ≤ 1

6
dh2,
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for which we obtain the bounds

c

d
≤ nirij ≤ d

c
.(2.17b)

From (2.17a)–(2.17b), condition (2.15) will therefore hold if η < c2

2bd , so that we can
choose the CFL condition

∆t‖−→V ‖∞
h

≤ 1

2

c2

bd
(2.17c)

for the second step of the finite volume Lax–Friedrichs scheme.
2. The two-dimensional finite volume extension of the NT scheme is obtained

for γ > 0 and η > 0. To ensure that Q(γ, η) ≤ 0 for arbitrarily small η, we must

necessarily have γ < 9
2 and η < c2

2bd (using arbitrarily small values of γ in (2.15)).
3. As in the case of the first time step, where condition (2.2) on the gradients−→

∆n
i could be replaced by a condition giving specific bounds for the value uCi(M),

M ∈ {Gij ,Mij , Gi,j+1} (Remark 2.5-4), we can introduce here instead of (2.12) the
following conditions:

0 ≤ uLij (M)− uij
ui,j−1 − uij ≤ γ

6
and 0 ≤ uLij (M)− uij

ui,j+1 − uij ≤ γ

6
, M ∈ {ai, Gij , Gi,j+1},

(2.12′)

where

uLij (M) = uij +
−−−→
MijM · −→∆ij .

For γ ≤ 6, this means that the value of uLij (M) at ai, Gij and Gi,j+1 falls within the
range of the values ui,j−1, uij , and ui,j+1.

2.3. L∞-estimate of the solution after two time steps. Combining the
results of Lemmas 2.4 and 2.9, we obtain the following lemma.

Lemma 2.11. We assume that condition (2.2) with ε < 3 (cf. Remark 2.5.2),
condition (2.12) with γ < 9

2 (Remark 2.10.2), and the CFL condition

∆t‖−→V ‖∞
h

≤ min{β, η},(2.18)

where β and η are chosen such that P (ε, β) ≤ 0, Q(γ, η) ≤ 0, are all satisfied. We
then have the inequalities

sup
i
|un+2
i | ≤ sup

i;1≤j≤ni
|un+1
ij | ≤ sup

i
|uni |.(2.19)

In order to obtain a bound for |un(x, y)| valid for any point M(x, y) of the com-
putation domain, it is sufficient to find a bound for |un(Gij)| and |un(Mij)| on one
hand and a bound for |un+1(ai)| and |un+1(Gij)| on the other hand (with n even and

j neighbor of i). We introduce an additional condition on the gradients
−→
∆n
i and

−−−→
∆n+1
ij ,

for each index i and each j neighbor of i:
|unCi(M)| = |uni +

−−→
aiM · −→∆n

i | ≤ sup
i
|uni |, M ∈ {Gij ,Mij , Gi,j+1}

|un+1
Lij

(M)| = |un+1
ij +

−−−→
MijM ·

−−−→
∆n+1
ij | ≤ sup

i;1≤j≤ni
|un+1
ij |,

M ∈ {ai, Gij , aj , Gi,j+1}

 .(2.20)
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Formula (2.20) is automatically satisfied if we choose ε and γ such that

ε ≤ 2 and γ ≤ 6(2.21)

in the case of the alternate slope limitations (2.2′)–(2.12′′).
We then get the following fundamental L∞-bound for the numerical solution.
Theorem 2.12. Under the hypothesis of Lemma 2.11 and condition (2.20), we

have

‖un‖L∞(R2) ≤ ‖u0‖L∞(R2) ≤ ‖u0‖L∞(R2).(2.22)

3. Estimate on the weighted total variation. We introduce an additional

condition on the gradients
−→
∆n
i and

−−−→
∆n+1
ij for j neighbor of i: There exists a constant

α (0 < α < 1) such that

‖−→∆n
i ‖ ≤ Chα−1, ‖−−−→∆n+1

ij ‖ ≤ Chα−1,(3.1)

where C is a constant independent of h and ∆t.
In the rest of this paper, the hypothesis of Lemma 2.11, completed by conditions

(2.20) and (2.21), as well as (3.1) and (3.15) below, will be referred to as “conditions
(CFLCP).”

The aim of this section is to prove the following.
Theorem 3.1. Under the condition (CFLCP), if h ≤ 1, there exists a constant

C (independent of h and ∆t) such that

∑
i∈I

L−2∑
n=0
n even

A(Ci)

ni∑
j=1

rij |uni − unj | ≤ Ch
α
2−1,(3.2)

where I is such that
∑
i∈IA(Ci) is bounded.

Proof. We first write un+2
i as a function of uni according to (1.10) and (1.6).

(3.3)

un+2
i =

ni∑
j=1

rij

uni + unj
2

+

−−−→
Vecti · −→∆n

i +
−−−→
Vectj · −→∆n

j

6
− ∆t

A(Lij)

∑
I∈∂Lij

u
n+1/2
I V (I)


+

1

3

ni∑
j=1

rij
−−−→
Vectij ·

−−−→
∆n+1
ij − ∆t

A(Ci)

∑
I∈∂Ci

u
n+3/2
I V (I).

