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Abstract

A mathematical model describing both the hindered settling and the consolidation of suspensions with particles of

different sizes and densities forming compressible sediments is presented. The specific new element is a centrifugal

configuration, which gives rise to a non-constant body force. Within a range of angular velocities, the model can be

reduced to one (radial) space dimension. The result is a system of second-order strongly degenerate parabolic–

hyperbolic convection–diffusion equations. For the special subcase of suspensions of rigid spheres, which do not form

compressible sediments and for which the effective solid stress can be assumed to vanish, these equations form a first-

order system of conservation laws. A type analysis shows that these equations include hyperbolic, hyperbolic–parabolic,

and hyperbolic–elliptic systems, depending on the sizes and densities of the solid particles. A numerical high-resolution

central difference scheme for the hyperbolic and hyperbolic–parabolic models is applied to solve the model numerically,

and thereby to simulate centrifugation of two polydisperse suspensions.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical models for the sedimentation and centrifugation of suspensions are important to a variety

of applications such as solid–liquid separation in mineral processing and wastewater treatment, classifi-

cation, fluidization, blood sedimentation and volcanology. In many situations it is necessary to distinguish

several particle species, which are assumed to belong to a finite number N of species having sizes

d1 P d2 P � � � P dN and densities .1; . . . ; .N , where we assume that di 6¼ dj or .i 6¼ .j for i 6¼ j, 16 i, j6N .

These suspensions are called polydisperse, and their characteristic property is particle segregation or dif-

ferential sedimentation, which results in areas of different composition.

A particularly interesting recent application is provided by a recent series of papers by Biesheuvel and
co-workers (Biesheuvel et al., 1998, 2001; Biesheuvel and Verweij, 2000), who show that models for
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polydisperse sedimentation covering the full range from dilute suspensions to concentrated sediments are

useful in models of manufacturing of solid products (casts) formed of small particles. In this paper, we

develop, in part analyze, and simulate models which indeed cover the full range of concentrations.

In the sequel, the present paper is outlined and put in the proper perspective of the literature. In Section 2
we derive a mathematical model for the separation of polydisperse suspensions of rigid spheres under both

a centrifugal and a gravitational body force. The local composition of such a mixture is described by the

vector U :¼ ð/1; . . . ;/NÞ
T
of concentrations, where /i is the local volume concentration of particle species i,

i ¼ 1; . . . ;N , having size di and density .i. The modeling starts from the usual mass and linear momentum

balance equations for the N solids species (each regarded as one phase) and the fluid. The material

properties of the suspension are introduced by constitutive assumptions on the solid and fluid stress tensors

and the solid–fluid interaction forces. In particular, the solid and fluid phase pressures are expressed in

terms of the effective solid stress re and the pore pressure. Specifying the solid–fluid interaction force for
each species and finally performing a dimensional analysis, which permits neglecting several terms from the

linear momentum balance equations, we obtain the solid–fluid relative velocity (or slip velocity) of each

species as a function of U and rU, which yields the fluxes of the continuity equations. The final (spatially

multidimensional) model equations form a strongly degenerate system of N convection–diffusion equations

for /1; . . . ;/N coupled to the divergence-free condition of the volume-average mixture velocity and a three-

component equation for the motion of the mixture.

The multidimensional model is further restricted to one space dimension. In this case, the mixture ve-

locity is zero for settling in a closed vessel. Wall effects may be neglected since the particles are small against
the vessel diameter. For a centrifugal system, the reduction to one space dimension is admissible only if

both the gravitational body force and the Coriolis force, introducing an azimuthal velocity component, are

negligible. We consider either a rotating tube (Fig. 1(a)) or a basket centrifuge (Fig. 1(b)), and distinguish

between these cases by a parameter r taking the values zero and one in the tube and basket cases, re-

spectively.

Under these simplifications, only a system of N second-order strongly degenerate convection–diffusion

equations for the N solids concentrations /1; . . . ;/N as functions of height z or radius r and time t have to
be solved if sediment compressibility is taken into account, and these equations further reduce to a first-
order system of conservation laws in the absence of compressibility, that is, when the particles are rigid

spheres. These equations are equipped with an initial concentration distribution and boundary conditions

to form a solvable mathematical model. Since the result of our derivation is similar to models proposed by

Masliyah (1979) and Lockett and Bassoon (1979), we refer to these equations as the MLB model, as op-

posed for example to the Davis and Gecol (1994) or Patwardhan and Tien (1985) models.
Fig. 1. Centrifugal separation of a bidisperse suspension of light (�) and heavy (�) particles (a) in a rotating tube (r ¼ 0) and (b) in a

basket centrifuge (r ¼ 1).
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The resulting spatially one-dimensional systems of convection–diffusion equations have some interesting

mathematical properties. It is not trivial to determine the type of these equations in dependence of the

number of species N , their sizes and densities, and the local concentration vector U. The basic results for the
MLB model are summarized in Section 3. It turns out that the MLB model is in general non-hyperbolic or
(for N ¼ 2) hyperbolic–elliptic, that is, of mixed type for suspensions with particles of different densities,

but according to Berres et al. (2003a) it is always hyperbolic for suspensions of equal-density spheres with

arbitrary size distributions. Only in the hyperbolic case it is ensured that all solution information travels at

finite speed. The condition for loss of hyperbolicity is equivalent to an instability condition predicting the

occurrence of horizontal structures like �fingers�, �blobs� and �columns� during the separation of a poly-

disperse suspension. This instability condition was first derived by Batchelor and Janse van Rensburg

(1986) for N ¼ 2 and recently extended to arbitrary N , and identified as a condition for the system to be of

mixed type, by B€uurger et al. (2000b, 2002). Such mixed systems appear in many applications (Fitt, 1996),
but the interesting point in ours is that such �fingers�, �blobs� and �columns� have indeed been observed and

that predictions of their occurrence by means of Batchelor and Janse van Rensburg�s criterion are fairly

accurate. The strict hyperbolicity result by Berres et al. (2003a) is consistent with the lack of any obser-

vation of instability phenomena for equal-density particles.

