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Abstract

We use one-dimensional high-order central shock-capturing numerical methods to study the response of various model
solar atmospheres to forcing at the solar surface. The dynamics of the atmosphere is modeled with the Euler equations in a
variable-sized flux tube in the presence of gravity. We study dynamics of the atmosphere suggestive of spicule formation and
coronal oscillations. These studies are performed on observationally derived model atmospheres above the quiet sun and above
sunspots.

To perform these simulations, we provide a new extension of existing second- and third-order shock-capturing methods to
irregular grids. We also solve the problem of numerically maintaining initial hydrostatic balance via the introduction of new
variables in the model equations and a careful initialization mechanism.

We find several striking results: all model atmospheres respond to a single impulsive perturbation with several strong shock
waves consistent with the rebound-shock model. These shock waves lift material and the transition region well into the initial
corona, and the sensitivity of this lift to the initial impulse depends nonlinearly on the details of the atmosphere model. We also
reproduce an observed 3 min coronal oscillation above sunspots as well as 5 min oscillations above the quiet sun.
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1. Introduction

This paper investigates the response of the solar atmosphere to impulsive forcing at the solar surface using
initial conditions derived from observationally based atmosphere models. Impulsive forcing is studied because it
provides insight into the natural modes of oscillation of the solar atmosphere, and because there are occasional
observed impulsive phenomena, such as small solar flares, spicules, etc. Impulsive forcing is believed to be mostly
caused by magnetic stresses, such as those resulting from magnetic reconnection, local dynamo action, the emer-
gence of magnetic flux tubes from the solar interior and interaction between flux tubes and granular convection.
We look at a range of parameters that define the forcing function for each atmosphere model. We simulate the
response of previously published observationally based model atmospheres above the quiet sun and above sunspots.
Various phenomena that appear in our simulations correspond to observed phenomena on the sun. Specifically,
our simulations show behavior corresponding tospicules, narrow, jet-like features observed in the solar atmo-
sphere, and oscillations in the upper atmosphere. We find that the details of these phenomena depend on the
atmosphere model.

The dominant feature in our simulations is strong shock waves that propagate upward, lifting material from the
lower atmosphere and causing oscillations of atmospheric materials. Because of these strong shocks, we perform our
simulations using high-resolution central shock-capturing schemes. These schemes provide reliable approximations
to solutions of the model equations in the presence of strong shocks while avoiding spurious numerical oscillations.
We extend existing methods to computational meshes which have variable grid spacing. We also use new variables
defined to facilitate numerical maintenance of hydrostatic equilibrium.

One important result of our simulations is the observation that the height of the lifted material depends nonlinearly
on the details of the initial atmospheric model. A second result is that when we use the quiet sun atmosphere model,
we observe a period of particle oscillations is in the 6 min range while if we initialize our simulations using a sunspot
model we see oscillations in the 4 min range. This is strikingly similar to observations of coronal oscillations in the
solar atmosphere[2].

Our simulations are based on the quasi-one-dimensional Euler equations applied to an initially hydrostatic
atmosphere in a magnetic flux tube whose area increases with height. This model ignores heating, except for the
input background heating needed to maintain the initial atmosphere contained in the initial conditions. This model
also ignores radiative energy loss, ionization terms, and thermal diffusion. We neglect magnetic fields beyond their
role in defining the geometry of the flux tube. Our lack of inclusion of energy loss precludes the study of continuous
forcing, because without energy loss terms such forcing would increase the energy of the atmosphere, causing it
to expand without bound. We therefore restrict our study to impulsive forcing. We will add energy loss terms and
study continuous forcing in a future work.

The structure of this paper is as follows: In Section1.1 we discuss basic properties of the solar atmosphere,
describing its structure and summarizing the observed phenomena of interest to this paper. Section2 presents
the physical model that underlies our simulation. Section3 introduces our numerical method, including a discus-
sion of initial and boundary conditions, and the computational mesh. New second- and third-order reconstruc-
tions on irregular meshes are presented in Section3.2. In Section3.4 we present a new technique for maintain-
ing initial hydrostatic equilibrium. Section4 presents our results, focusing on the match between our simula-
tions and observed properties of the solar atmosphere. We speculate on physical interpretations of our results
in Section4.2.1.

1.1. The solar atmosphere

The solar atmosphere is a dynamic environment with high-energy phenomena occurring on many scales. At the
base of the solar atmosphere is thephotosphere, the surface of sun’s convective outer layer. The photosphere is
roughly divided into two types of regions,quietandactive. The dominant features of the quiet photosphere are
its temperature, about 6000 K, andgranulations, which are currently understood as the surface of convective cells
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Fig. 1. Temperature profiles in the model atmospheres we use in our simulations.

rising from below. The surface of the photosphere has been observed to rise and fall with velocities in the range of
1 km/s, and with a period of about 5 min. Active regions are associated with sunspots, which are regions of lower
temperature, and very strong magnetic fields.

Above the photosphere, magnetic fields formmagnetic flux tubes, where a fixed number of magnetic field lines
are confined by hydrodynamic pressure into a tube. Since hydrodynamic pressure drops with increasing height, the
flux tube will in general expand with altitude, requiring a quasi-one-dimensional simulation. Though many flux
tubes are curved and closed, following magnetic loops, we will consider the simpler case of open magnetic flux
tubes pointing radially upward.

Above the photosphere, the solar atmosphere has a strongly stratified structure. The most striking feature of this
stratification is the variation of temperature with height. For example above quiet regions, after slowly dropping in
temperature to about 4700 K at about 3× 105 m, at 2× 106 m there is a strong rise to about 106 K within a few
kilometers. The layer within which this dramatic rise in temperature occurs is called thetransition region. The solar
atmosphere below the transition region and above the photosphere is called thechromosphere, and above is the
corona.

One-dimensional models of the solar atmosphere have been developed, based on observed temperatures, densities
and the requirement of hydrostatic equilibrium. The assumption of hydrostatic equilibrium is only approximately
justified, since significant down- and up-flows have been observed. Models have been developed for the atmosphere
above quiet regions[17] and sunspots[4,9]. Fig. 1shows the temperature profiles for the models that we use in our
simulations.

In the simulations described in this paper we begin with an atmosphere in hydrostatic equilibrium. This initial
atmosphere is based on one of the model temperature profiles described above. This atmosphere is then forced by
an impulse perturbation at the base of the atmosphere. There are two observed phenomena in the solar atmosphere
that correspond to features that appear in our simulations.

• Spicules. Spicules[3,13] are narrow near-linear features that are observed on the solar limb (seeFig. 2). They
seem to be cooler chromospheric material shooting up into the corona, and so can be modeled as an uplifting of
the transition region in a magnetic flux tube. We will see such uplifting in our simulations.