Observing that rij
A(Ci)
A(Lij)

= 1
2 (Figure 1), we get

(3.4) (un+2
i − uni )A(Ci) + ∆t

( ∑
I∈∂Ci

u
n+3/2
I V (I) +

1

2

ni∑
j=1

∑
I∈∂Lij

u
n+1/2
I V (I)

)

−A(Ci)

(
ni∑
j=1

rij
unj − uni

2
+

1

6

ni∑
j=1

rij(
−−−→
Vecti · −→∆n

i +
−−−→
Vectj · −→∆n

j )

+
1

3

ni∑
j=1

rij
−−−→
Vectij ·

−−−→
∆n+1
ij

)
= 0.
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Multiplying by uni and observing that

(un+2
i − uni )uni = −1

2
(uni − un+2

i )2 − 1

2
(uni )2 +

1

2
(un+2
i )2,

we obtain, summing on i ∈ I and even positive integers n = 0, 2, . . . , L− 2,

(3.5a) − 1

2

∑
i,n

A(Ci)(u
n
i − un+2

i )2 +
1

2

∑
i,n

A(Ci)
{

(un+2
i )2 − (uni )2

}
+
∑
i,n

∆t

( ∑
I∈∂Ci

u
n+3/2
I uni V (I) +

1

2

∑
j

∑
I∈∂Lij

u
n+1/2
I uni V (I)

)

−
∑
i,n

uni A(Ci)

(∑
j

rij
unj − uni

2
+

1

6

∑
j

rij(
−−−→
Vecti · −→∆n

i +
−−−→
Vectj · −→∆n

j )

+
1

3

∑
j

rij
−−−→
Vectij ·

−−−→
∆n+1
ij

)
= 0,

which we decompose as

−1

2
T1 +

1

2
T2 + T3 − T4 = 0(3.5b)

with

T3 = ∆t
∑
i,n

uni T5 and T4 =
∑
i,n

uni A(Ci)T6.(3.5c)

3.1. Estimate for the term T2. We have

T2 =
∑
i

A(Ci)
(
(uLi )2 − (u0

i )
2
) ≥ −∑

i

A(Ci)(u
0
i )

2.

Since u0 ∈ L∞(R2) has compact support (by assumption), we have ‖u0‖L2(R2) < ∞.
We can then write

‖u0‖L2(R2) ≤ Ch(α−1)/2,

since h ≤ 1, for a positive constant C. Therefore, with another constant again noted
C,

T2 ≥ −Chα−1.(3.6)

3.2. Estimate for T1. From (3.5) and (3.1), we have

T6 =
1

2

ni∑
j=1

rij(u
n
j − uni ) +O(hα).(3.7a)

Isolating uni − un+2
i from (3.4), we get uni − un+2

i = ∆t
A(Ci)

T5 − T6 and thus

T1 ≡
∑
i,n

A(Ci)(u
n
i − un+2

i )2 =
∑
i,n

1

A(Ci)
(∆t T5 −A(Ci)T6)2,(3.7b)
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where the term T5 can be written

T5 =
∑
I∈∂Ci

(u
n+3/2
I − uni )V (I) +

1

2

ni∑
j=1

∑
I∈∂Lij

(u
n+1/2
I − uni )V (I)(3.7c)

since div
−→
V = 0 leads to

∑
I∈∂Ci

V (I) =
∑

I∈∂Lij
V (I) = 0.(3.7d)

On the other hand, definitions (1.8) and (1.12) imply

(3.7e) T5 =
∑
j

∑
I∈(∂Ci)∩Lij

(
un+1
ij − uni +

1

2
(
−→
I −∆t

−→
VI ) · −−−→∆n+1

ij

)
V (I)

+
1

2

∑
j

∑
I∈(∂Lij)∩Ci

1

2
(
−→
I −∆t

−→
VI ) · −→∆n

i V (I)

+
1

2

∑
j

∑
I∈(∂Lij)∩Cj

(
unj − uni +

1

2
(
−→
I −∆t

−→
VI ) · −→∆n

j

)
V (I).

Replacing un+1
ij by its value (with the help of (1.6) and (1.8) using (3.7d)), we obtain

the following expression for T5:

(3.7f) T5 = O(hα+1) +
1

2

∑
j

(uj − ui)
 ∑
I∈(∂Lij)∩Cj

V (I) +
∑

I∈(∂Ci)∩Lij
V (I)


+ ∆t

∑
j

uj − ui
A(Lij)

 ∑
I∈(∂Ci)∩Lij

V (I)

 ∑
I∈(∂Lij)∩Ci

V (I)

 .

From the definition of V (I) on ∂Lij and ∂Ci and in view of (3.7d), we get

∑
I∈(∂Lij)∩Cj

V (I) =
∑

I∈(∂Ci)∩Lij
V (I) and

∑
I∈(∂Lij)∩Ci

V (I) = −
∑

I∈(∂Ci)∩Lij
V (I),

(3.7g)

so that

T5 = O(hα+1) +
∑
j

(uj − ui)


∑

I∈(∂Ci)∩Lij
V (I)− ∆t

A(Lij)

 ∑
I∈(∂Ci)∩Lij

V (I)

2


or

T5 = O(hα+1) +
∑
j

(uj − ui)
 ∑
I∈(∂Ci)∩Lij

V (I)

1− ∆t

A(Lij)

∑
I∈(∂Ci)∩Lij

V (I)

 .

(3.8)

We now observe that (3.8) and (3.7a) lead to

∆t T5 −A(Ci)T6 = O(hα+2)

+
∑
j

(uj − ui)
(

∆t(
∑

V (I)
)(

1− ∆t

A(Lij)

∑
V (I)

)
− 1

2
rijA(Ci)

)
,
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where
∑
V (I) represents the summation for I ∈ (∂Ci) ∩ Lij .

Introducing xij ≡ ∆t
A(Lij)

(∑
V (I)

)
, and observing that rijA(Ci) = 1

2A(Lij) (see

Figure 1), we find

∆t T5 −A(Ci)T6 = O(hα+2) +
∑
j

1

4
A(Lij)(uj − ui)(4xij(1− xij)− 1).(3.9a)

Using (3.7b), we then obtain the following expression for T1.