We employ the high-resolution central difference scheme by Kurganov and Tadmor (2000) to simulate

centrifugal separation of polydisperse suspensions with compression. For additional material on these

schemes we refer to Tadmor (1998). A full description of the scheme in the application to polydisperse

gravity sedimentation of ideal suspensions consisting of rigid spheres, which is described by first-order
systems of conservation laws, is given by B€uurger et al. (2001). The Kurganov–Tadmor scheme is a re-

finement of the essentially non-oscillatory central difference scheme by Nessyahu and Tadmor (1990) used

in B€uurger et al. (2000a). Kurganov and Tadmor (2000) also propose an extension of their scheme to

strongly degenerate parabolic–hyperbolic systems. The application of that extension to the �gravity� initial-
boundary value problem formulated in Section 2 is described in full detail by Berres et al. (2003a). Only

some minor modifications are needed in order to make that scheme work also for the �centrifugal� initial-
boundary value problem. For sake of brevity, we state in Section 4 only those steps of the scheme that differ

from the description by Berres et al. (2003a).
Section 5 illustrates the mathematical model by numerical simulations. Simulations of gravity sedi-

mentation of polydisperse suspensions of rigid spheres (not forming compressible sediments) based on

numerical solution of a first-order system have been presented by several authors (Lee, 1989; Concha et al.,

1992; Zeng and Lowe, 1992; Flotats, 1995; B€uurger et al., 2000a, 2001; Berres et al., 2003b; Xue and Sun,

2003). The effect of compressible sediment for polydisperse gravity settling has been considered by Shih

et al. (1986), Stamatakis and Tien (1992) and Berres et al. (2003a). In view of all these published results and

since our novel contribution is the extension of the polydisperse sedimentation model to centrifugal con-

figurations, the simulations presented in Section 5 are limited to the centrifugal case.
A brief concluding discussion of the model is given in Section 6.
2. Derivation of the mathematical model

2.1. Mass and linear momentum balances

The local mass balance equations of the solid species and of the fluid can be written as
o/i þr � ð/iviÞ ¼ 0; i ¼ 1; . . . ;N ; ð2:1Þ

ot
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� o/
ot

þr � ðð1� /ÞvfÞ ¼ 0; ð2:2Þ
where v1; . . . ; vN and vf are the phase velocities of the solid species and the fluid, respectively, and
/ ¼ /1 þ � � � þ /N is the total volumetric solids concentration. Defining the volume-average velocity of the

mixture q :¼ ð1� /Þvf þ /1v1 þ � � � þ /NvN and the relative velocities or slip velocities ui :¼ vi � vf for

i ¼ 1; . . . ;N , we obtain
/ivi ¼ /iðui þ q� ð/1u1 þ � � � þ /NuN ÞÞ; i ¼ 1; . . . ;N ; ð2:3Þ
such that Eq. (2.1) can be rewritten in terms of q and u1; . . . ; uN as
o/i

ot
þr � ð/iui þ /iq� /ið/1u1 þ � � � þ /NuN ÞÞ ¼ 0; i ¼ 1; . . . ;N : ð2:4Þ
The sum of all equations in (2.1) and (2.2) produces the simple mass balance of the mixture,
r � q ¼ 0: ð2:5Þ
The momentum balance equations for the N solid species and the fluid are
.i/i
Dvi

Dt
¼ r � Ti þ .i/ibi þmf

i þms
i ; i ¼ 1; . . . ;N ; ð2:6Þ

.fð1� /ÞDvf

Dt
¼ r � Tf þ .fð1� /Þbf � ðmf

1 þ � � � þmf
N Þ: ð2:7Þ
Here .f is the mass density of the fluid, Ti denotes the stress tensor of particle species i, i ¼ 1; . . . ;N , Tf that

of the fluid, bi and bf are the body forces acting on solids species i and on the fluid, respectively, mf
i and ms

ij

are the interaction forces per unit volume between solid species i and the fluid and between the solid species

i and j, respectively, ms
i :¼ ms

i1 þ � � � þms
iN is the particle–particle interaction term of species i, and we use

the standard notation Dv=Dt :¼ ov=ot þ ðv � rÞv.

2.2. Solid and fluid stress tensors

We assume that the stress tensors of the solid and fluid phases take the respective forms Ti ¼ �piIþ TE
i

for i ¼ 1; . . . ;N and Tf ¼ �pfIþ TE
f , where pi denotes the phase pressure of particle species i, pf that of the

fluid, I denotes the identity tensor, and TE
i and TE

f are the extra (or viscous) stress tensors of particle species

i and the fluid, respectively. However, viscous effects due to the motion of the mixture are not considered to
be dominant and we therefore assign all viscous effects to the fluid extra stress tensor. Thus, we assume that

mf0 and ms0 < mf0 are characteristic viscosities associated with the fluid and the solid species, respectively. These

quantities are introduced here to provide justification for neglecting the viscous stress tensors as a conse-

quence of the dimensional analysis.

2.3. Partial pressures, pore pressures and effective solids stress

The phase pressures p1; . . . ; pN and pf are theoretical variables, which cannot be measured experimen-

tally. As in the studies by Concha et al. (1996), Berres et al. (2003a) and B€uurger et al. (2000b, 2002), they are
expressed in terms of the pore pressure p and the effective solids stress re, which can be measured and

therefore are experimental variables. In the monodisperse case, re is given by a constitutive equation of the

type re ¼ reð/Þ. We could assume here that re is given as a function of the local composition of the
mixture, re ¼ reðUÞ. However, as noted by Stamatakis and Tien (1992), no suitable general relationship of

this type for polydisperse suspensions has been derived theoretically or empirically so far. Instead, we
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follow existing studies (Shih et al., 1986; Massoudi et al., 1992; Stamatakis and Tien, 1992) and express re,

as in the monodisperse case, simply as a function of the local porosity e ¼ 1� ð/1 þ � � � þ /N Þ ¼ 1� / or

equivalently, of the cumulative solids concentration / only. The generic assumptions on re are
reð/Þ
¼ 0 for /6/c;
> 0 for / > /c;

�
r0
eð/Þ :¼

dreð/Þ
d/

¼ 0 for /6/c;
> 0 for / > /c;

�
ð2:8Þ
where /c is the critical concentration at which the solid particles touch each other. Very frequently the

following power law equation is used (Tiller and Leu, 1980):
reð/Þ ¼
0 for /6/c;
r0ðð/=/cÞ

k � 1Þ for / > /c:

�
ð2:9Þ
The relationship between the theoretical pressures p1; . . . ; pN and pf and the experimental variables p and

reð/Þ is established in full detail by Berres et al. (2003a). We briefly sketch the main arguments here.

The pore pressure p is defined within the fluid filling the interstices of the solids, while the partial fluid
pressure pf is defined in the fluid component occupying the whole volume of the mixture. This assumption

leads to the equation pf ¼ ð1� /Þp. Moreover, the total stress of the mixture pt can be written in two

different ways as pt ¼ p1 þ � � � þ pN þ pf ¼ p þ reð/Þ. We assume that for each solids species its surface

cross-sectional area fraction equals its local volume fraction /i (a formal justification for this assumption is

given by B€uurger et al., 2002). This suggests relating p1; . . . ; pN to p and reð/Þ by
pi ¼
/i

/
ð/p þ reð/ÞÞ; i ¼ 1; . . . ;N : ð2:10Þ
2.4. Body force, solid–fluid and particle–particle interaction forces

So far the derivation of the model equations has followed that of the gravitational sedimentation–
consolidation model by Berres et al. (2003a). We here extend this model to centrifugation by assuming that

the body forces b1; . . . ; bN and bf take the respective forms
bi ¼ �gk� x� x� r� 2x� vi; i ¼ 1; . . . ;N ; ð2:11Þ
bf ¼ �gk� x� x� r� 2x� vf ; ð2:12Þ
where x ¼ xc is the angular velocity of the rotating system, x is the angular speed, c (with kck ¼ 1) is the

unit vector of its axis of rotation and r is the radius vector of the system. In each of Eqs. (2.11) and (2.12),

the first term denotes the gravitational force and the second and third term represent the inertial forces

originating from the centripetal and Coriolis forces, which are both product of the moving frame of ref-
erence. The body forces b1; . . . ; bN and bf can be decomposed into two parts, a conservative forcerðWþ XÞ
with the potentials W :¼ �g � r ¼ �gk � r � g � z and X :¼ �ð1=2Þðx� rÞ � ðx� rÞ ¼ �ð1=2Þx2r2, and the

non-conservative parts �2x� vi, i ¼ 1; . . . ;N and �2x� vf , so that b1; . . . ; bN and bf can be written as

bi ¼ �rðWþ XÞ � 2x� vi for i ¼ 1; . . . ;N and bf ¼ �rðWþ XÞ � 2x� vf .

