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Abstract� In this talk we present third and fourth order central schemes for
the approximate solution of quasilinear systems of conservation laws� The
schemes are an extension of the second order Nessyahu�Tadmor scheme� and
are based on a ENO reconstruction from cell averages� and a numerical com�
puation of the �ux on cell boundaries� e�ciently obtained by Runge�Kutta
schemes with Natural Continuous Extension�

Here we focus on the linear stability analysis of the scheme� The exact
CFL condition for linear third and fourth order schemes are derived�

�� Introduction

Central schemes for conservation laws have been a subject of active research in
recent years ��� ��� �� �� �� �� �	
 The main advantage of central schemes over
upwind schemes is that they do not require the solution of Riemann problems� or
the computation of characteristic velocities of the system


These features make the central scheme approach very attractive for those
systems for which the solution to the Riemann problem is complicated� or when
there is no simple analytical expression for the eigenvalues of the Jacobian matrix

This is the case of systems arising� for example� in semiconductor modeling ��� �	

In that case the NT scheme� suitably modi�ed to incorporate source terms� has
been successfully used


The schemes that we present can be viewed as an extension of the second
order NessyahuTadmor scheme ��	
 A third order scheme has been presented by
Liu and Tadmor ��	
 They show that the scheme is Number of Extrema Decreasing

�NED�� and it gives good numerical results both on the scalar equation and on
the Euler equations


The main focus of our work is the development of third and fourth order
schemes� which are robust and e�cient� so that they can be easily implemented
for several systems of conservation laws
 The user has to provide only a subroutine
for the computation of the �ux vector and an estimate of the eigenvalues �necessary
to satisfy the stability condition�


This goal is obtained by the combination of two main ingredients� high order
ENO reconstruction from cell averages �which provides high order space accuracy
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and shock capturing capability�� and RungeKutta schemes with Natural Contin
uous Extension �NCE� for the integration of the �ux �which provides stability and
high order accuracy in time� without requiring the computation of the Jacobian
or the Hessian of the system�


The paper is divided in two parts
 In the �rst part we describe the general
features of the method� and we summarize the main results presented in ��	
 The
second part of the paper is original� and deals with the study of the linear stability
analysis of the linear schemes
 The analysis is relevant for the computation of
the exact CFL condition� and helps developing modi�cation to the original ENO
stencil selection mechanism


�� Description of the method

We describe the method in the case of scalar equation
 The extension to systems
is recalled later


Let us consider the scalar conservation law�

ut � fx�u� � �� ���

on an interval I � with suitable boundary conditions
 We consider for simplicity
a uniform grid on I of points fxjg� j � �� � � � � N � with xj�� � xj � h
 Let k
be the time step� with unj � u�xj � t

n�� tn � nk
 Finally� w will denote the com
puted solution of ���
 At time tn� we start from a piecewise constant function wn

j �
representing the cell averages of the computed solution w at time tn� namely�

wn
j �

�

h

Z h��

�h��

w�xj � y� tn� dy� ���

From the values fwn
j g

N
j�� we reconstruct the point values of the function w�x� tn��

via a suitable non linear piecewise polynomial interpolation
 The reconstruction
we use is due to Harten et al
 ��	


Let R�wn� x� be the reconstruction operator� where wn is the vector with
components wn

j � j � �� � � � � N 
 Then�

w�x� tn� �� R�wn� x� ���

is the function de�ned on I which will be used as initial data for the nth time
step
 The reconstruction R�wn� x� is piecewise polynomial in the sense that�

R�wn� x� � Pm
j �x� for x �

�
xj �

h

�
� xj �

h

�

�
�

where Pm
j is the space of polynomials of degree m de�ned on the interval �xj �

h��� xj �h��	
 Note that in general R will have jump discontinuities at the points
xj � h��
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The solution is updated on a staggered grid
 By integrating the conservation
law ��� on the cell �xj � xj��	� �tn� tn � k	� we obtain

wn��
j���� �

�

h

�Z h��

�

w�xj � y� tn� dy �

Z �

�h��

w�xj�� � y� tn� dy

�

�
�

h

Z k

�

�f �w�xj��� t
n � ���� f �w�xj � t

n � ���	 d�� ���

If the time step is subjected to the CFL condition k � h���max jf ��u�j�� we can
assume that w�x� tn��� is smooth at xj�� and xj � since the discontinuities starting
at tn from the staggered grid points xj���� have not had the time to reach the cell
boundaries