T1 =
∑
i,n

1

A(Ci)

O(hα+2)−
∑
j

1

2
rijA(Ci)(uj − ui)(1− 2xij)

2

2

.(3.9b)

Lemma 3.2. Let T be a finite element triangulation satisfying condition (1.2)
and {ai : i ∈ I} a set of nodes such that

∑
i∈IA(Ci) ≤ A, where A is a constant

independent of h.
a. Then if {αi}i∈I is a family of numbers such that |αi| ≤ α <∞ (i ∈ I) we have

the estimate ∣∣∣∣∣∑
i∈I

αi

∣∣∣∣∣ ≤∑
i∈I

|αi| = O(h−2).(3.9c)

b. Similarly if |βn| < β <∞ (0 ≤ n ≤ L) with L∆t = T <∞, then∣∣∣∣∣
L−1∑
n=0

βn

∣∣∣∣∣ ≤
L−1∑
n=0

|βn| = O(h−1).

Proof. a. We have
∣∣∑

i∈I αiA(Ci)
∣∣ ≤∑ |αi|A(Ci) ≤ α

∑
A(Ci) ≤ αA = O(1) so

that

∣∣∣∑αi

∣∣∣ ≤∑ |αi| ≤
∑
i∈I

|αi|A(Ci)

miniA(Ci)
=

1

mini∈IA(Ci)
O(1) ≤ O(1)

c′h2
= O(h−2),

since (1.2) leads to c′h2 ≤ A(Ci) ≤ d′h2 (i ∈ I) for appropriate positive constants
c′, d′.

The proof of part b is quite similar.
Expanding the square in (3.9b), we get the following estimate for the term T1.

T1 = O(hα−1) +
1

4

∑
i,n

A(Ci)

∑
j

rij(uj − ui)(1− 2xij)
2

2

≤ O(hα−1) +
1

4

∑
i,n

A(Ci)

∑
j

rij(uj − ui)2(1− 2xij)
4

(3.9d)

by the Cauchy–Schwarz inequality and noting that
∑
j rij = 1.
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3.3. Estimate for the difference T3 − T4. From (3.5c) we find T3 − T4 =∑
i,n(∆t T5 −A(Ci)T6)uni .

Applying (3.9a) and Lemma 3.2, and using the identities (uj − ui)ui = − 1
2 (ui −

uj)
2 − 1

2u
2
i + 1

2u
2
j and 2rijA(Ci) = A(Lij), we get

T3 − T4 = O(hα−1)− 1

4

∑
i,j,n

A(Lij)(1− 2xij)
2(unj − uni )uni

(3.10) = O(hα−1) +
1

4

∑
i,n

A(Ci)

∑
j

rij(uj − ui)2(1− 2xij)
2



+
1

8

∑
i,j,n

A(Lij)(1− 2xij)
2u2
i −

1

8

∑
i,j,n

A(Lij)(1− 2xij)
2u2
j .

From the definitions of V (I) on ∂Ci and xij , we have xji = −xij so that reversing
the order of summation and setting i = j′, j = i′ in the last term of (3.10) lead to∑

i,j,n

A(Lij)(1− 2xij)
2u2
j =

∑
i,j,n

A(Lij)(1 + 2xij)
2u2
i ,

from which we deduce, for the last two terms of (3.10),

1

8

∑
i,j,n

A(Lij)(1− 2xij)
2u2
i −

1

8

∑
i,j,n

A(Lij)(1− 2xij)
2u2
j = −

∑
i,j,n

A(Lij)u
2
ixij

= −∆t
∑
i,j,n

u2
i

 ∑
I∈(∂Ci)∩Lij

V (I)


= −∆t

∑
i,n

u2
i

∑
j

∑
I∈(∂Ci)∩Lij

V (I) = −∆t
∑
i,n

u2
i

∑
I∈∂Ci

V (I) = 0

by (3.7d). The difference T3 − T4 can therefore be written

T3 − T4 = O(hα−1) +
1

4

∑
i,n

A(Ci)

∑
j

rij(uj − ui)2(1− 2xij)
2

 .(3.11)

3.4. Preliminary estimate. Introducing the estimates (3.6), (3.9d), and (3.11)
into (3.5b), we obtain

−1

8

∑
i,n

A(Ci)

∑
j

rij(uj − ui)2(1− 2xij)
4


+

1

4

∑
i,n

A(Ci)

∑
j

rij(uj − ui)2(1− 2xij)
2

 ≤ Chα−1,

(3.12a)

which we write as∑
i,n

A(Ci)
∑
j

rij(uj − ui)2P (xij) ≤ C hα−1,

where P (xij) = (1− 2xij)
2
(
2− (1− 2xij)

2
)
.

(3.12b)
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We will try to find a condition ensuring that P (xij) has a strictly positive lower bound;
this will enable us to omit the factor P (xij) in the second summation of (3.12b).

Using (1.2), the definition of V (I), and (2.18) successively, we easily obtain

|xij | ≤ 3∆t

2ch2

∑
I∈(∂Ci)∩Lij

|V (I)| ≤ b

c

∆t‖~V ‖∞
h

≤ b

c
min{β, η}.(3.13a)

Applying condition (2.8a) with ε = 0 and Remark 2.10.1,2 we get β < c
4b and η < c2

2bd ,
so that

|xij | ≤ b

c
min

{
1

4

c

b
,
c2

2bd

}
≤ min

{
1

4
,

1

2

c

d

}
.(3.13b)

This is still insufficient to ensure P (xij) > 0. Examining P (xij), we find that we must
complement this condition with the restriction

1−√2

2
< xij <

1 +
√

2

2
.(3.13c)

But from (3.13a) we have

−b
c

∆t‖~V ‖∞
h

< xij <
b

c

∆t‖~V ‖∞
h

.(3.13d)

Combining these inequalities leads to the condition

∆t‖~V ‖∞
h

<

√
2− 1

2

c

d
.(3.14)

The CFL condition (2.18) must therefore be further reinforced as follows:

∆t‖~V ‖∞
h

< min

{
β, η,

√
2− 1

2

c

b

}
.(3.15)

Under condition (3.15), P (xij) is necessarily strictly positive and can be made bounded
away from zero if inequality (3.15) is strict, since (3.15) gives |xij | < (

√
2− 1)/2 and

thus (3.13c).