The ratio between the representative centrifugal and gravity components of b1; . . . ; bN and bf is expressed

by the Froude number of the system (not of the flow) defined by F :¼ x2R=g, where R is a typical distance

to the axis of rotation (for example, the outer radius of the container). We are here mainly interested in the

limiting cases F ¼ 0 (gravity settling) and F ¼ 1 (for a centrifugally dominated configuration).
The interaction force between the different solid particle species described by the term ms

i ¼
ms

i1 þ � � � þms
iN could be specified by the formula due to Nakamura and Capes (1976):
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ms
ij ¼

3

2
ue

.i.j/i/jðdi þ djÞ2

.id
3
i þ .jd

3
j

vi
�� � vj

��ðvi � vjÞ; i; j ¼ 1; . . . ;N ; i 6¼ j;
where the parameter ue accounts for non-head-on-collisions (Shih et al., 1986) and its value depends on

whether these are plastic or elastic. Typical values of ue vary between zero and five (Nakamura and Capes,
1976; Arastoopour et al., 1982), and numerical simulations have not turned out to be sensitive to ue.

However, there is experimental and theoretical evidence that ms
i can be neglected at the very low Reynolds

numbers considered here, see B€uurger et al. (2002) for details. As in previous papers, we assume that the

solid–fluid interaction term mf
i corresponding to species i is given by mf

i ¼ aiðUÞui þ br/i for i ¼ 1; . . . ;N ,

where aiðUÞ denotes the resistance coefficient related to the transfer of momentum between the fluid and

particle species i. Considering the system at equilibrium, that is assuming vf ¼ 0, v1 ¼ � � � ¼ vN ¼ 0, and

that the pore pressure equals the hydrostatic pressure, i.e. rp ¼ .fð�gkþ ðx2=2ÞrÞ, we may conclude that

b ¼ p.
Inserting all assumptions into the linear momentum balance equations (2.6) and (2.7), we obtain the

balance equations
.i/i
Dvi

Dt
¼ .i/ið�gkþ x2rÞ � 2.i/ixc� vi þr � TE

f � /irp þ aiðUÞui þms
i

�r /i

/
reð/Þ

� �
; i ¼ 1; . . . ;N ; ð2:13Þ

rp ¼ .fð�gkþ x2rÞ � 2.fxc� vf �
1

1� /
ða1ðUÞu1 þ � � � þ aN ðUÞuN Þ � .f

Dvf

Dt
þ 1

1� /
r � TE

f :

ð2:14Þ
2.5. Dimensional analysis

Considerable simplification of the linear momentum balance equations (2.13) and (2.14) can be achieved
by an order-of-magnitude study or dimensional analysis. We assume that characteristic quantities of our

system are a typical length L0, a representative particle size d, a typical velocity U0, a reference scalar

angular velocity x0 and a kinematic viscosity m0. Moreover, we refer all densities to that of the fluid, .f , and
choose t0 ¼ L0=U0 as a time scale for dimensionless time derivatives. Introducing the characteristic pa-

rameters into (2.13) and (2.14) and defining the Froude number of the flow, Fr :¼ U 2
0 =ðgL0Þ, the Rossby

number Ro :¼ U0=ðx0L0Þ and the sedimentation Reynolds number Re :¼ U0L0=m0, we get the following

equations in terms of the dimensionless variables, where a star denotes the dimensionless version of each

previously introduced quantity:
.�i/iFr
Dv�i
Dt�

¼ .�i/ið�kþFðx�Þ2r�Þ � 2.�i/i
Fr

Ro
x�c� v�i þ

d
L0

ms0
mf0

Fr

Re
r� � ðTE

f Þ
� � /ir�p�

þ a�i ðUÞu�i þ
L
d
Frðms

i Þ
� � r� /i

/
r�
eð/Þ

� �
; i ¼ 1; . . . ;N ; ð2:15Þ

r�p� ¼ �kþFðx�Þ2r� � 2
Fr

Ro
x�c� v�f �

1

1� /
ða�1ðUÞu�1 þ � � � þ a�N ðUÞu�N Þ � Fr

Dv�f
Dt�

þ 1 d Fr r� � ðTEÞ�: ð2:16Þ

1� / L Re f
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Typical values of the constants involved are g ¼ 10 m/s2 (acceleration of gravity), L0 ¼ 0:1 m (sedimen-

tation space in a centrifuge), U0 ¼ 10�4 m/s (assumed settling velocity of the largest particle in unbounded,

quiescent fluid) and m0 ¼ 10�6 m2/s (kinematic viscosity of water). These values imply Fr ¼ 10�8 and

Fr=Re ¼ 10�7. The value of x0 and thus those of F and Ro will be specified later.
On the basis of these values and the standard assumption that the starred terms are of the order of

magnitude Oð1Þ, we may neglect the viscous and convective acceleration terms in the linear momentum

balances, which bear the coefficients Fr and Fr=Re. For reasons to be discussed later, the viscous term in the

linear momentum balance of the fluid will be retained.

In view of the kinematic relationships vi ¼ ui þ q� ð/1u1 þ � � � þ /NuNÞ for i ¼ 1; . . . ;N and vf ¼
q� ð/1u1 þ � � � þ /NuNÞ, which follow from the definitions of the slip velocities and of q, the reduced non-

dimensional linear momentum balance equations can be written as
a�i ðUÞu�i ¼ .�i/iðk�Fðx�Þ2r�Þ þ 2.�i/i
Fr

Ro
x�c� ðu�i þ q� � ð/1u

�
1 þ � � � þ /Nu

�
N ÞÞ

þ r� /i

/
r�
eð/Þ

� �
þ /irp�; i ¼ 1; . . . ;N ; ð2:17Þ
r�p� ¼ �kþFðx�Þ2 � 1

1� /
ða�1ðUÞu�1 þ � � � þ a�N ðUÞu�N Þ þ

1

1� /
d
L
Fr

Re
r� � ðTE

f Þ
�

� 2
Fr

Ro
x�c� ðq� ð/1u

�
1 þ � � � þ /Nu

�
N ÞÞ: ð2:18Þ
Inserting (2.18) into each of Eqs. (2.17) and discarding the unique small term according to the previous

considerations, namely the viscous term, we obtain after simplifications
a�i ðUÞu�i ¼ /ið.�i � 1Þðk�Fðx�Þ2r�Þ þ 2/i
Fr