• Coronal oscillations. Particle oscillations in the corona have been observed to have periods of about 5 min above
quiet regions and 3 min above sunspots[2].
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Fig. 2. Spicules near the solar limb, seen as darker linear features against the solar surface. The spicules appear darker in this narrow-band
hydrogen-alpha image because their light is blue shifted due to their motion towards the observer. Photo credit: National Solar Observa-
tory/Sacramento Peak.

We describe these observations in more detail in Section4where we compare them directly with our simulations.

1.2. Previous simulations

There is a sizable literature of simulations similar to those presented in this paper, most of which attempt to
model spicule formation. Early attempts to model spicules as a ballistic uprise of the chromosphere into the corona
due to a very large (60 km/s) initial impulse are found in[11,15]. These simulations used vertical straight flux tubes.
Smaller impulses leading to a rise via the rebound shock phenomenon are considered in[1,5,6], some of which
include expanding flux tubes. These simulations are extended in[14] by adding radiative energy loss, heating and
heat conduction terms. These simulations used either the quiet sun VAL model or a simplified model of the solar
atmosphere.

Our paper extends the above work in two ways: we perform these simulations on recently published atmosphere
models above sunspots, comparing the results with those above the quiet sun. We also study coronal particle
oscillations in response to our impulsive forcing in the various atmosphere models. Our primary objects of study are
the relative behavior of both spicule formation and coronal particle oscillation in the various atmosphere models.

2. The model

The quasi-one-dimensional hydrodynamic equations for material in a flux tube of areaA(x, t) in gravity are
written in terms of densityρ(x, t), velocityu(x, t) and kinetic plus thermal energyE(x, t) as




Aρ

Aρu

AE




t

+




Aρu

Aρu2

A(E + p)u




x

=




0

−Apx − g(x)Aρ + F (x, t)Aρ

−g(x)Aρu + F (x, t)Aρu


 , (2.1)

whereg(x) is the gravitational acceleration and the pressurep(x, t) is given by the equation of statep = (γ − 1)(E −
(1/2)ρu2) with γ = 5/3. The temperatureT is given byp = R′ρT , whereR′ is the universal gas constant.F(x, t)
is a forcing term which perturbs the base of the solar atmosphere in our numerical experiments. We describe our
specific forcing function in Section4.



S. Bryson et al. / Physica D 201 (2005) 1–26 5

In order to use numerical methods that were developed for conservation laws, we rewrite(2.1)as a balance law
(conservation law with source)


ρ

ρu

E




t

+




ρu

ρu2 + p

(E + p)u




x

=




−ρuA−1Ax − ρA−1At

−ρu2A−1Ax − ρuA−1At − g(x)ρ + F (x, t)ρ

−(E + p)uA−1Ax − EA−1At − g(x)ρu + F (x, t)ρu


 . (2.2)

This form makes explicit that the scale of the flux tube area does not affect the dynamics. Following previous authors
[5,14] we consider static flux tubes soAt = 0.

For our flux tube geometry, based on the model given in[14], we use the functional approximation

A(x) = A0[1 + b(a(x) − a0)]2. (2.3)

Hereb = 3.2, a(x) = tanh(s(x − x0)) with s = 10−6 andx0 = 1.5 × 106, anda0 = a(0). A0 = A(0) is the area of
the flux tube at the base of the atmosphere, but does not appear in the simulation. Therefore

A′(x)

A(x)
= 2bs(1 − a(x)2)

1 + b(a(x) − a0)
.

3. The numerical method

In this paper we use high-order, non-oscillatory central schemes designed to solve systems of conservation laws
with source terms of the form

qt + f (q)x = S(q, x). (3.1)

Hereq ∈ R
p is ap-dimensional solution vector,f is the flux function, andS ∈ R

p is thep-dimensional vector of
source terms. The solution of(3.1)may become singular in finite time, which in turn requires careful study when
dealing with numerical approximations.

Our approach for solving(3.1) is based on extending the semi-discrete central-upwind scheme of Kuragnov et
al. (KNP)[8] to irregular grids. The KNP method is a simple efficient scheme with less dissipation than fully central
schemes, and has desirable stability properties. Any such scheme is composed of a numerical flux, a piecewise-
polynomial reconstruction and an ODE solver. The order of accuracy of the reconstruction and the ODE solver
determine the order of accuracy of the method. Below we address all three ingredients, with a particular focus on
our new high-order reconstructions on irregular grids.

Throughout this section we assume a one-dimensional grid with irregularly spaced nodesxj. The distance
between consecutive grids points is denoted as�xj := xj+1 − xj. We definexj+1/2 := (xj + xj+1)/2 and the cell
Ij = [xj−1/2, xj+1/2]. For any functionf(x) we use the notationfj := f (xj). The cell average ofq in the cellIj is
given by

q̄j := 1

xj+1/2 − xj−1/2

∫ xj+1/2

xj−1/2

q(x) dx.

We assume that the cell-averages ¯qn
j are known at timetn. The first step in the derivation of the approximate solution

is to generate a piecewise-polynomial reconstruction from these cell-averages. Such a global reconstruction is
defined as

q̃(x) =
∑
j

q̃j(x)χIj (x), (3.2)
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whereχIj (x) is the characteristic function ofIj, andq̃j(x) are polynomials of a suitable degree. The construction
of admissible ˜qj will be discussed in Section3.2. For the time being, it is sufficient to assume that a reconstruction
of the form(3.2) is known.

We denote the point-values of ˜q at the interfaces of the cellIj by

q+
j+1/2 := q̃j+1(xj+1/2), q−

j+1/2 := q̃j(xj+1/2).

3.1. The KNP central-upwind method

It is straightforward to extend the semi-discrete central scheme of[8] to irregular grids. When written in a
conservative form this scheme takes the form

dq̄j

dt
= −Hj+1/2 − Hj−1/2

xj+1/2 − xj−1/2
+ S̄j, (3.3)

whereS̄j is a discretization of the averaged value of the source term inIj and the numerical fluxHj+1/2 is given by

Hj+1/2 =
a+
j+1/2f (q−

j+1/2) + a−
j+1/2f (q+

j+1/2)

a+
j+1/2 + a−

j+1/2

−
a+
j+1/2a

−
j+1/2

a+
j+1/2 + a−

j+1/2

[q+
j+1/2 − q−

j+1/2].

The local speeds of propagation of information from the discontinuities on the interfaces of the cells,aj±1/2, are
given by

a+
j+1/2 = max

(
λk

(
∂f

∂q

)
,0

)
, a−

j+1/2 =
∣∣∣∣min

(
λk

(
∂f

∂q

)
,0

)∣∣∣∣ .
Hereλk(∂f/∂q) denote the eigenvalues of the Jacobian off evaluated atxj+1/2. In the case of problem(2.2), we have

a+
j+1/2 = max(u − c, u, u + c,0), a−

j+1/2 = | min(u − c, u, u + c,0)|,

wherec = √
γp/ρ is the speed of sound and all fields are evaluated atxj+1/2.