This guarantees P (xij) > ε if 0 < δ < |xij | <
√

2−1
2 − δ.

Remark 3.3. A closer look at inequality (3.12a) allows a cancellation of the terms
proportional to xij , and thus a slightly better CFL condition, obtained by replacing√

2−1
2
∼= 0.207 by (

√
5

4 − 1
2 )1/2 ∼= 0.243.

3.5. Conclusion. Under condition (CFLCP) and (3.15) and by the previous
argument, we have from (3.12b)∑

i,n

A(Ci)
∑
j

rij(u
n
j − uni )2 ≤ C hα−1.

Applying Schwarz’s inequality and Lemma 3.2, we then get

∑
i,n

A(Ci)
∑
j

rij |unj − uni | ≤
∑
i,j,n

A(Ci)rij(u
n
j − uni )2

1/2∑
i,j,n

A(Ci)rij

1/2

≤ (C hα−1)1/2(C ′h−1)1/2 ≤ Dhα/2−1.

This completes the proof of Theorem 3.1.
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4. Convergence in L∞-weak*. In this section, we shall prove the following
result.

Theorem 4.1. Under conditions (CFLCP), (3.15), (4.4j), and (4.4l) below, the
sequence of numerical approximations {uT,∆t} converges, when h tends to 0, toward
the weak solution of the initial value problem (1.1), in the space L∞(R2×R+)-weak*.

Proof. From Theorem 2.12, we have deduced the existence of a subsequence which
converges to a function u in L∞-weak*, and we must now prove that u is the unique
weak solution of equation (1.1).

We assume that h ≤ 1
(
since h tends to 0) and, following the classical approach,

we consider a function ϕ ∈ C∞o (R2 × [0, T )). The numerical approximation to the
solution of (1.1) is given by (1.5)–(1.9), which lead to

(4.1)
1

2∆t

(
un+2(x, y)− un(x, y)

)
=

1

2∆t
(un+2
i − uni ) +

1

2∆t

−−→
aiM ·

(−−−→
∆n+2
i −−→∆n

i

)
for M = (x, y) ∈ Ci, n = 0, 2, 4, . . . .

We multiply (4.1) by ϕn(x, y) = ϕ(x, y, tn) and by 2∆t, integrate on Ci, and sum for
n = 0, 2, . . . , L− 2 and all i to obtain

(4.2)

n=L−2∑
i;n=0
n even

2∆t

∫
Ci

un+2 − un
2∆t

ϕn =
n=L−2∑
i;n=0
n even

∫
Ci

(un+2
i − uni )ϕn

+
n=L−2∑
i;n=0
n even

2∆t

∫
Ci

−−→
aiM ·

(−−−→
∆n+2
i −−→∆n

i

)
2∆t

ϕn,

which we write as A1 = A2 +A3. Applying the summation by parts formula [29]

∆t
s∑

n=r

(
un+1 − un

∆t

)
ϕn ≡ (D+u, ϕ) = −∆t

s+1∑
n=r+1

un
ϕn − ϕn−1

∆t
+ us+1ϕs+1 − urϕr,

where (f, g) ≡∑s
n=r f

ngn∆t, to the case of even n and r = 0, s = L − 2, and using
the fact that un → u in L∞-weak*, and ϕL = 0, we obtain

A1 −→
∆t→0

−
∫ T

0

∫
R2

u
∂ϕ

∂t
−
∫
R2

u0ϕ
0,(4.3)

as in the proof of the Lax–Wendroff theorem [21].
Let B be a compact set in R2 containing a neighborhood of the (spatial) support

of ϕ and thus all barycentric cells Ci such that {spatial support (ϕ)} ∩ Ci 6= φ, for
any (T,∆t), provided that h is chosen small enough (which will be assumed). Let I be
the set of those indices i such that Ci ⊂ B. Applying summation by parts we obtain

A3 = −
∑
i∈I

∫
Ci

−−→
aiM ·

−→
∆0
iϕ

0 −
L∑

i;n=2
n even

2∆t

∫
Ci

−−→
aiM · −→∆n

i

(
ϕn − ϕn−2

2∆t

)
.

Using (3.1), Lemma 3.2, and the fact that
∑
i∈IA(Ci) < A[supp(ϕ)] <∞, we find

|A3| = O(hα) so that lim
∆t→0
h→0

A3 = 0.(4.4a)
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We shall now examine the second summation A2 in (4.2), which is more complex.
From (4.2) and (3.4) we have

A2 =
L−2∑
i;n=0
n even

∫
Ci

(
T6 − ∆t

A(Ci)
T5

)
ϕn,(4.4b)

where T5, T6 are defined by (3.5).

4.1. Analysis of the first sum in A2. Let us write

L−2∑
i∈I;n=0
n even

∫
Ci

T6ϕ
n = S1 + S2 + S3.(4.4c)

Lemma 4.2.

lim
h→0

S1 ≡ lim
h→0

L−2∑
i,n=0
n even

∫
Ci

∑
j

rij
uj − ui

2
ϕndxdy = 0.(4.4d)

Proof. Defining ϕni ≡ 1
A(Ci)

∫
Ci
ϕn(x, y)dxdy = ϕ(Mn

i ) for suitable Mn
i , we have

by symmetry considerations

S1 =
1

2

∑
i,j,n

A(Lij ∩ Ci)(uj − ui)ϕni ==
1

4

∑
i,j,n

A(Lij ∩ Ci)(uj − ui)(ϕni − ϕnj )

and thus

S1 =
1

4

∑
i,j,n

A(Lij ∩ Ci)(uj − ui)−−−−→Mn
j M

n
i · −−→gradϕn(Pij) with Pij ∈ [Mn

i M
n
j ].