Ro
x�c� u�i þr� /i

/
r�
eð/Þ

� �

� /i

1� /
ða�1ðUÞu�1 þ � � � þ a�NðUÞu�N Þ; i ¼ 1; . . . ;N : ð2:19Þ
We are now interested in those limiting cases for which (2.19) produces an easily solvable linear system for

the slip velocities u�1; . . . ; u
�
N . One simple case occurs when x ¼ 0 and thus F ¼ 0, which corresponds to the

gravity settling model studied by Berres et al. (2003a). On the other hand, if we wish to include centrifu-

gation, then for moderate angular velocities the ratio Fr=Ro still remains small and admits neglecting the

Coriolis terms. For example, consider the range 100 rad/s 6x0 6 1000 rad/s, which corresponds to about

1000–10 000 rpm, and R ¼ L0 ¼ 0:1 m. We then have Fr=Ro ¼ 10�5 and F ¼ 100 for x0 ¼ 100 rad/s and
Fr=Ro ¼ 10�4 and F ¼ 10000 for x0 ¼ 10000 rad/s. This illustrates that neglecting both gravity and

Coriolis terms still produces a reasonable approximation for a centrifugal system within a certain range of

angular velocities. We thus assume that Fr=Ro is small and delete the corresponding terms from (2.19).

Switching back to dimensional variables, we obtain
aiðUÞui þ
/i

1� /
ða1ðUÞu1 þ � � � þ aN ðUÞuN Þ ¼ ci; ð2:20Þ
ci :¼ /ið.i � .fÞðgk� x2rÞ þ r /i

/
reð/Þ

� �
; i ¼ 1; . . . ;N :
This linear system of equations for u1; . . . ; uN can be solved explicitly by the Sherman–Morrison formula,

which states that for a matrix B of the type B ¼ Dþ xyT, where D is an invertible diagonal matrix and x
and y are given vectors, its inverse B�1 is given by
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B�1 ¼ ðDþ xyTÞ�1 ¼ D�1 � 1

1þ yTD�1x
D�1xyTD�1:
In our case, we get the following solution of the system (2.20):
ui ¼
/i

aiðUÞð1� /Þ ðci � ð/1c1 þ � � � þ /NcN ÞÞ; i ¼ 1; . . . ;N : ð2:21Þ
We consider here the Masliyah–Lockett–Bassoon model (MLB) (Masliyah, 1979; Lockett and Bassoon,
1979), whose decisive specific assumption states that there exists a function V ð/Þ, the �hindered settling

factor�, such that /i=aiðUÞ ¼ �d2
i V ð/Þ=ð18lfÞ for i ¼ 1; . . . ;N , where lf is the dynamic viscosity of the pure

fluid. A very common example due to Richardson and Zaki (1954) is
V ð/Þ ¼ ð1� /Þn�2
; n > 2 for 0 < / < 1;

0 otherwise:

�
ð2:22Þ
Introducing the reduced densities �..i :¼ .i � .s, i ¼ 1; . . . ;N , the vector �.. :¼ ð�..1; . . . ; �..N Þ
T
and the para-

meters l :¼ �gd2
1=ð18lfÞ and di :¼ d2

i =d
2
1 for i ¼ 1; . . . ;N , we finally obtain the explicit equations for the

slip velocities
ui ¼ ldiV ð/Þ ð�..i
�

� �..TUÞ k

�
� x2

g
r

�
þ reð/Þ

/i
r /i

/

� �
þ 1� /

/
rreð/Þ

�
; i ¼ 1; . . . ;N : ð2:23Þ
In view of (2.3), the fluxes /1v1; . . . ;/NvN appearing in the solids continuity equations can be written as
/ivi ¼ fM
i ðUÞ k

�
� x2

g
r

�
þ /iq� aiðU;rUÞ; i ¼ 1; . . . ;N ; ð2:24Þ
where, defining d :¼ ðd1; . . . ; dNÞT, we have
fM
i ðUÞ :¼ lV ð/Þ/i dið�..i

"
� �..TUÞ �

XN
k¼1

dk/kð�..k � �..TUÞ
#
; ð2:25Þ

aiðU;rUÞ :¼ � lV ð/Þ
g

ð1� /Þ/i

/
ðdi

"
� dTUÞrreð/Þ þ reð/Þ dir

/i

/

� � 
� /i

XN
k¼1

dkr
/k

/

� �!#
;

i ¼ 1; . . . ;N : ð2:26Þ
Thus, the field equations that have to be solved in several space dimensions are
o/i

ot
þr � /iq

�
þ fM

i ðUÞ k

�
� x2

g
r

��
¼ r � aiðU;rUÞ; i ¼ 1; . . . ;N ; ð2:27Þ

r � q ¼ 0; ð2:28Þ

rp ¼ �rreð/Þ þ .ðUÞð�gkþ x2rÞ þ 1

1� /
r � TE

f : ð2:29Þ
We are interested in simple spatially one-dimensional cases in which only the system of convection–

diffusion equation (2.27) rather than the full coupled system (2.27)–(2.29) has to be solved. The obvious

cases are gravity settling in a closed column and batch centrifugation in a tube or basket centrifuge
neglecting the effect of gravity. This case has been studied only for monodisperse flocculated suspensions so

far (B€uurger and Concha, 2001).
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2.6. Gravity settling in a closed column

We set x ¼ 0 and assume that all variables depend on height z, taken in the positive direction of the

vector k only. Then (2.28) turns into oq=oz ¼ 0 and thus q ¼ 0 in view of the closed bottom boundary
condition. The only system that remains to be solved can be written as
oU
ot

þ ofMðUÞ
oz

¼ o

oz
AðUÞ oU

oz

� �
; ð2:30Þ
where the entries of the diffusion matrix AðUÞ ¼ ðgijðUÞÞ16 i;j6N are given by
gijðUÞ :¼ � lV ð/Þ
g/

ð1
�

� /Þ/iðdi � dTUÞr0
eð/Þ þ didij

�
� dj/i �

/i

/
ðdi � dTUÞ

�
reð/Þ

�
; 16 i; j6N ;

ð2:31Þ
and we use the standard notation dij ¼ 1 if i ¼ j and dij ¼ 0 otherwise. For batch settling of a suspension in

a closed column of height L, Eq. (2.30) is equipped with the initial condition
Uðz; 0Þ ¼ U0ðzÞ; 0 < z < L; U0ðzÞ 2 D/max
ð2:32Þ
and the zero-flux boundary conditions
fMðUÞ � AðUÞ oU
oz

¼ 0 for z ¼ 0 and z ¼ L: ð2:33Þ
2.7. Batch centrifugation in a tube or basket centrifuge