We approximate the cell-average of the source termS̄j asS(ρ̄j, ūj, Ēj, xj). This amounts to a first-order quadra-
ture approximation to the cell average. The O(�xj) error from this approximation appears in the terms containing
the flux tube area variation and the gravitational accelerationg(x). This error is acceptable since the flux tube model
(2.3)is itself only qualitative. While we compute the gravitational accelerationg(x) for each cell, it is slowly varying
and so is approximately constant in each cell.

3.2. Reconstructions and order of accuracy

In this section we introduce the new second- and third-order reconstructions for irregular grids that we use in the
scheme(3.3). In spite of the uncertainties that exist in the model atmospheres we use for our initial conditions as
well as the overall simplified nature of our model, high-order methods are valuable since they enable us to conduct
long-time simulations with well-resolved shock structures.

Our second-order reconstruction, when used in(3.3), is highly efficient and leads to a method that is total
variation diminishing (TVD). The TVD property assures that spurious numerical oscillations will not increase from
one timestep to another. The third-order method, when used in(3.3)provides higher resolution and leads to a number
of extrema diminishing (NED) method on regular grids. While the NED property does not guarantee that existing
oscillations will not grow, it does assure us that new numerical oscillations will not be introduced. Though we have
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not demonstrated that the NED property holds for irregular grids, the computational mesh we use in our simulations
is regular in the region of greatest interest.

The reconstruction ˜qj(x) in the cellIj should satisfy the following requirements:

• Conservation

1

xj+1/2 − xj−1/2

∫ xj+1/2

xj−1/2

q̃j(x) dx = q̄j.

While any linear reconstruction satisfies this property on a regular grid, this will not be automatically true when
the grid has variable spacing.

• Accuracy. q̃j is anrth-order accurate reconstruction. On a regular grid with grid spacing�x this amounts to

q̃j(x) = q(x) + O(�xr), x ∈ Ij.

• Oscillation minimizing. Spurious numerical oscillations should be avoided.

3.2.1. A second-order reconstruction
Second-order reconstructions are provided by piecewise-linear interpolants, with a different interpolant for each

cell Ij. A linear interpolant that is conservative inIj for anyDj is given by

q̃j(x) = q̄j + Dj

(
x −

(
xj + 1

4

(
�xj − �xj−1

)))
. (3.4)

The discrete derivative,Dj, is taken as

Dj = MinMod

(
4

q̄j − q̄j−1

�xj + 2�xj−1 + �xj−2
,4

q̄j+1 − q̄

�xj+1 + 2�xj + �xj−1

)
, (3.5)

where the MinMod limiter is defined as

MinMod(q1, . . . , qn) =




min(q1, . . . , qn), qi > 0,∀i,
max(q1, . . . , qn), qi < 0,∀i,
0, otherwise.

See[16] for a discussion of nonlinear limiters on uniform grids. The expression(3.4) now provides the required
values at the cell interfaces:

q−
j+1/2 = q̃j(xj+1/2) = q̄j + 1

4
Dj(�xj + �xj−1),

q+
j+1/2 = q̃j+1(xj+1/2) = q̄j+1 − 1

4
Dj+1(�xj + �xj+1).

Lemma 3.1. The reconstruction(3.4)and(3.5) is total variation preserving.

Proof. Our reconstruction isR(v) = ∑
j q̃j(x)χj(x), whereq̃j is given by(3.4). Then

TV(R(v)) =
∑
j

[
|Dj|

(
�xj + �xj−1

2

)
+

∣∣∣∣q̄j − q̄j+1 + Dj

4
(�xj+1 + �xj) + Dj+1

4
(�xj + �xj+1)

∣∣∣∣
]
.
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It is easy to verify thatDj defined in(3.5)satisfies

1. sgn(Dj) = sgn(Dj+1) = sgn(q̄j+1 − q̄j).
2. 1

4|(�xj−1 + �xj)Dj + (�xj + �xj+1)Dj+1| ≤ |q̄j+1 − q̄j|.

Then (assuming periodic boundary conditions)

TV(R(v)) =
∑
j

[
|Dj|

(
�xj + �xj−1

2

)
+ |q̄j − q̄j+1| − |Dj|

4
(�xj+1 + �xj) − |Dj+1|

4
(�xj + �xj+1)

]

=
∑
j

|q̄j − q̄j+1| +
∑
j

|Dj|�xj−1 + �xj

4
−

∑
j

|Dj+1|�xj + �xj+1

4
= TV(v). �

3.2.2. A third-order reconstruction
The third-order method from[7], based on[10], uses a linear combination of a linear interpolantLj(x) and a

quadratic interpolantQj(x) that is third-order accurate in smooth regions. Whenever a discontinuity is present,
the order of the reconstruction is reduced by choosing one linear interpolant from the appropriate side of the
discontinuity. This latter choice minimizes spurious numerical oscillations. The reconstruction of[7] is given in
terms of the convex combination

q̃j(x) := (1 − θj)Lj(x) + θjQj(x), (3.6)

where

θj :=




min

{
Mj+1/2 − Lj(xj+1/2)

Mj − Lj(xj+1/2)
,
mj−1/2 − Lj(xj−1/2)

mj − Lj(xj−1/2)
,1

}
, q̄j−1 < q̄j < q̄j+1,

min

{
Mj−1/2 − Lj(xj−1/2)

Mj − Lj(xj−1/2)
,
mj+1/2 − Lj(xj+1/2)

mj − Lj(xj+1/2)
,1

}
, q̄j−1 > q̄j > q̄j+1,

1, otherwise,

and

Mj = max{Qj(xj+1/2),Qj(xj−1/2)}, mj = min{Qj(xj+1/2),Qj(xj−1/2)},
Mj±1/2 = max{1

2(Lj(xj±1/2) + Lj±1(xj±1/2)),Qj±1(xj±1/2)},
mj±1/2 = min{1

2(Lj(xj±1/2) + Lj±1(xj±1/2)),Qj±1(xj±1/2)}.
We now extend the method(3.6) to non-uniform grids. The linear function,Lj(x), is taken as the conservative
reconstruction(3.4)with (3.5). The quadratic function,Qj(x), is replaced by

Qj(x) = Aj + Bj(x − (xj + x0)) + Cj(x − (xj + x0))2, (3.7)

where

x0 = 1

4
(�xj − �xj−1), Aj = q̄j − 1

48
γ2
j Cj,

Bj = 2αj[−βj(�xj−1 + 3�xj + 2�xj+1)q̄j−1 + βjβj+1µjq̄j + βj+1(2�xj−2 + 3�xj−1 + �xj)q̄j+1],

Cj = 12αj[βjq̄j−1 + βjβj+1ηjq̄j + βj+1q̄j+1].
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Hereγj = �xj + �xj−1,

αj = 1

(�xj−2 + 2�xj−1 + 2�xj + �xj+1)
, βj = 1

�xj−2 + 2�xj−1 + �xj

,

ηj = −(�xj−2 + 3�xj−1 + 3�xj + �xj+1),

and

µj = (2�xj−2 + 5�xj−1 + 5�xj + 2�j+1)(−�xj−2 − �xj−1 + �xj + �xj+1).