Using 3.2 and Lemma 3.2 we obtain

|S1| ≤ Ch
∑
i,j,n

A(Lij ∩ Ci)|uj − ui| ≤ Chα2 ,

which proves Lemma 4.2.
We now examine the second term of (4.4c),

S2 =
∑
i,j,n

∫
Ci

1

6
rij(
−−−→
Vecti · −→∆i +

−−−→
Vectj · −→∆j)ϕ

n,(4.4e)

where
−−−→
Vecti is defined by (1.7)–(1.3). From the definition of rij , ϕ

n
i we have

S2 =
1

6

∑
i,j,n

A(Lij ∩ Ci)(−−−→Vecti · −→∆i +
−−−→
Vectj · −→∆j)ϕ

n
i

=
1

6

∑
i,j,n

A(Lij ∩ Ci) −−−→Vecti · −→∆i(ϕ
n
i + ϕnj )
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=
1

3

∑
i,j,n

A(Lij ∩ Ci)−−−→Vecti · −→∆i ϕ
n
i +

1

6

∑
i,j,n

A(Lij ∩ Ci)−−−→Vecti · −→∆i(ϕ
n
j − ϕni )

≡ S21 + S22,

(4.4f)

where we have written ϕni = 2ϕni − ϕni and used symmetry arguments (i↔ j).
By Lemma 3.2, (1.7), (3.1), and the mean value theorem, we have

S22 = O(h−2−1+2+1+(α−1)+1) = O(hα)(4.4g)

so that S22 tends to zero as h→ 0 since 0 < α < 1. We must now examine

S21 =
1

3

∑
i,j,n

A(Lij ∩ Ci)−−−→Vecti · −→∆i ϕ
n
i .

Let ãi be the centroid of cell Ci, and M̃ij the centroid of cell Lij .
Lemma 4.3.

−−→
aiãi =

1

3

∑
j

rij
−−−→
Vecti,(4.4h)

A(Lij)
−−−−−→
MijM̃ij =

1

3
A(Lij ∩ Ci)(−−−→Vectij +

−−−→
Vectij).(4.4i)

Proof. Denoting by G̃ij (resp., G̃i,j+1) the centroid of triangle aiGijMij (resp.,
aiMijGi,j+1) and letting M = (x, y) ∈ R2, we have by (1.7)

−−−→
Vecti = qij(

−−−→
aiMij +

−−−→
aiGij + (1− qij)(−−−→aiMij +

−−−−−→
aiGi,j+1)

=
3

A(Lij ∩ Ci)
{
A(aiGijMij)

−−−→
aiGij +A(aiMijGi,j+1)

−−−−−→
aiG̃i,j+1

}
=

3

A(Lij ∩ Ci)

{∫
aiGijMij

−−→
aiMdxdy +

∫
aiMijGi,j+1

−−→
aiMdxdy

}

=
3

A(Lij ∩ Ci)
∫
Lij∩Ci

−−→
aiMdxdy

and therefore∑
j

rij
−−−→
Vecti =

3

A(Ci)

∑
j

∫
Lij∩Ci

−−→
aiMdxdy =

3

A(Ci)

∫
Ci

−−→
aiMdxdy = 3

−−→
aiãi.

The proof of (4.4.i) is similar.

−−−→
Vectij = qij(

−−−→
Mijai +

−−−−→
MijGij) + (1− qij)(−−−→Mijai +

−−−−−−→
MijGi,j+1)

=
3

A(Lij ∩ Ci)
{
A(aiGijMij)

−−−−→
MijG̃ij +A(aiMijGi,j+1)

−−−−−−→
MijG̃i,j+1

}
=

3

A(Lij ∩ Ci)
∫
Lij∩Ci

−−−→
MijMdxdy,
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from which we deduce

1

3
A(Lij ∩ Ci)(−−−→Vectij +

−−−→
Vectji) =

∫
Lij∩Ci

−−−→
MijMdxdy +

∫
Lij∩Cj

−−−→
MijMdxdy

=

∫
Lij

−−−→
MijMdxdy = A(Lij)

−−−−−→
MijM̃ij ,

which proves Lemma 4.3.
We shall now show that under an additional condition the term S2 tends to zero

as h→ 0.
Lemma 4.4. Under conditions (1.2) and (3.1), if α > 1

2 and if there exists C > 0
such that ∣∣∣−−→aiãi · −→4ni ∣∣∣ ≤ Ch2α for all i ∈ I, n = 0, · · · , L− 2 (n even),(4.4j)

then limh→0 S2 = 0.
Proof. By (4.4g), it suffices to show that limh→0 S21 = 0. We have

S21 =
1

3

∑
i,n

A(Ci)

∑
j

rij
−−−→
Vecti · −→4ni

ϕni =
∑
i,n

A(Ci)
−−→
aiãi · −→4ni ϕni ,

so that by Lemma 3.2 and (4.4j), |S21| ≤ Ch2α−1 and thus limh→0 S21 = 0 since
2α− 1 > 0.

Remark 4.5. In the case of a regular or structured grid, one can construct cells
for which ai ≡ −→̃ai , and condition (4.4j) is then trivially satisfied. Otherwise, this

condition can be interpreted as imposing that ai and
−→̃
ai should be “close enough” or

else that we exert, at each time step, a certain control on the direction of the gradient
vector

−→4ni . Condition (4.4j) can also be written as unCi(ãi)−unCi(ai) = O(h2α), which
is a regularity condition on the piecewise linear reconstruction unCi .