We consider a moderate angular velocity x for which both gravitational and Coriolis effects can be

neglected, as discussed above. Then we may consider solutions that depend on the radius r as the unique

space variable. Moreover, we introduce a parameter r taking the value r ¼ 0 for a rotating tube and r ¼ 1

for a rotating basket centrifuge. In both cases it follows again that q ¼ 0, and the system of equations that

remains to be solved is
oU
ot

þ 1

rr
o

or

�
� x2

g
r1þrfMðUÞ

�
¼ 1

rr
o

or
rrAðUÞ oU

or

� �
: ð2:34Þ
We assume that the radius r varies between an inner radius Ri > 0 and an outer radius Ro > Ri. We then

obtain the boundary conditions (analogous to (2.33))
�x2rb
g

fMðUÞ � AðUÞ oU
or

����
r¼rb

¼ 0 for rb 2 fRo;Rig; ð2:35Þ
and the initial condition
Uðr; 0Þ ¼ U0ðrÞ; Ri < r < Ro; U0ðrÞ 2 D/max
: ð2:36Þ
3. Type analysis

We now summarize the main aspects of the type analysis by looking first at the gravity system (2.30). To

this end, we consider first a suspension of rigid spheres forming incompressible sediments, such that re � 0.
Under this assumption, (2.30) reduces to the system of first-order conservation laws
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oU
ot

þ ofMðUÞ
oz

¼ 0: ð3:1Þ
It is well known that solutions of (3.1) are discontinuous in general, and that the propagation speed

riðUþ;U�Þ of a discontinuity in the concentration field /i separating the states Uþ and U� is given by the

Rankine–Hugoniot condition
ri ¼
fM
i ðUþÞ � fM

i ðU�Þ
/þ

i � /�
i

; i ¼ 1; . . . ;N :
We recall that a system of conservation laws (3.1) is called hyperbolic if the eigenvalues of the Jacobian

JfMðUÞ :¼ ðofi=o/kÞ16 i;k6N are real, and strictly hyperbolic if these are moreover pairwise distinct. For

N ¼ 2, a system with a pair of complex conjugate eigenvalues is called elliptic. Some of the flux-density

vectors fðUÞ proposed in the literature cause the system (3.1) to be non-hyperbolic. In the special case

N ¼ 2, this means that the system is of mixed hyperbolic–elliptic type. The loss of hyperbolicity depends on

the size and density parameters, and the type is mixed if for given sizes and densities, the system is non-

hyperbolic (or elliptic) for U 2 E � D0
/max

, where
D0
/max

:¼ fU 2 RN : /1 > 0; . . . ;/N > 0; / ¼ /1 þ � � � þ /N < /maxg;
where it is assumed that V ð/Þ ¼ 0 for /P/max, and D0
/max

n E is non-empty.
The ellipticity criterion is equivalent to the criterion for the occurrence of instabilities like blobs and

viscous fingering (Fig. 2) introduced by Batchelor and Janse van Rensburg (1986), see Weiland et al. (1984)

for pertinent experimental findings. By a perturbation analysis, B€uurger et al. (2002) show that loss of hy-

perbolicity, that is the occurrence of at least one pair of complex conjugate eigenvalues ofJfðUÞ for vectors
U belonging to some non-empty subset E � D/max

, provides an instability criterion for polydisperse sus-

pensions of arbitrary numbers of species N . For N ¼ 3, this criterion can still be evaluated conveniently by

calculating the discriminant
I3ðUÞ :¼ 4s3 � s2r2 þ 27t2 þ 4r3t � 18rst
of the (signed) characteristic polynomial
p3ðk;UÞ :¼ � detðJfðUÞ � kIÞ ¼ k3 þ rk2 þ skþ t;
where the coefficients r ¼ rðUÞ, s ¼ sðUÞ and t ¼ tðUÞ are given by
r :¼ �trJf ¼ � of1
o/1

� of2
o/2

� of3
o/3

; t :¼ � detJf ;
(a) (b)

Separation of a bidisperse suspension of heavy (.1 > .f ; �) and buoyant (.2 < .f ; �) particles: (a) stable demixing with hori-

interfaces at low initial concentrations, (b) unstable separation with formation of �fingers� and �blobs� at higher concentrations.
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s :¼ � of1
o/3

of3
o/1

� of1
o/2

of2
o/1

� of2
o/3

of3
o/2

þ of1
o/1

of2
o/2

þ of1
o/1

of3
o/3

þ of2
o/2

of3
o/3

:

The model equations are unstable at U 2 D/max
, that is, they are non-hyperbolic, when the equation

p3ðk;UÞ ¼ 0 has a pair of complex conjugate solutions, which occurs if and only if I3 > 0. This also handles

the bidisperse case. In fact, setting I2 :¼ �I3ð/1;/2; 0Þ, we get I2 ¼ �s2ðr2 � 4sÞ=108; and Batchelor and

Janse van Rensburg�s (1986) well-known instability criterion for bidisperse suspensions just states that
instabilities occur if
r2 � 4s ¼ of1
o/1

�
þ of2
o/2

�2

� 4
of1
o/1

of2
o/2

�
� of1
o/2

of2
o/1

�
¼ of1

o/1

�
� of2
o/2

�2

þ 4
of1
o/2

of2
o/1

< 0:
B€uurger et al. (2002) determine instability regions (evaluating numerically I3) for three different choices of
fðUÞ. For the MLB model and a suspension with two particle species differing in size only, such instability
regions are shown in Fig. 3. One of the predictions of the diagrams of Fig. 3 is that if we consider a bi-

disperse suspension with initial concentrations (/0
1;/

0
2) chosen from the interior of the instability region,

then this suspension will separate unstably according to Fig. 2(b); otherwise, it will separate stably under

formation of stable horizontal interfaces as in Fig. 2(a). Observe that the instability regions for c close to

one in the left diagram of Fig. 3 are located near the line / ¼ 1. This means that for bidisperse suspensions

of equal-sized heavy particles that differ only slightly in density, hyperbolicity can be recovered by cutting

the hindered settling factor V ð/Þ at a suitable maximum concentration /max, such that the instability region

is contained in D1 nD/max
and thus is irrelevant for computations. For the Richardson–Zaki hindered

settling factor (2.22) this means that one utilizes
V ð/Þ ¼ ð1� /Þn�2
; n > 2 for 0 < / < /max;

0 otherwise

�

instead of (2.22). For example, in the case c ¼ 0:3 we may choose /max ¼ 0:7 (or, of course, any smaller

value).
Instability regions of the MLB model for N ¼ 2 with V ð/Þ ¼ ð1� /Þ2:65 and particles of the same size (d1 ¼ d2) and indicated

density ratios c :¼ �..2=�..1 (B€uurger et al., 2002). The left and right diagrams correspond to bidisperse suspensions with two heavy

e heavy and one buoyant (creaming) particle species, and include the instability region for the common limiting case c ¼ 0.
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Fig. 6 of Batchelor and Janse van Rensburg (1986) shows good agreement of experimentally observed

instability regions (in the phase plane) with those obtained algebraically, as those shown in our Fig. 3.