It is easy to verity that the interpolant(3.7) is conservative and third-order accurate onIj. Using(3.7)we get that
the point values at the cell interfaces are

Qj(xj+1/2) = −αjβjγjγj+1q̄j−1 +
(

1 + 1

2
αjβjβj−1γj(γjηj + µj)

)
q̄ + αj

βj+1

βj

γjq̄j+1,

and

Qj(xj−1/2) = αj

βj

βj+1
γjq̄j−1 +

(
1 + 1

2
αjβjβj−1γj(γjηj − µj)

)
q̄j − αjβj+1γjγj−1q̄j+1.

3.3. Time integration

The time stepping is performed by either a second- or third-order TVD Runge–Kutta method from[12]. Given
dataqn

j at timetn, we advance to the next time step by solving an ODE of the form

dqj

dt
= F (qj). (3.8)

A second-order TVD RK method for(3.8) is

q(1) = qn + �tF (qn), qn+1 = 1

2
(qn + q(1) + �tF (q(1))).

A third-order TVD RK method for(3.8) is

q(1) = qn + �tF (qn), q(2) = 3

4
qn + 1

4
(q(1) + �tF (q(1))), qn+1 = 1

3
qn + 2

3
(q(2) + �tF (q(2))).

Each time step is set to

�t = β max
j

�xj

σ(Jj)
,

whereσ(Jj) is the spectral radius of the JacobianJ = ∂f/∂q evaluated atxj. The parameterβ is taken in our
simulations asβ = 0.45.
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3.4. Hydrostatic equilibrium

We assume hydrostatic equilibrium at initialization and at the computational domain boundaries. This implies
thatu = 0 and there is no time evolution so long as hydrostatic equilibrium is maintained. Therefore hydrostatic
equilibrium relates pressure and density via(2.2)as

dp(x)

dx
= −g(x)ρ(x) = −g(x)p(x)

R′T (x)
. (3.9)

We use the temperature profileT(x) and pressure at the bottom of the atmospherep(0) = R′ρ(0)T (0) that are given
by an atmosphere model to solve(3.9) for the hydrostatic pressure profilep(x).

3.4.1. Hydrostatic balance
In order to obtain numerical hydrostatic balance, we modify the model(2.2) through a change of variables.

We assume that we are given an initial densityρ0(x) and energyE0(x) in hydrostatic equilibrium as described in
Section3.4.2. We define the variableŝρ := ρ − ρ0 andÊ := E − E0 and write the system(2.2)in the mathematically
equivalent form


ρ̂

ρu

Ê




t

+




(ρ̂ + ρ0)u

(ρ̂ + ρ0)u2 + p

(Ê + E0 + p)u




x

=




−(ρ̂ + ρ0)uA−1Ax

−(ρ̂ + ρ0)(u2A−1Ax + g − F )

−(Ê + E0 + p)uA−1Ax − (g − F )(ρ̂ + ρ0)u


 , (3.10)

with p := (γ − 1)(Ê + E0 − (1/2)(ρ̂ + ρ0)u2). Here we defineu := ρu/(ρ̂ + ρ0) and use the fact that hydrostatic
equilibrium implies that the flux tube is static soAt = 0. With these new variables,ρ̂ = Ê = 0 as long as the system
remains in hydrostatic equilibrium, i.e. satisfies(3.9) with u = 0. We estimateρ0(xj±1/2) andE0(xj±1/2) at the
cell interfaces using the interpolants described in Section3.2. As described in Section3.4.2, if ρ0(x) is defined by
(3.12), then our numerical method(2.2)will remain in hydrostatic balance as long asu = 0.

3.4.2. Hydrostatic initialization
We use(3.9) to initialize our simulations in hydrostatic equilibrium given a temperature profile specified by a

solar model. Eq.(3.9) is integrated on a high-resolution grid using a standard fourth-order Runge–Kutta method,
then linearly interpolated onto the actual computational grid of the simulation. This process gives an initial pressure
profilep0(x) which is transformed into an energy profile viaE0(x) = p0(x)/(γ − 1).

The initial density profileρ0(x) is determined by the requirement of numerical hydrostatic equilibriumu = 0 in
our method(3.3). In this case we havea+

j+1/2 = a−
j+1/2 = cj+1/2. Inserting these conditions into(3.3) applied to

our model(2.2) (suppressing the subscript 0 onp0 for clarity), we obtain

1

2(xj+1/2 − xj−1/2)







ρ− − ρ+

p− + p+

E− − E+




j+1/2

−




ρ− − ρ+

p− + p+

E− − E+




j−1/2


 =




0

−gρ

0




j

. (3.11)

We therefore have hydrostatic balance in the second component if we initialize the density term in the source as

(ρ0)j = − 1

2gj(xj+1/2 − xj−1/2)
[p−

j+1/2 + p+
j+1/2 − (p−

j−1/2 + p+
j−1/2)]. (3.12)

The first and third components of(3.11) will vanish if we use the variables defined in Section3.4.1so long as
hydrostatic equilibrium is satisfied atxj. Therefore if we initializeρ according to(3.12), ρ̂ = ρu = Ê = 0 and
E0 = p0/(γ − 1), then the method(3.3)applied to(3.10)will maintain hydrostatic equilibrium.
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Remark 3.2. Eq.(3.12)is a natural discretization of the cell average using the cell interface valuespj±1/2:

1

xj+1/2 − xj−1/2

∫ j+1/2

j−1/2
gρ dx = − 1

xj+1/2 − xj−1/2

∫ j+1/2

j−1/2

∂p

∂x
dx = − 1

xj+1/2 − xj−1/2
(pj+1/2 −pj−1/2),

which follows from the condition for hydrostatic equilibrium. Eq.(3.12)cannot be used to approximate the cell
average of the source term after initialization because the system does not remain in hydrostatic equilibrium after
we apply our forcing term. In general we approximate the source termS̄j asS(ρ̄j, ūj, Ēj, xj), see Section3.1.

3.5. Boundary conditions

Even though we use stretched grids, placing our boundaries at great distances as described in Section3.6, we
want to limit that distance so we can use as few grid nodes as possible in the computational domain. We therefore
have two issues to consider: the failure of initial hydrostatic equilibrium at the boundaries, and the problem of
reflections, particularly of strong shocks. Failure of initial hydrostatic equilibrium at the boundaries will cause a
wave to propagate into the domain.

Zeroth-order boundary conditions, whereqj = q1 for j < 1 andqj = qN for j > N, whereN is the number of
grid nodes, prevent reflections off the boundary but violate hydrostatic equilibrium. We therefore adapt a dynamic
boundary condition approach, where the boundary conditions are hydrostatic until a high velocity value propagates
from the interior to that boundary: ifu has not risen above a thresholdU since the start of the simulation then
hydrostatic boundary conditions are applied. Otherwise zeroth-order boundary conditions are applied. This approach
allows small reflections, which propagate slower than strong shocks thereby maximizing the time until the reflections
enter the lower atmosphere region. For a typical simulationU is taken to be 1 km/s.