We now examine the third term of (4.4c):

S3 =
∑
i,j,n

∫
Ci

1

3
rij
−−−→
Vectij ·

−−−→4n+1
ij ϕn

=
1

6

∑
i,j,n

A(Lij ∩ Ci)
{−−−→

Vectij ·
−−−→4n+1
ij ϕni +

−−−→
Vectji ·

−−−→4n+1
ij ϕnj

}
=

1

6

∑
i,j,n

A(Lij ∩ Ci)(−−−→Vectij +
−−−→
Vectji) ·

−−−→4n+1
ij ϕni

+
1

6

∑
i,j,n

A(Lij ∩ Ci)(−−−→Vectji ·
−−−→4n+1
ij )(ϕnj − ϕni )

≡ S31 + S32.(4.4k)

Proceeding as before, we can show that S32 = O(hα), and therefore limh→0 S32 = 0.
In order to handle S31, we shall need the following.

Lemma 4.6. Under conditions (1.2) and (3.1), if α > 1
2 and if there exists C > 0

such that ∣∣∣∣−−−−−→MijM̃ij ·
−−−→4n+1
ij

∣∣∣∣ ≤ Ch2α i,j ∈ I, n = 0, 2, . . . , L− 2 (n even),(4.4l)
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then limh→0 S31 = 0 and therefore limh→0 S3 = 0.
Proof. Applying Lemma 4.3, (4.4l), and Lemma 3.2, we have

|S31| =
∣∣∣∣∣∣12
∑
i,j,n

A(Lij)
−−−−−→
MijM̃ij ·

−−−→4n+1
ij ϕni

∣∣∣∣∣∣ ≤ Ch2α−1

and thus limh→0 S31 = 0.
Collecting the results of Lemmas 4.2, 4.5, and 4.6 we see that we have shown

that limh→0 Si = 0 for i = 1, . . . , 3, and the first sum in A2 therefore tends to zero as
h→ 0, i.e.,

lim
h→0

n=L−2∑
i;n=0
n even

∫
Ci

T6 ϕ
n = 0.(4.5)

4.2. Preliminary elements for the analysis of the second sum in A2. Let
I be a side of a triangle K ∈ T, −→nI the outer normal to I, and xI an arbitrary given
real number associated with side I. As described in [14], one can construct a function−→
FK(x, y) such that

(i)

−→
FK(x, y) · −→nI = xI for all (x, y) ∈ I,(4.6a)

and
(ii) div

−→
FK(x, y) takes a constant value (depending on

−→
FK and thus on the three

parameters {xI}I∈∂K) for all (x, y) ∈ R2. These functions can be written as (see [14])

−→
FK(x, y) =

∑
I∈∂K

xI
−−→
FK,I(x, y),(4.6b)

where

−−→
FK,I(x, y) · −→nJ =


1 if I = J

for I, J ∈ ∂K.
0 if I 6= J

(4.6c)

Under condition (1.2), ‖−−→FK,I‖L∞(R2) is bounded by a constant depending only on a,
b, c, and d.

Moreover, for every function
−→
V : R2 → R2 and any triangle K ∈ T, one can write

−→
V =

∑
I∈∂K

(
−→
V · −→nI )

−−→
FK,I .(4.6d)

4.3. Analysis of the second sum in A2. The intersection Lij ∩ Ci of cells
Lij and Ci (Figure 1) can be decomposed in the triangles aiGijMij = Kr

ij or Kr and

aiMijGi,j+1 = K`
ij or K`. With the above notations, we define

−−→
FK`(x, y) =

∑
I∈∂K`

u
n+1/2
I

−→
VI · −→nI−−→FK,I(x, y),(4.7a)
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−−→
GK`(x, y) =

∑
I∈∂K`

u
n+3/2
I

−→
VI · −→nI−−→FK,I(x, y),(4.7b)

with similar definitions for the functions
−−→
FKr and

−−→
GKr . We also define the average

values

(4.8a) u
n+1/2
I = uni if I = aiMij , unj if I = ajMij ,

uni + unj
2

if I = GijMij or MijGi,j+1,

(4.8b) u
n+3/2
I = un+1

ij if I ∈ {aiGij , aiMij , aiGi,j+1, ajGij , ajMij , ajGi,j+1}.
Applying (4.6) and (4.7) now gives∑

I∈∂Lij
u
n+1/2
I V (I) =

∑
K∈Lij

∑
I∈∂K

∫
I

u
n+1/2
I

−→
VI · −→nIdσ

=
∑
K∈Lij

∫
∂K

−→
FK(x, y) · −→n (x, y)dσ,

where the set of triangles “K ∈ Lij” is equal to
{
K`
ij , K

r
ij , K

`
ji, K

r
ji

}
.

We can therefore write∑
I∈∂Lij

u
n+1/2
I V (I) =

∑
K∈Lij

∫
K

div
−→
FK(x, y)dxdy =

∑
K∈Lij

A(K) div
−→
FK .(4.9a)

In the same manner, we can show that∑
I∈∂Ci

u
n+3/2
I V (I) =

∑
j

(
A(K`

ij) div
−−→
GK`

ij
+A(Kr

ij) div
−−→
GKr

ij

)
.(4.9b)

4.4. Limit of A2. With the help of (4.4b) and (4.9), the second sum in A2 can
be written (for even n)

(4.10)

−
n=L−2∑
i;n=0

∆t

A(Ci)

∫
Ci

T5ϕ
n = −

L−2∑
i;n=0

∆t

∫
Ci

∑
j

{
1

2
rij(qij div

−−→
FKr

ij
+(1−qij) div

−−→
FK`

ij

+ qij div
−−→
FK`

ji
+ (1− qij) div

−−→
FKr

ji
) + rij

(
qij div

−−→
GKr

ij
+ (1− qij) div

−−→
GK`

ij

)}
ϕn

=
L−2∑
i;n=0

∆t

∫
Ci

∑
j

{
1

2
rij
(
qij(
−−→
FKr

ij
+
−−→
FK`

ji
) + (1− qij)(−−→FK`

ij
+
−−→
FKr

ji
)
)

+ rij(qij
−−→
GKr

ij
+ (1− qij)−−→GK`

ij
)

}
· −→5ϕn.