An interesting subcase is that of polydisperse suspensions of equal-density particles, usually made from

the same material, which differ only in size. Biesheuvel et al. (2001) consider bidisperse (N ¼ 2) suspensions
with particles differing in both size and density and determine instability regions for the MLB model and

the (more involved) model by Patwardhan and Tien (1985). They provide a long list of references (not

repeated here) of experimental studies which indicate that instability phenomena have never been observed

with equal-density (i.e., .1 ¼ � � � ¼ .N ) polydisperse suspensions. Biesheuvel et al. (2001) conjecture (but are
not able to prove) that this equal-density case always leads to stable separations. In our mathematical

terminology, this means that the equations should always be hyperbolic, but Biesheuvel et al. (2001) do not

appeal to the instability criterion as a property of the type of the model equations. For N ¼ 2 and the case

.1 ¼ .2, B€uurger et al. (2002) prove algebraically by evaluating I2 with the partial derivatives ofM
i ðUÞ=o/k,

i; k ¼ 1; 2 generated from the MLB model, that this conjecture is indeed true, which means that in this

special case the model equations are always hyperbolic. More recently, Berres et al. (2003a) extend this

result to any number of particle species N . In fact, by evaluating the characteristic polynomial

pðk;UÞ ¼ detðJfMðUÞ � kIÞ they prove that for equal-density particles (�.. ¼ � � � ¼ �..N ¼ .s � .f ), arbitrary N
and particle size distributions, the system (3.1) is strictly hyperbolic for all U 2 D with /1 > 0; . . . ;/N > 0

and / < 1 if the flux vector (2.25) is chosen. The results of the type analysis of the first-order system (3.1)

are also reported in B€uurger (2002a,b).
Next, we include the compression effect and consider the full equations (2.30). We recall here that the

assumption re ¼ reð/Þ used in the construction of the matrix AðUÞ is very unlikely to hold if the particles

differ in density, that is, differ in material, so we consider the compression effect given by the terms on the

right-hand part of (2.30) only in combination with equal-density particles.

In view of the generic assumptions on reð/Þ (2.8), we can read off from (2.31) that the system (2.30) is

degenerate, i.e. changes from second to first order, since AðUÞ ¼ 0 wherever /6/c, and we recall that for

/6/c and equal-density particles, the system (2.30) is strictly hyperbolic. Moreover, (2.30) has the non-

obvious property of being parabolic for /c < / < 1, which means that AðUÞ has N real, positive eigen-

values. This is proved by Berres et al. (2003a) by exploiting the similar properties of the characteristic
polynomials of the Jacobian of the convective fluxJM

f ðUÞ and of the diffusion matrix AðUÞ. Furthermore, it

turns out that the eigenvalues of AðUÞ are pairwise distinct and bounded.

It can be easily checked that for a given vector U 2 Dmax, the type of the �centrifugal� system of equations

(2.34) is the same as that of the analogous �gravity� system (2.30) (with the same particle properties and

model functions V ð/Þ and reð/Þ chosen), and that the type does not depend on x or r. To see this, we

rewrite (2.34) in non-conservative form as
oU
ot

þ
�
� x2

g
rJfMðUÞ �

r
r
AðUÞ

�
oU
or

¼ o

or
AðUÞ oU

or

� �
þ x2

g
ð1þ rÞfMðUÞ: ð3:2Þ
If U is chosen such that /c < / < 1, then the type of (3.2) is determined by the diffusion term, that is the

first term on the right-hand part of (3.2). This term is identical to that appearing in (2.30), except for z being
replaced by r. On the other hand, for 0 < /6/c, (3.2) reduces to
oU
ot

� x2

g
rJfMðUÞ

oU
or

¼ x2

g
ð1þ rÞfMðUÞ: ð3:3Þ
It is obvious that the relevant Jacobian of (3.3), which determines the type of these equations, is just that of

the first-order �gravity� equation (3.1), JM
f ðUÞ, multiplied by �x2r=g. Note that we consider rPRi > 0.

Thus, (3.3) is hyperbolic if and only if (3.1) is.

Considering the full range 0 < / < /max, we can in particular conclude that for equal-density spheres,
both the �gravity� system (2.30) and the �centrifugal� system (2.34) provide examples of a strongly degenerate
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parabolic–hyperbolic system of partial differential equations. It should, however, be mentioned that in-

stability phenomena such as those depicted in Fig. 2 have not been recorded for centrifugal systems.

The type properties discussed in this section are not only theoretically interesting but are useful when it

comes to numerical simulation. In fact, the properties of both matrices can be utilized to control the nu-
merical diffusion of the numerical scheme by Kurganov and Tadmor (2000) applied to (2.30).
4. Numerical method

We consider the computational domain QT :¼ ½Ri;R0	 � ½0; T 	 and introduce a rectangular grid by setting
rj :¼ Ri þ jDr, where J is an even integer and Dr :¼ ðRo � RiÞ=J denotes the width of a half-cell. Moreover,

let tn :¼ nDt, n ¼ 0; 1; 2; . . . ;N, where Dt :¼ T =N, and N is an integer, and k :¼ Dt=ð2DrÞ. The (ap-

proximate) cell average of /i, i ¼ 1; . . . ;N , with respect to the cell ½rj; rjþ2	, j ¼ 0; 2; 4; . . . ; J � 2, at time tn is
denoted by �//n

i;j, j ¼ 1; 3; . . . ; J � 1, and we define the approximate cell-average vector �UUn
j :¼ ð �//n

1;j; . . . ;
�//n
N ;jÞ

T

for j ¼ 1; 3; . . . ; J � 1 and n ¼ 0; 1; . . . ;N.

To outline the scheme, assume that at time z ¼ tn, n ¼ 0; 1; . . . ;N� 1, the vector �UUn
j has either been

calculated from the previous time step (for nP 1) or is given by the discretization of the initial condition,
�//0
i;j :¼

1

2Dr

Z rjþ1

rj�1

/0
i ðsÞds; j ¼ 1; 3; . . . ; J � 1; i ¼ 1; . . . ;N :
For the interior cells, we obtain the explicit update formula
�UUnþ1
j ¼ �UUn

j þ
x2k
rrj g

ðr1þr
jþ1 h

n
jþ1 � r1þr

j�1 h
n
j�1Þ þ

k
rrj
ðrrjþ1p

n
jþ1 � rrj�1p

n
j�1Þ; j ¼ 3; 5; . . . ; J � 3;

n ¼ 0; 1; . . . ;N� 1: ð4:1Þ
Eq. (4.1) is the discrete analogue of the �centrifugal� field equation (2.34), where hnj
1 and pnj
1 are ap-

proximations of the �hyperbolic� and �parabolic� fluxes fM and a, respectively, through the boundaries of the

cell ½rj�1; rjþ1	 at time tn. The detailed computation of the numerical fluxes follows precisely that of the

gravitational case described in detail in Section 6.2 of Berres et al. (2003a) (with the obvious modification of

replacing �z� by �r�), and is therefore not repeated here.