Hydrostatic boundary conditions are implemented by defining the field values in the ghost cells via linear
interpolation of the high-resolution initialization grid described in Section3.4.2. This requires that the high-resolution
initialization grid’s domain be larger than the computational domain plus any ghost cells.

3.6. The computational domain

The computational domain is divided into three regions: the lower atmosphere, which is our domain of primary
interest and represents the chromosphere and lower corona, the upper corona, and a non-physical region below the
solar surface. The lower atmosphere region has constant high-density grid spacing while the upper atmosphere and
sub-surface regions have exponentially stretched meshes. The stretching of each stretched region is defined so that
grid spacing matches that of the (non-stretched) lower atmosphere at the shared boundary, and extends to a specified
distance with a specified number of nodes. In this way we can obtain high resolution in the region of interest and
keep the boundaries sufficiently far away such that reflected waves do not enter the lower atmosphere region during
the course of the simulation. Typical simulation values place the upper boundary of the lower atmosphere at 107 m
and the upper corona region at 5× 108 m.

The lower atmosphere domain is defined so that the solar surface is located at a coordinate value of 7.5 × 106 m,
which corresponds to a solar radius ofr� = 6.9599× 108 m. Thusx = 0 corresponds tor0 := 6.8849× 108 m.
The non-physical interior region.In the non-physical interior region the physics is adjusted to delay reflections

from the boundary so that they do not enter the physical region during the course of the simulation. We define the
gravitational acceleration in the interior region to be exponentially damped with increasing depth:

g(x) = GM�φ(x)

r2
, φ(x) =




1, x ≥ 0,

exp

{
−

(
x

0.04xI

)2
}

, x < 0.
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HereM� is the solar mass,r = r0 + x, andxI is a scale defined so thatg(x) � 0 in most of the interior region. In a
typical simulationxI is typically taken as−1 × 107 m.

In hydrostatic equilibrium we have dp/dx = −gρ = −gp/R′T so a smallergwill lead to a smaller growth inp.
We extend the temperatureT into the interior as a constant:T (x) = T (0) for x < 0. The result is a slower speed of
sound so the bottom of the interior region can be closer, requiring fewer grid nodes, while still avoiding reflections
off the lower boundary from entering the lower atmosphere region.

4. Results

In this section we present various results using the model and methods in this paper. We are particularly interested
in the response of the solar atmosphere to a single impulse at the solar surface. Our focus is on simulations that
bring out phenomena that resemble those observed in the solar atmosphere.

We consider the forcing termF(x, t) in (2.2), defined as

F (x, t) = V

�t
X(x)τ(t),

where the amplitudeV has units of m/s. When we refer to, e.g. “20 m/s impulse”, we mean thatV = 20 m/s. We
consider two choices forX andτ:

• X andτ as square functions with respective half-widths 105 m and 30 s: for|t| ≤ 30,τ(t) := 1, otherwise 0, and
for |x| ≤ 105, X(x) := 1, otherwise 0.

• X andτ as Gaussian functions with respective widths 105 m and 30 s:

X(x) = exp

{
−

( x

105

)2
}

, τ(t) = exp

{
−

(
t − 90

30

)2
}

.

These forcing functions are chosen to be physically reasonable but of short duration. We examine both forcing
functions to investigate possible dependence of the response of the atmosphere on the shape of the impulse.

We treatV as a tunable parameter that determines the total energy deposited into the atmosphere by the forcing
function. Our general approach will be to tuneV so that some aspect of the simulated phenomena matches observa-
tions and compare other aspects of the simulation. For example, we may choose aV that causes the transition region
to rise to around 6× 106 m and study the resulting particle oscillations, atmospheric profiles and shock wave devel-
opment. Different atmosphere models will require different values ofV to raise the transition region to this height.

For simplicity we assume that the solar atmosphere is entirely composed of hydrogen.

4.1. Tests of the numerical method

4.1.1. Accuracy and comparison of the reconstructions
We first check the accuracy of the second- and third-order interpolants described in Section3.2on an irregular

grid. Table 1shows the relativeL1 errors for the linear advection problem

qt + qx = 0, (4.1)

with periodic boundary conditions. The errors are shown atT = 1 for the periodic initial dataq(x, t = 0) = sin4(πx)
on the domain [−1,1] with nodes atxj = xj−1 + ∆(1 + sin(2πj/N)/1.1), whereN is the number of grid nodes.
Here∆ = 1/(N − 1).
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Table 1
RelativeL1 errors and convergence rates for the reconstructions on irregular grids used in the scheme(3.3) applied to the advection equation
(4.1)

N Second-order reconstruction Third-order reconstruction

L1 error Rate L1 error Rate

50 3.32× 10−1 – 8.69× 10−2 –
100 1.00× 10−1 1.73 1.37× 10−2 2.66
200 2.95× 10−2 1.76 2.20× 10−3 2.64
400 8.93× 10−3 1.72 3.79× 10−4 2.54

We now compare the quality of the second- and third-order reconstructions for our simulations of the solar
atmosphere.Fig. 3shows the result att = 360 s, initialized using the quiet sun model and perturbed with the square
impulse with amplitudeV = 20 m/s. The second- and third-order methods, were tested with a resolution of 1000
grid nodes in the lower atmosphere region. We see that there is only a small difference between the second- and
third-order methods at this resolution. Also notable in this figure is the strength of the shock in velocity value. It is
these large velocity shocks that cause the uplift and particle oscillations.

Based on these results we will perform the rest of the simulations in this section with 1000 grid nodes in the
lower atmosphere region using the second-order method. We make this choice primarily because of the superior
non-oscillatory properties of the second-order method, and also because of its increased speed. Using 1000 grid
nodes for our lower atmosphere region of interest (see Section3.6) give us a resolution of 10 km per grid cell.
This is larger than the smallest spacing of 2 km in the VAL model at the transition region, but we find that further
refinement of the grid does not significantly alter our results.

4.1.2. Test of numerical hydrostatic balance
As a test of the numerical hydrostatic balance described in Section3.4, we run the quiet sun model in our

simulation conditions with no initial velocity perturbation, i.e. with initial velocity set to zero everywhere. After
t = 4000 s, the duration of our simulation runs, the velocity is bounded by|u| < 2 × 10−10 m/s, which is consistent
with roundoff error in terms of the internal units used in our computations. Similar results are found with the other
atmosphere models. Thus numerical hydrostatic balance is preserved.

Fig. 3. Comparison of second- and third-order methods. Left: velocity; right: temperature.
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4.2. Spicule formation

Spicules are narrow near-linear features that are observed on the solar limb[3,13] (seeFig. 2). They are observed
to rise with upward velocities of about 25 km/s, have temperatures in the range of 5000–10,000 K and densities of
about 3× 10−10 kg/m3. Their maximum height is between 6.5 × 106 and 9.5 × 106 m. Because of these relatively
low temperatures and high densities, spicules can be thought of as an intrusion of chromospheric material into the
corona. Their linear shape can be explained as this material being channeled inside a magnetic flux tube.