We now define the function
−→
Rn(x, y) by

−→
Rn(x, y) = un(x, y)

−→
V (x, y) and observe that

L−2∑
n=0
n even

2∆t

∫
R2

−→
Rn(x, y) · −→5ϕn −→

∆t→0

∫ T

0

∫
R2

u
−→
V · −→5ϕ.(4.11)
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To complete the analysis of the second sum in A2, we need the following lemma.

Lemma 4.7.

(4.12)

L−2∑
n=0
n even

∆t

∫
Ci

∑
j

 1

2
rij
(
qij(
−−→
FKr

ij
+
−−→
FK`

ji
) + (1− qij)(−−→FK`

ij
+
−−→
FKr

ji
)
)

+ rij
(
qij
−−→
GKr

ij
+ (1− qij)−−→GK`

ij
)

− 2
−→
Rn

 · −→5ϕn −→ 0

in L∞-weak* as ∆t→ 0.

From (4.11) and Lemma 4.7, we conclude that the second sum in A2, represented
by (4.10), satisfies

−
L−2∑
i;n=0
n even

∆t

A(Ci)

∫
Ci

T5ϕ
n −→

∫ T

0

∫
R2

u
−→
V · −→5ϕ as ∆t→ 0.(4.13)

Proof of Lemma 4.7. We first observe that

∑
j

(
1

2
rij
(
2qij + 2(1− qij)

)
+ rij(qij + 1− qij)

)
= 2

∑
j

rij = 2,

which enables us to distribute
−→
Rn onto each term in the sum in (4.12) according to

the coefficients 1
2rijqij ,

1
2rijqij ,

1
2rij(1− qij), 1

2rij(1− qij), rijqij , rij(1− qij); it will
therefore be sufficient to show that, typically, terms of the form

∑
i,n

∆t

∫
Ci

∑
j

rijqij
(−→
FK −−→Rn

) · −→5ϕn −→ 0 as ∆t→ 0.(4.14)

Each of the six terms appearing in (4.12) will be handled in the same manner. From
(4.7) and (4.6d), we have

−→
FK −−→Rn =

∑
I∈∂K

u
n+1/2
I

−→
VI · −→nI −−→FK,I −

∑
I∈∂K

un
−→
V · −→nI −−→FK,I

=
∑
I∈∂K

(
u
n+1/2
I − un)−→VI · −→nI −−→FK,I +

∑
I∈∂K

un
(−→
VI −−→V

) · −→nI −−→FK,I ,
so that we can split (4.14) into two parts, the second of which,

L−2∑
i;n=0

∆t

∫
Ci

∑
j

rijqiju
n
( ∑
I∈∂K

(−→
VI −−→V

) · −→nI −−→FK,I) · −→5ϕn,
tends to zero as ∆t → 0 since

∑
rijqij = 1

2 ; un,
−→5ϕn,

−−→
FK,I are bounded; i ∈ I,

where I is the set of indices i such that Ci ⊂ B, so that
∑
i∈IA(Ci) is bounded; and

‖−→VI − −→V ‖ tends to zero for every side I contained in the compact set B containing
the support of ϕ.
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For the first part of (4.14), we get∣∣∣∑
i,n

∆t

∫
Ci

∑
j

rijqij

( ∑
I∈∂K

(u
n+1/2
I − un)

−→
VI · −→nI −−→FK,I

)
· −→5ϕn

∣∣∣
≤
∑
i,n

∆t

∫
Ci

∑
j

rijqij
∑
I∈∂K

∣∣un+1/2
I − uni

∣∣ ∣∣−→VI · −→nI ∣∣ ∥∥−−→FK,I∥∥L∞∥∥−→5ϕn∥∥L∞
+
∑
i,n

∆t

∫
Ci

∑
j

rijqij
∑
I∈∂K

∣∣−−→aiM · −→∆n
i

∣∣ ∣∣−→VI · −→nI ∣∣ ∥∥−−→FK,I∥∥L∞∥∥−−→5ϕn∥∥L∞
= A4 +A5.

With (3.1), A5 clearly tends to zero since i ∈ I.

Let us now examine the term A4 and more precisely the difference
∣∣un+1/2
I − uni

∣∣
for I ∈ ∂K. The treatment along the various triangle edges is similar; for example, if

I ∈ {ajGij , ajGi,j+1},
∣∣un+1/2
I −uni

∣∣ ≤ ∣∣ 12 (
−→
I −∆t

−→
VI )·−→∆n

j

∣∣+∣∣unj−uni ∣∣ ≤ Chα+
∣∣unj−uni ∣∣

by (1.8) and (3.1).
Since qij < 1, we obtain from the CFL condition and Theorem 3.1

A4 ≤
∑
i,n

∆tA(Ci)
(∑

j

rij |uni − unj |
)∥∥−→V ∥∥

L∞
∥∥−→5ϕ∥∥

L∞

( ∑
I∈∂K

∥∥−−→FK,I∥∥L∞)+ C̃hα

≤ Chα/2 + C̃hα.

A4 therefore tends to zero as ∆t→ 0, completing the proof of Lemma 4.7.
Remark 4.8. The terms proportional to

−→
GK − −→Rn are handled in a similar way.

We have

|un+3/2
I − uni | ≤ Chα + |un+1

ij − uni | ≤ Chα + |uni − unj |,

since under conditions (CFLCP), un+1
ij is a convex combination of uni and unj .