While the interior scheme (4.1) approximates the field equation (2.34), the corresponding boundary

conditions (2.35) prescribed at r ¼ Ri and r ¼ Ro are discretized by setting
�x2Ri

g
hn0 � pn0 ¼ 0; �x2Ro

g
hnJ � pnJ ¼ 0; n ¼ 0; 1; . . . ;N� 1: ð4:2Þ
Inserting this into (4.1), where we set j ¼ 1 and j ¼ �1, we obtain the following update formulas for the

boundary cells (boundary scheme):
�UUnþ1
1 ¼ �UUn

1 þ
x2k
rr1g

r1þr
2 hn2 þ

k
rr1
rr2p

n
2; n ¼ 0; 1; . . . ;N� 1; ð4:3Þ

�UUnþ1
J�1 ¼ �UUn

J�1 �
x2k
rrJ�1g

r1þr
J�2h

n
J�2 �

k
rrJ�1

rrJ�2p
n
J�1; n ¼ 0; 1; . . . ;N� 1: ð4:4Þ
A necessary condition for the scheme to converge is that the CFL stability condition is satisfied, which

limits the mesh size ratio k ¼ Dt=Dr for the explicit scheme considered here. The extension of the CFL

condition stated by Kurganov and Tadmor to the present strongly degenerate parabolic–hyperbolic system
reads



F
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x2

g
Ro

Ri

Dt
Dr

max
D/max

qðJfðUÞÞ þ
Dt
2Dr2

max
D/max

qðAðUÞÞ6 1

4
; ð4:5Þ
where qð�Þ denotes the spectral radius function.
ig. 4. Numerical simulation of batch centrifugation of a bidisperse suspension with particles differing in size and density.
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5. Numerical examples

5.1. Centrifugation of a bidisperse suspension of rigid particles

Biesheuvel and Verweij (2000) consider batch centrifugal sedimentation as a procedure for manufac-

turing functionally graded materials. They consider a bidisperse suspension of zirconia (ZrO2) and alumina

(Al2O3) particles, which we identify with Species 1 and 2, respectively, dispersed in water, and use experi-

mental information by Chang et al. (1991). According to Table IV of Biesheuvel and Verweij (2000), the

particles have the parameters d1 ¼ 3:0� 10�7 m, d2 ¼ 2:0� 10�7 m, .1 ¼ 6050 kg/m3, .2 ¼ 3940 kg/m3,
Fig. 5. Numerical simulation of the centrifugation of a tridisperse suspension forming compressible sediment in a basket centrifuge

(r ¼ 1) at x ¼ x1 ¼ 25:573 rad/s, showing (a–c) the concentrations of the individual species and (d) the cumulative concentration /.



4980 S. Berres, R. B€uurger / International Journal of Solids and Structures 40 (2003) 4965–4987
while those of the liquid are, as before, .f ¼ 1000 kg/m3 and lf ¼ 10�3 Pa s. The initial concentration of the

mixture considered is /0
1 ¼ 0:06 and /0

2 ¼ 0:14, and a tube centrifuge (r ¼ 0) is considered with the radii

Ri ¼ 0:1016 m and Ro ¼ 0:1524 m. The centrifuge is operated at the scalar angular velocity x ¼ 354 rad/s,

which produces a centrifugal acceleration of x2R ¼ 1946:8g at the outer radius. Biesheuvel and Verweij
(2000) indicate that the hindered settling function (2.22) with n ¼ 4:65 is appropriate, and consider a

�packing factor� of 0.573, which we consider as a maximum concentration /max at which the hindered

settling factor V ð/Þ is cut.
We verified by evaluating the discriminant I2 numerically at a sufficiently dense set of points

ð/1;/2Þ 2 D0
0:573 that the MLB model with these parameters is indeed strictly hyperbolic, although the

system considered here involves particles of different sizes and different densities, for which this property

usually does not hold. The numerical simulations were made by considering Ri ¼ 0:1 m, Ro ¼ 0:15 m,

J ¼ 1000 and k ¼ 1 s/m. The numerical result is shown in Fig. 4 as three-dimensional plots of the con-
centrations as functions of radius r and time t and as settling plots. The solution shows that the bulk
Fig. 6. Numerical simulation of the centrifugation of a tridisperse suspension forming compressible sediment in a basket centrifuge at

x ¼ x1 ¼ 25:573 rad/s, showing (a–c) iso-concentration lines of the individual species and (d) of the cumulative concentration /. These
plots correspond to the results shown in Fig. 5.
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suspension, in which the concentration of both species decreases with time, is separated from the clear

supernatant liquid by two curved concentration discontinuities, which form a sector in which the sus-

pension consists of the smaller particles only. Fig. 4(d) shows that the concentration /2 of the smaller

species in this sector is larger than in the bulk suspension zone underneath, and for small times even larger
than the initial concentration. This �enrichment� of the smaller particles also appears in simulations of the

gravity settling case (B€uurger et al., 2001; Xue and Sun, 2003), was noted first by Smith (1966), and is

therefore sometimes called Smith effect.

The sediments are assumed here to be incompressible, and turn out to be composed of two layers: an

outer layer in which both particles are present at slightly varying concentrations, which accurately add up

to the maximum concentration 0.573, and an inner layer where only the second (smaller) species is present,

and also assumes the maximum concentration.
Fig. 7. Numerical simulation of the centrifugation of a tridisperse suspension forming compressible sediment in a tube centrifuge

(r ¼ 0) at x ¼ x1 ¼ 25:573 rad/s, showing (a–c) iso-concentration lines of the individual species and (d) of the cumulative concen-

tration /.
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5.2. Centrifugation of a tridisperse suspension forming compressible sediments

We consider a tridisperse (N ¼ 3) suspension forming compressible sediments. This physical properties

of the mixture are the same as in Berres et al. (2003a), and are given by the model function (2.9) for reð/Þ
with the parameters r0 ¼ 180 Pa, /c ¼ 0:2 and k ¼ 6, and by the hindered settling factor (2.22) with

n ¼ 4:7. The remaining parameters are lf ¼ 10�3 Pa s, d1 ¼ 1:19� 10�5 m, d2 ¼
ffiffiffiffiffiffiffi
0:5

p
d1, d3 ¼ 0:5d1 (such

that d ¼ ð1; 0:5; 0:25ÞT), �..s ¼ 1800 kg/m3 and g ¼ 9:81 m/s2. We consider here both a tube (r ¼ 0) and a

basket (r ¼ 1) centrifuge, where the inner and outer radii are chosen as Ri ¼ 0:05 m and Ro ¼ 0:15 m, such

that the effective sedimenting space is Ro � Ri ¼ 0:1 m. The angular velocity is first chosen as x1 ¼ 25:573
rad/s, such that x2Ro ¼ 10g. To study the effect of increase of the radial velocity on the composition of the

sediment, we consider in addition the same centrifuge as a basket centrifuge (r ¼ 1), operated at the angular

velocities x2 ¼
ffiffiffiffiffi
10

p
x1 and x3 ¼ 10x1, such that the centrifugal acceleration at the outer radius is increased

twice by a factor of ten. In all cases, we choose the initial concentrations U0 ¼ ð0:04; 0:04; 0:04Þ, as in Berres

et al. (2003a).
Fig. 8. Numerical simulation of the centrifugation of a tridisperse suspension forming compressible sediment in a basket centrifuge at

x ¼ x2 ¼ 80:869 rad/s, showing (a–c) iso-concentration lines of the individual species and (d) of the cumulative concentration /.
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In our simulations, we use the parameters J ¼ 1000 and k ¼ 8:0� 10�4 s/m, 8.0� 10�5 s/m and

8.0� 10�6 s/m for x ¼ x1, x2 and x3, respectively. Fig. 5 shows the numerical results for x ¼ x1 and r ¼ 1

as three-dimensional plots. Note that the grid used in the visual representation of these results is much

coarser than the computational grid defined by the parameter Dr that was actually used for the compu-
tations. More accurate information is given by the plots of Fig. 6. We observe three curved discontinuities

forming (from inner to outer positions) a clear supernatant liquid zone, a zone containing only the smallest

species, a zone containing the smallest and intermediate species, and a zone in which all species are present.