We are primarily interested in the behavior of the transition region in response to impulses at the base of the
atmosphere, as well as the physical conditions below the transition region at its time of maximum height. We define
the position of the transition region to be where the temperature rises through 200,000 K. We compare simulations
using the three atmosphere models with both square and Gaussian impulses. We do this despite the fact that spicules
are not observed above sunspots in order to study the dependence of spicule formation on the atmosphere model.

The dominant feature of our simulations is strong initial and rebound shock waves that repeatedly appear for as
long as 30 min after the single initial impulse. An example of the effect of these shocks on the quiet sun model is
shown inFig. 4.

We first study the comparative response of the three model atmospheres to the same impulse amplitude. We set
the impulse amplitude toV = 16 m/s, which lifts the transition region in the quiet sun atmosphere model to about
6 × 106 m. Impulses with these amplitudes cause velocities in the range of 1 km/s in the lower chromosphere, in
accordance with observation. The resulting shock trajectories for all thee models and both square and Gaussian
impulses are shown inFig. 5. We see a characteristic increase in speed as the shock crosses the transition region

Fig. 4. History of the temperature (left) and density (right) profile for the quiet sun model in response to a square impulse with an amplitude of
20 m/s.
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Fig. 5. The trajectories of the velocity shocks for an impulse amplitude of 16 m/s. Left: square impulse; right: Gaussian impulse; top: quiet sun
model; middle: Ding–Fang sunspot model; bottom: Lites–Skumanich sunspot model. Note the downward propagating shocks.



16 S. Bryson et al. / Physica D 201 (2005) 1–26

Fig. 6. Particle trajectories for an impulse amplitude of 16 m/s. Left: square impulse; right: Gaussian impulse; top: quiet sun model; middle:
Ding–Fang sunspot model; bottom: Lites–Skumanich sunspot model.
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from the chromosphere to the corona. As time passes, this increase in speed occurs at higher altitudes as the
transition region rises. We also see short-lived downward propagating shocks below the transition region. As seen
in Fig. 3, velocity behind the shock reaches as much as 60 km/s as the shock passes the transition region. This
causes a dramatic uplift, i.e. lifting material and the transition region well into the initial corona. We track the
motion of atmospheric material by seeding test particles at specific heights, then tracking their motions throughout
the simulation. The positionx(t) of these particles is updated at each time step by solving the ODEx′(t) = u(x, t)
via the standard fourth-order Runge–Kutta method, whereu(x, t) is the velocity component of the approximated
solution. The resulting particle histories is shown inFig. 6.

We see immediately fromFig. 6 that the Lites–Skumanich sunspot model is much more responsive to the
initial impulse, with much higher uplift than the other two models. This is striking since, as seen inFig. 1, the
Lites–Skumanich model has a transition region height intermediate between the other two models. We will dis-
cuss a possible mechanism for this increased lift below in Section4.2.1. This behavior is also evident inFig. 7,
which shows the maximum height of the transition region for varying impulse amplitudes. The three models
exhibit a near-linear dependence on impulse amplitude, with the Lites–Skumanich sunspot model showing a
greater slope. We see that, particularly for the quiet sun and Ding–Fang atmosphere models, the transition re-
gion is lifted to spicule heights, between 5× 106 and 10× 106 m, for a wide range of impulse amplitudes. In
contrast, the Lites–Skumanich sunspot model is lifting to spicule heights for a narrower range of smaller impulse
amplitudes.

Fig. 8shows estimates of the speed of the transition region in its initial rise for varying impulse amplitudes. This
estimate is defined as the height of the first local maximum divided by the time taken to reach that height from first
motion. In all cases the speed of the rise increases approximately linearly with amplitude. For the square impulse
we see that for the range of impulse amplitudes that produces spicule height transition regions we have speeds just
below 20 km/s, just below the average observed value of 25 km/s. For the Gaussian impulse we have somewhat
lower speeds.

Fig. 9 shows physical conditions, specifically temperature and density, below the transition region at time of
maximum rise for each atmosphere model, with square and Gaussian impulses. In this case we choose impulse
amplitudes that lift the transition region to about 6× 106 m, typical spicule heights, in each model. For the quiet
sun, this requiresV = 16 m/s, the Ding–Fang sunspot modelV = 20 m/s, and for the Lites–Skumanich model
V = 8 m/s. The properties observed from this figure are summarized inTable 2, where we see that our simulations
match the observations reasonably well.

Fig. 7. Maximum height of the transition region for various impulse amplitudes. Left: square impulse; right: Gaussian impulse.
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Fig. 8. Average speed of rise of the transition region from initial position to first peak height vs. impulse amplitude. Left: square impulse; right:
Gaussian impulse.

4.2.1. Causes of the lifting of the transition region
Our results show that the amount by which the transition region is lifted has a complicated relationship with

the atmosphere model. In this section we attempt to understand this relationship. We first study the forces act-
ing at the transition region in an effort to understand the particle histories inFig. 6. We then study two as-
pects of the dependence of the atmospheric lifting on the temperature profile: dependence on the temperature
in the lower chromosphere, and dependence on the initial height of the transition region. These considerations
are motivated by an attempt to understand the increased lift of the corona in the Lites–Skumanich sunspot
model, where we have a slightly lower transition region and a cooler chromosphere than the other two models
(seeFig. 1).

4.2.1.1. Forces acting on the transition region.We study the forces acting at the transition region by estimating the
pressure gradient forceFp and comparing the resultant accelerationap = Fp/ρ with the gravitational acceleration
g. Fig. 10plots the ratioap/g overlaid on the trajectory of the transition region. We see that for the first several
minutes there are large transient accelerations, two orders of magnitude larger thang, caused by the passage of
shocks through the transition region. These transient accelerations cause the upward motion of the transition region.
Between these pulsesap drops to an order of magnitude less thang, so the motion of the transition region is nearly,
but not completely, ballistic. After 30 min, the acceleration attains a more wave-like character, with neither large
nor small accelerations relative tog, so the motion is no longer ballistic. Therefore there seem to be two phases
of motion: an early phase dominated by the passage of nonlinear shocks with nearly ballistic motion between the
shocks, and a later stage which has more linear wave-like behavior. This is to be expected since the rebounding of
the atmosphere damps over time.