4.5. Conclusion. Collecting the results of (4.3), (4.4a), and (4.13), we find that
the L∞-weak* limit u of the subsequence {uTk,∆tk} described at the end of section 1
satisfies ∫ T

0

∫
R2

u
∂ϕ

∂t
+

∫ T

0

∫
R2

u
−→
V · −→5ϕ +

∫
R2

uoϕo = 0,(4.15a)

thus establishing that u is a weak solution of problem (1.1) and completing the proof
of Theorem 4.1, which guarantees the convergence of our two-dimensional finite vol-
ume generalization of the nonoscillatory central difference scheme of Nessyahu and
Tadmor.

In [7], [10], [12], [13], [33], we describe a variety of numerical experiments with
our finite volume scheme and an extension to a mixed finite volume/finite element
method for the compressible Navier–Stokes equations, including comparisons with
other well-established methods. These comparisons show the high level of accuracy
and efficiency provided by our scheme.

5. Numerical experiments. In this section we have selected one of the numer-
ical experiments presented in [7], [33], [10], [11], the case of supersonic flow around a
double ellipse.
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Fig. 2. Euler flow around a double ellipse. Original grid, barycentric cells Ci, and quadrilateral
cells Lij .

Fig. 3. Double ellipse: Initial mesh (1558 vertices) and solution (pressure and Mach contours)
(FV).

Example. Supersonic flow past a double ellipse at 20◦ of angle of attack and
M∞ = 2.

For this problem, inspired by [34] but with Mach number M∞ = 2 instead of the
range of hypersonic Mach numbers considered there and 20◦ of angle of attack, the
geometry is a double ellipse; it can be defined by

x ≤ 0

{
z ≤ 0,

(
x

0.06

)2
+
(

z
0.015

)2
= 1,

z ≥ 0,
(

x
0.035

)2
+
(

z
0.025

)2
= 1,

0 ≤ x ≤ 0.016

{
z ≥ 0, z = 0.025,

z ≤ 0, z = −0.015.

For this steady flow problem we compared our finite volume method with a discontin-
uous finite element method recently proposed by Jaffré and Kaddouri [18] and which
seems to be fairly competitive; we used the same three meshes with both methods.
For the initial mesh (1558 vertices, Figure 2), both methods give comparable results
(Figures 3–6), albeit with very unequal computing times (see below). Notice that
the Cp curves can be nearly superposed, which is an indication that both methods
are indeed doing some reasonable calculation. The same is true for the pressure and
Mach contours of both methods, with perhaps a very small advantage for our finite
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Fig. 4. Residual and Cp and Mach body cuts (initial mesh 1558 vertices) (FV).

Fig. 5. Double ellipse: Initial mesh (1558 vertices) and solution (pressure and Mach contours)
(DFE).

volume (FV) method which gives slightly sharper shocks and somewhat smoother
level contours.

For the intermediate mesh (2792 vertices), the advantage offered by the FV
method becomes a little more obvious in Figures 7 and 8, where the breaches of
monotonicity are more important with the discontinuous finite element (DFE) method
(lower part of the bow shock). Moreover the pressure and Mach contours are more
regular with the FV method.

The final mesh (5055 vertices, Figures 9, 10, and 11) shows a clear advantage
for the FV method, which gives a nearly perfect shock resolution with very smooth
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Fig. 6. Residual and Cp and Mach body cuts (initial mesh 1558 vertices) (DFE).

Fig. 7. Double ellipse: First adaptation (2792 vertices) and solution (pressure and Mach
contours) (FV).

contours, while the DFE method shows a breach of monotonicity in the lower part of
the bow shock.

As was the case with the initial mesh, the Cp curves can again be nearly exactly
superposed, while the Mach line of the FV method is slightly higher, for the left part
of the upper curve, than with the DFE method, a fact which is confirmed by Tables
1 and 2.

The major difference between the two methods appears to lie in the convergence
history and computing times. Figures 4, 6, and 12 show a clear advantage for our
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Fig. 8. Double ellipse: First adaptation (2792 vertices) and solution (pressure and Mach
contours) (DFE).

Fig. 9. Double ellipse: Final mesh (5055 vertices) and solution (pressure and Mach contours)
(FV).

Table 1
The maximal and minimal values of pressure and Mach number (FV).

FV Pressure Mach

Initial mesh min = 6.1671760e−2 max = 1.009705 min = 1.750865e−2 max = 2.253697
2nd mesh min = 6.1395669e−2 max = 1.006208 min = 5.3774943e−3 max = 2.266636

Final mesh min = 6.0346086e−2 max = 1.009427 min = 5.209895e−3 max = 2.270716

Table 2
The maximal and minimal values of pressure and Mach number (DFE).

DFE Pressure Mach

Initial mesh min = 6.2501445e−2 max = 1.014265 min = 8.2084965e−3 max = 2.190479
2nd mesh min = 6.2390134e−2 max = 1.007068 min = 2.0193825e−3 max = 2.216612

Final mesh min = 6.3052103e−2 max = 1.007425 min = 1.3435918e−2 max = 2.211899

finite volume method for the initial mesh (1558 vertices). Computing times (CPU:
3564 for FV and 48288 for DFE) confirm the advantage of the proposed FV method.

Finally, let us mention that all calculations have been performed on a Silicon
Graphics Station of the Centre de Recherches Mathématiques, Université de Montréal
(model Challenge, 100 Mhz, 6 processors).
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Fig. 11. Double ellipse: Final mesh (5055 vertices) and solution (pressure and Mach con-
tours)(DFE).
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eds., 1998.

[13] P. Arminjon and A. Madrane, A staggered Lax-Friedrichs type mixed finite volume/finite
element method for the simulation of viscous compressible flows on unstructured trian-
gular grids, AIAA Journal, to appear.
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