As for monodisperse suspensions (Anestis, 1981; Anestis and Schneider, 1983; Lueptow and H€uubler, 1991;
B€uurger and Concha, 2001) and unlike the gravity case for polydisperse mixtures (B€uurger et al., 2000a, 2001),
concentrations are not constant in these zones but vary as functions of time. From the �bottom�, that is,
from the outer wall of the basket centrifuge, the sediment is growing.

The plot showing the isolines of the cumulative solids concentration /, Fig. 6(d) shows for t fixed that
this concentration consistently increases from the suspension-sediment interface, where / ¼ /c, towards the

outer wall, and that the maximum concentration reached at the outer wall increases in time, which becomes

apparent by the successive appearance from the outer radius of the iso-concentration lines for / ¼ 0:22,
Fig. 9. Numerical simulation of the centrifugation of a tridisperse suspension forming compressible sediment in a basket centrifuge at

x ¼ x3 ¼ 255:73 rad/s, showing (a–c) iso-concentration lines of the individual species and (d) of the cumulative concentration /.



4984 S. Berres, R. B€uurger / International Journal of Solids and Structures 40 (2003) 4965–4987
0.24, 0.26 and 0.28. This behaviour is similar to the simulations shown by B€uurger and Concha (2001) for

monodisperse suspensions. The interesting parts of the solution are the iso-concentration lines of the

concentrations /1 to /3 of the individual species. We observe in Fig. 6(a) and (b) that the concentrations of

/1 and /2 increase near the bottom and then decrease again (as a function of time), and Figs. 5(d) and 6(d)
indicate that the smallest species first form a thin layer with relatively high concentration at the top of the

sediment before an equilibrium concentration is assumed. The numerical results indicate that the final

concentration of each species at steady state is at a given height is one third of the cumulative solids

concentration /.
Fig. 7 refers to the same parameters as the example shown in Figs. 5 and 6 except that we here consider a

rotating tube (r ¼ 0). The solution picture is very similar to that of Fig. 6, but the final concentrations

attained at the outer wall are substantially higher than in the basket centrifuge case (r ¼ 1).

Figs. 8 and 9 again refer to the basket centrifuge (r ¼ 1) considered in Figs. 5 and 6, but at the increased
radial velocities x2 ¼

ffiffiffiffiffi
10

p
x1 and x3 ¼ 10x1. Since the final time has been decreased by the factors 10 and

100 in Figs. 8 and 9, respectively, against that of Figs. 5 and 6, the solution pictures in the hindered settling

zone (where /6/c look very much the same. However, Figs. 8 and 9 illustrate that increasing the angular

velocity increases the concentrations in the sediment near the outer wall, and decreases the thickness of the

sediment, as expected.
6. Discussion

The mathematical model presented herein allows for describing both the hindered settling and the

consolidation of suspensions with particles of different sizes and densities by one system of field equations.
Thus it is unnecessary to explicitly track the suspension-sediment interface. It has been shown that modern

shock-capturing schemes for systems of conservation laws can be employed to simulate centrifugal sedi-

mentation–consolidation processes of flocculated suspensions. In particular, these schemes accurately re-

solve concentration discontinuities, reproduce them at the right position, and also include discretizations of

the diffusion terms describing sediment compressibility.

The present paper provides the common mathematical framework for recent analyses of gravity settling

of polydisperse mixtures, including the authors� papers and, for example, Xue and Sun (2003), and of

theoretical and experimental studies of centrifugal separation processes by Demeler et al. (1997); Biesheuvel
et al. (1998), Biesheuvel and Verweij (2000), Lerche and Fr€oomer (2001), Fr€oomer and Lerche (2002) and

D€uuck and Neeße (2002). However, in the centrifugal case some limitations of the applicability of the model

herein have to be taken into account. One of them is the range of angular velocities discussed in Section 2.5.

In fact, for very high values of x the Coriolis effect will add significant azimuthal components to the particle

phase velocities, and neglecting the Coriolis terms will then lead to under-predictions of the sedimentation

time. In the monodisperse case, this effect has become visible in Fig. 7 of B€uurger and Concha (2001). A

related limitation becomes apparent for long tube centrifuges (r ¼ 0) and for basket centrifuges with

compartment walls. In these cases the solid particles do not only settle onto the outer (radial) wall but also
on the side walls of the tube or onto compartment walls. Obviously, it is then no longer sufficient to

consider one space dimension. Extended analyses of mono- and bidisperse sedimentation including these

cases are provided by Greenspan and Ungarish (1985), Schaflinger et al. (1986), Schaflinger (1987),

Schaflinger and Stibi (1987) and Ungarish (1993, 1995, 2001). Let us mention that these treatments do not

lead to easily solvable models describing the complete separation process. Moreover, most available ex-

perimental information the model could be compared with (i.e., which provides concentration profiles) is

related to the gravity case, and there are currently only a few reliable records of sediment-suspension and

suspension-supernate interfaces in the centrifugal case (Sambuichi et al., 1991; Eckert et al., 1996; Garrido
et al., 2001).
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Finally, we mention that the mathematical analysis of strongly degenerate parabolic–hyperbolic equa-

tions and systems such as (2.30) is an ongoing research topic with still many unresolved problems. In fact,

only for the scalar case (N ¼ 1) it is ensured that the sedimentation–consolidation model stated here is well-

posed, which means that a solution exists, is unique, and continuously depends on the initial data, see
B€uurger and Karlsen (2001). For this case it is also possible to prove convergence of a numerical scheme. For

N P 2, a closed well-posedness theory even for the special subcase (3.1) (let alone for the system (2.30)) is

not available. Thus, rigorous convergence analyses of numerical schemes for such equations are feasible

only in the scalar case. High-resolution shock-capturing schemes appear to be a powerful tool for the

simulation of the dynamics of polydisperse suspensions, but it should clearly be pointed out that the

recommendation of their use for the present class of problems is essentially based on numerical experi-

mentation. It should also be mentioned that it is at present unclear under which conditions these schemes

will produce meaningful solutions also in the first-order hyperbolic–elliptic (for N ¼ 2) or non-hyperbolic
mixed type cases discussed in Section 3.
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