Table 2
Temperature and density below the transition region at time of maximum rise based onFig. 9compared with observed spicule properties

Obseved Square impulse Gaussian impulse

VAL DF LS VAL DF LS

Temperature (K) 0.5 × 104 to 104 104 104 (2–3)× 104 104 104 (2–3)× 104

Density (kg/m3) 3 × 10−10 2 × 10−10 10−9 10−9 2 × 10−10 10−9 10−9
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Fig. 9. The temperature (solid line) and density (dashed line) profiles at the time of maximum transition region height. Left: square impulse;
right: Gaussian impulse; top: quiet sun model; middle: Ding–Fang sunspot model; bottom: Lites–Skumanich sunspot model.
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Fig. 10. The trajectory of the transition region (dashed line) and the ratio of the accelerationap at the transition region due to the pressure
gradient force to the gravitational accelerationg (solid line).

4.2.1.2. Effect of a reduced temperature in the chromosphere.We begin by considering a simple model of an
isothermal chromosphere, with temperatureT0, modeled as an ideal gas sop(x) = R′T0ρ(x). Then the condition
for hydrostatic equilibrium(3.9)becomes

dρ(x)

dx
= −g(x)ρ(x)

R′T0
. (4.2)

Therefore an isothermal atmosphere in hydrostatic equilibrium has a density that decreases with height at a rate that
is inversely proportional to the temperature. Consider now a given velocity impulse at the base of this atmosphere.
As that impulse propagates upwards, conservation of momentum implies that as density decreases the velocity
will increase, with the rate of increase being greater for lower temperatures. The higher velocities cause a higher
uplift. Simple numerical experiments, replacing the quiet sun VAL temperature profile with a constant temperature
chromosphere, confirms that lower-temperature chromospheres exhibit higher lifting of the transition region for a
given velocity impulse.

We conjecture that, in a non-isothermal atmosphere, the same mechanism will, at least to a first approximation,
cause higher lifting for lower average chromosphere temperature and fixed transition region height. As a simple test
of this conjecture, we modified the quiet sun VAL model, suppressing the temperature in the lower chromosphere
similarly to the Lites–Skumanich chromosphere, approximately preserving shape (Fig. 11, left). The resulting
particle histories for the modified VAL model exhibit significantly increased uplift (Fig. 11, right) as compared with
the unmodified VAL model for the same conditions shown inFig. 6. As expected, the period of coronal oscillation
is also larger for the modified VAL model, due to the larger amplitude of the initial lift.

4.2.1.3. Effect of moving the transition region.In an attempt to understand the role that the location of the transition
region plays, we present simulations in which the quiet sun model is scaled so that the transition region has various
heights. We use a square 20 m/s impulse for this study.

In Fig. 12we show the dependence of the maximum transition region height on the initial transition region height.
We see that there is a nonlinear dependence, where initially higher transition regions get lifted much higher. One
possible explanation is that as the pressure shocks pass the transition region, the pressure gradient force will cause
an upward acceleration of the transition region like those shown inFig. 10. Density decreases with height (due to
the requirement of approximate hydrostatic equilibrium), so the pressure gradient force will cause greater upward
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Fig. 11. Left: the chromospheric temperature profiles of the quiet sun VAL, modified VAL and Lites–Skumanich atmosphere models. The
modified VAL model has a reduced temperature in the lower chromosphere. Right: the particle histories for the modified quiet sun VAL model
in response to a square, 16 m/s impulse, exhibiting increased uplift (compareFig. 6).

acceleration of higher transition regions. The resulting quasi-ballistic motion of the transition region will lift it to
greater heights.

4.2.1.4. Combined effects.The Lites–Skumanich and Ding–Fang sunspot models have both cooler chromospheres
and lower transition regions, so we must consider the above effects in combination. This is difficult to do, even
qualitatively, because a cooler chromosphere and lower transition region have opposite effects with respect to the
amount of lifting. Further, the detailed shape of the temperature profile will have an effect on the amount of lift.
We note that the Ding–Fang sunspot model has a somewhat higher temperature in the lower chromosphere, and
lower transition region than the Lites–Skumanich model (seeFig. 1). We therefore expect the amount of lift in the

Fig. 12. Maximum height of the transition region in response to a square impulse of 1000 m/s as a function of the initial transition region height
in a scaling of the quiet sun model.
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Fig. 13. Histograms of observed periods of coronal oscillations. Top: above the quiet sun; bottom: above sunspots.

Ding–Fang model to be less than in the Lites–Skumanich model. To understand the fact that the Lites–Skumanich
model has higher uplift than the quiet sun model, we conjecture that the increased lift due to the lower average
chromospheric temperature in the Lites–Skumanich model dominates the decreased lift due to the lower transition
region.

In all cases, the higher velocities behind a shock when it reaches the transition region will lead to higher uplift.
These higher velocities may be due to the shape of the initial temperature profile, as described above, or due to
larger initial velocity impulses, which would explain the results shown inFigs. 7 and 8.

4.3. Coronal oscillations

Recent observations in[2] have detected a notable difference in the period of oscillation of coronal particles
above sunspots compared to periods above the quiet sun. Above sunspots, the observed oscillations have periods
clustered around 3 min, while above the quiet sun the periods are clustered near 5 min (seeFig. 13).

In our simulations, we find a similar relationship between periods of oscillation of particles in the corona (above
the transition region). As seen inFig. 6, coronal material exhibits an oscillatory behavior after being lifted by
the shocks. Due to the multiple shocks this behavior is complex, but there are dominant modes of oscillation. In
Fig. 14we see the power spectra of the particles whose histories are shown inFig. 6. Here we again choose impulse
amplitudes that lift the transition region to typical spicule heights of about 6× 106 m in each model. We see that
for the chosen impulse amplitudes the quiet sun model has a dominant mode of oscillation with a period of 5.6 min,
and a weaker mode at about 3.5 min. In contrast, the Ding–Fang and Lites–Skumanich sunspot atmosphere models
only has the mode with a period of about 3.5 min. This is consistent with the observational data inFig. 13.
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Fig. 14. Particle spectra of particle oscillations for an impulse amplitude which lift the transition region to about 6× 106 m. The spectra are
stacked in order of the height of the particles. Left: square impulse; right: Gaussian impulse; top: quiet sun model; middle: Ding–Fang sunspot
model; bottom: Lites–Skumanich sunspot model.
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Fig. 15. The simulated periods of oscillations for the three atmosphere models and various surface velocity perturbation amplitudes. Left: square
impulse; right: Gaussian impulse.

In general, the period of oscillations of coronal particles depends on the impulse amplitude, though the details
of this dependence differs between the atmosphere models. This dependence is summarized inFig. 15. We see that,
generally speaking, the period of oscillation increases with impulse amplitude until a cutoff period of 5–6 min is
reached, after which shorter period modes appear and the longer period modes are damped out. For some of our
simulations two modes appear, which we interpret to be the suppression of the longer period mode as it approaches
the cutoff frequency, so the energy of oscillation goes into shorter-period modes.

5. Conclusions

In this paper we use a high-order shock-capturing scheme to study the response of various one-dimensional
model solar atmospheres to a single impulse at the solar surface. While there are many methods for approximating
the solutions of the evolution equations used in our study, high-order, non-oscillatory central schemes have the
advantage of avoiding Riemann solvers and characteristic variables, which make them well suited for balance laws.
Our treatment includes an extension of existing central methods to irregular grids and a new choice of variables
which facilitates the numerical maintenance of initial hydrostatic balance. These new features allow us to treat a
highly stratified atmosphere, where the density and temperature change over several orders of magnitude with high
gradients. Combined with high-resolution and numerical accuracy, our scheme has the ability to detect the effects
of subtle differences in initial conditions. Also, the study of particle oscillations is made possible by our ability to
resolve and track long trains of shock waves.

The results of our simulations verify the shock-rebound effect suggested in previous work[1,5,6,14]as a possible
mechanism of spicule formation. In this model an initial perturbation at the base of the atmosphere causes an
acoustic wave that forms into a compression shock as it rises. This is most apparent in the velocity field, where the
shock increases dramatically in amplitude as the density decreases with increasing height. By the time the shock
reaches the transition region, the velocity amplitude is over 104 m/s, which causes a strong lift of the transition
region and the underlying material. The shock also heats the gas as it passes. After the initial shock, material
falls due to gravity, causing an eventually decreasing train of new compression shocks to form. Due to the energy
deposition of the shocks and our neglect of energy loss terms, the atmosphere generally rises, so the particles
eventually stabilize at a new height above their original height. As in previous studies, at time of maximum uplift
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we find properties of the atmosphere below the transition region that roughly correspond to those observed for
spicules.

Particles in the chromosphere and corona are also lifted by passing shocks, which then fall under gravity until
the next shock arrives, or in later stages being lifted by pressure waves. The result is particle oscillations in both the
chromosphere and corona. FromFigs. 5 and 6we see that during the lifting phase with strong shocks, new shocks
arrive before the particles have completed a complete period of oscillation due to buoyancy. This suggests that the
timing of the shock waves is the dominant factor in the period of coronal particle oscillations due to rebound shocks.

In spite of the simplicity of our model, we find a remarkable correspondence between our results and observation.
We use single impulses whose amplitudes are selected to lift the transition region to spicule heights, around 6×
106 m. We then observe the response of the solar atmosphere through physical characteristics such as temperature
and density below the transition region, the speed at which the transition region rises and the period of oscillation
of coronal particles. In all cases our results are consistent with observation. When we vary the impulse amplitude
we find that these results do not depend strongly on the specific choice of impulse amplitude. There is also a small
but easily observable difference between the results for a square versus a Gaussian impulse.

These results do depend strongly on the atmosphere model. In particular we observe that the particle oscillation
spectrum using the quiet sun model differs from the particle oscillation spectrum obtained when a sunspot atmosphere
model is used. The differences we observe are consistent with observation of oscillations in the real solar corona.
We also note that the amount by which an impulse lifts the atmosphere is strongly dependent on the atmosphere
model. Simple experiments show that the temperature of the chromosphere and the location of the transition region
are strong determinants of the amount by which the atmosphere will be lifted by a given impulse.

We also examine the balance of forces at the transition region during the rebound-shock train. We find that during
the early phases, the motion of the transition region is determined by transient accelerations due to shock passage
with intervening periods of near-ballistic motion. At later times, as the rebound phenomena damps out, these forces
have a more wave-like behavior.

The next steps in our study include adding energy loss and heating models to our simulations such as in[14]. This
will allow us to study the atmospheric response to continuous surface forcing, which in our current model cause
the atmosphere to lift without bound due to the continuous energy deposition. Simulations in two-dimensional will
follow, where the model will be extended to the magnetohydrodynamic equations.

Acknowledgments

We would like to thank the helpful comments of our anonymous reviewers, which greatly enhanced the quality
of this paper. The work of D.L. was supported in part by the National Science Foundation under Career Grant No.
DMS-0133511.

References

[1] A.S. Andreev, A.G. Kosovichev, On a mechanism of spicule formation by shock waves in magnetic tubes, Astron. Lett. 403 (1994) 323–326.
[2] I. De Moortel, J. Ireland, A.W. Hood, R.W. Walsh, The detection of 3 & 5 minute period oscillations in coronal loops, Astron. Astrophys.

387 (2002) L13–L16.
[3] B. de Pontieu, Ph.D. Thesis, University of Ghent, Belgium, 1996.
[4] M.D. Ding, C. Fang, A semi-empirical model of sunspot penumbra, Astron. Astrophys. 235 (1989) 204–212.
[5] J.V. Hollweg, On the origin of solar spicules, ApJ 257 (1982) 345–353.
[6] A.G. Kosovichev, Yu.P. Popov, The computation of one-dimensional non-stationary problems of gravitational gas dynamics, USSR Comput.

Math. Math. Phys. 19 (1978) 168–175.
[7] K. Kurganov, G. Petrova, A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and

related problems, Numer. Math. 88 (2001) 683–729.



26 S. Bryson et al. / Physica D 201 (2005) 1–26

[8] K. Kurganov, S. Noelle, G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations,
SIAM J. Sci. Comput. 23 (2001) 707–740.

[9] B.W. Lites, A. Skumanich, A model of a sunspot chromosphere based on OSO 8 observations, ApJS 49 (1989) 293–316.
[10] X.-D.L. Liu, S. Osher, Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I, SIAM J.

Numer. Anal. 33 (2) (1996) 760–779.
[11] K. Shibata, Y. Suematsu, Why are spicules absent over plages and long under coronal holes?, Solar Phys. 78 (1982) 333–345.
[12] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439–471.
[13] A.C. Sterling, Solar spicules: a review of recent models and targets for future observations, Solar Phys. 196 (2000) 79–111.
[14] A.C. Sterling, J.T. Mariska, Numerical simulations of the rebound shock model for solar spicules, ApJ 349 (1990) 647–655.
[15] Y. Suematsu, K. Shibata, T. Nishikawa, R. Kitai, Numerical hydrodynamics of the jet phenomena in the solar atmosphere. I. Spicules, Solar

Phys. 75 (1982) 99–118.
[16] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21 (1984) 995–1011.
[17] J.E. Vernazza, E.H. Avrett, R. Loeser, Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet-sun,

ApJS 45 (1981) 635–725.


	High-order shock-capturing methods for modeling dynamics of the solar atmosphere
	1Introduction
	The solar atmosphere
	Previous simulations

	The model
	3The numerical method
	The KNP central-upwind method
	Reconstructions and order of accuracy
	A second-order reconstruction
	A third-order reconstruction
	Time integration
	Hydrostatic equilibrium
	Hydrostatic balance
	Hydrostatic initialization

	Boundary conditions

	The computational domain

	4Results
	Tests of the numerical method
	Accuracy and comparison of the reconstructions
	Test of numerical hydrostatic balance

	Spicule formation
	Causes of the lifting of the transition region
	Forces acting on the transition region
	Effect of a reduced temperature in the chromosphere
	Effect of moving the transition region
	Combined effects


	Coronal oscillations

	Conclusions
	Acknowledgments
	References