Then the time integrals can be approximated by a quadrature formula� say�

�

k

Z k

�

f �w�xj � t
n � ��� d� �

LX
l��

f �w�xj � t
n � k�l���l� ���

where �l and �l � ��� �	 are the knots and weights of the quadrature formula

Simpson�s rule is enough for third and fourth order schemes


Since w is smooth at xj � we can evaluate w at the intermediate times tn�k�l
through Taylor expansion or with a Runge Kutta method


In the following time step we repeat a similar process and go back to the
original grid


���� Reconstruction�

Reconstruction is a key step in high resolution schemes
 The algorithm we con
sider here was introduced in ��	 and it has been widely implemented� see ���	 and
references therein


The basic idea of ENO reconstruction is that by a suitable choice of the
stencil� the interpolation polynomial will have only small oscillations
 The original
technique for the selection of the stencil is very sensitive to the data� and this
may cause a deterioration of the accuracy
 In order to overcome this problem� two
modi�ed stencil have been used� one developed by Shu� and an original one �MC�
proposed by the authors ��	


���� Evaluation of the �uxes�

To compute the time integrals of the �uxes in ���� we need to evaluate the function
f�w�xj � t

n � k�l�� at the di�erent instants k�l � ��� k	� l � �� � � � � L
 This can be
obtained by Taylor expansion ��	� or by RungeKutta schemes
 Here we describe
the latter approach


The evaluation of the �eld at the jth grid point can be written as�
y���� � F ��� y���� � �fx �y�xj � t

n � ���
y�� � �� � w�xj � t

n��
���
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Thus the computation of the ith RungeKutta �ux requires the evaluation of the
xderivative of f at the intermediate time t � tn�cik� where ci are the coe�cients
of the RK scheme


Therefore we must compute all grid values of f at the intermediate time�
and perform a piecewise polynomial interpolation of these data to maintain high
accuracy and control over oscillations in the evaluation of fx


For a method of order m � �� we need a third order accurate three stage
RungeKutta method
 Thus we need to compute three polynomial interpolations
for each node �l in the quadrature formula appearing in ���


Fortunately a great saving in computational time can be obtained with the
use of Natural Continuous Extensions �NCE� of a RungeKutta scheme


The properties of NCE�s which are essential for their application to our
scheme are described and proved in ���	


At each time step� we apply the RungeKutta scheme only once� and we
obtain all intermediate values w�xj � t

n� k�l� through the evaluation of the appro
priate NCE


���� Systems�

We consider the system of conservation laws�

ut � fx�u� � �� ���

where u and f are vectors with M components


We apply our scheme componentwise
 At each time step� we start from the
array of cell averages� fwn

j�ig� j � �� � � � � N � i � �� � � � �M 
 We apply the recon
struction step at each component
 The stencil chosen in general will be di�erent
for each component
 The evaluation of the space contribution appearing in ��� is
now straightforward


For the time evolution� we must compute all components of the RungeKutta

�uxes g
�j�
i � i � �� � � � �M � before computing the successive �uxes g

�j���
i 
 No dif

ferentiation of the �ux function f is required
 We only need an estimate of the
maximum characteristic velocity to satisfy the CFL condition


���� Stability analysis�

Linear stability analysis of the schemes is performed� in order to identify the
linearly stable central schemes and compute the critical Courant number of the
scheme
 The former information will be used as a guideline for the choice of the
stencil in the non linear schemes


Let us consider a generic central scheme of third and fourth order� applied
to the linear equation�

ut � ux � ��
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Such scheme will take the form

wn��
j� �

�

�
m��X
l��

�
�

�
�l��

�

�l � ���
� �D

l

j�w
n� � ����i �D

l

j���w
n�	

�
�

�
f�wn

j�� � �w
n� �

�

j�� � wn��
j�� 	� �wn

j � �w
n� �

�

j � wn��
j 	g� ���

where the discrete space derivatives of the �eld� �D
l

j � are obtained from cell averages
fwn

j g by deconvolution ��� �	� and � � k�h denotes the mesh ratio

A detailed truncation analysis of the schemes shows that with our approach

it is necessary to use a m degree interpolation polynomial in the reconstruction
step to obtain a method of order m ��	


We shall consider separately third and fourth order schemes


������ Third order schemes� The di�erent stencils will be labeled by the value
of il�j��j� where il�j� is the leftmost point of the stencil
 The stencil of third order
schemes is formed by four points� and must include points j and j � �� therefore
the possible stencils are ���� ���� and ���


From deconvolution we obtain�

�D
�

j �u� � D�
j �u��

�

��
D�
j �u��

�D
�

j �u� � D�
j �u��

�D
�

j �u� � D�
j �u�

where D�
j �u� � uj � and Dk

j �u�� k � �� denotes the numerical approximation of

kth derivative of u �times hk�
 They are obtained by taking the derivatives of the
interpolating poliniomal of the particular stencil chosen
 We list them here�
Stencil ���

D�
j �u� �

�

�
�uj�� � �uj�� � �uj � �uj���

D�
j �u� � uj�� � �uj � uj���

Stencil ���

D�
j �u� �

�

�
���uj�� � �uj � �uj�� � �uj���

D�
j �u� � uj�� � �uj � uj���

Stencil ���

D�
j �u� �

�

�
����uj � ��uj�� � �uj�� � �uj���

D�
j �u� �

�

�
��uj � ��uj�� � ��uj�� � �uj����

From deconvolution we obtain�

�D
�

j �u� � D�
j �u��

�

��
D�
j �u�

�D
�

j �u� � D�
j �u�

�D
�

j �u� � D�
j �u��
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Here we consider three di�erent schemes� namely Timeux � RK��� and NCERK�


The schemes di�er in the computation of the predictor values w
n����
j and wn��

j 


The �rst scheme uses Taylor expansion �as in ��	�� the second uses two steps of

RungeKutta �� one for w
n����
j and one for wn��

j � and the third scheme uses RK�

for the computation of wn��
j � and NCE to evaluate w

n����
j 


Scheme NCERK� is the one that gives the best results in terms of robustness
and e�ciency �in the case of systems�� therefore we describe in detail only the
analysis for this one


In this case� wn�� is computed by RK� scheme� and wn���� is computed
using the corresponding NCE of degree �
 Only two evaluations of the function
are needed
 The predictor values are given by

wn��
j � wn

j � k�b����F �w
n� j� � b����F �K�� j�	� � � ���� �

K�� j � wn
j � �kF �wn� j��

���

where bi��� are the coe�cients of the Natural Continuous Extension of Runge
Kutta schemes ���	


Here and in the following� K� denotes the vector with components K��j 

Similarly� wn and wn are the vectors with components wn

j and wn
j 
 Furthermore

we recall that wn
j � D�

j � D�
j �w

n�� and

kF �wn� j� � �� �D
�

j �w
n��

kF �K�� j� � ��D�
j �K���

Substituting in ��� we obtain

wn��
j � �D

�

j �w
n�� ��b���� �D

�

j �w
n� � b����D

�
j �K���� � � ���� ��

������ Fourth order schemes� In this case the stencil contains �ve points
 The
possible stencils are� ���� ���� ���� and ���

Stencil ���

D�
j �u� �

�

��
uj�� � uj�� �

�

�
uj �

�

�
uj��

D�
j �u� � �

�

�
uj�� �

�

�
uj�� �

�

�
uj�� � �uj �

��

��
uj��

D�
j �u� � �

�

�
uj�� � �uj�� �

�

�
uj�� �

�

�
uj��

Stencil ���

D�
j �u� �

�

��
uj�� �

�

�
uj�� �

�

�
uj�� �

�

��
uj��

D�
j �u� � �

�

��
uj�� �

�

�
uj�� �

�

�
uj �

�

�
uj�� �

�

��
uj��

D�
j �u� � �

�

�
uj�� � uj�� � uj�� �

�

�
uj��

Stencil ���
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D�
j �u� � �

�

�
uj�� �

�

�
uj �

�

�
uj�� �

�

�
uj�� �

�

��
uj��

D�
j �u� �

��

��
uj�� �

�

�
uj �

�

�
uj�� �

�

��
uj��

D�
j �u� � �

�

�
uj�� � �uj � �uj�� � �uj�� �

�

�
uj��

Stencil ���

D�
j �u� � �

��

��
uj � �uj�� � �uj�� �

�

�
uj�� �

�

�
uj��

D�
j �u� �

��

��
uj �

��

�
uj�� �

��

�
uj�� �

��

�
uj�� �

��

��
uj��

D�
j �u� � �

�

�
uj � �uj�� �

�

�
uj�� � �uj�� �

�

�
uj��

From deconvolution we obtain�

�D
�

j �u� � D��u��
�

��
D�
j �u�� �D

�

j �u� � D��u��
�

��
D�
j �u�

�D
�

j �u� � D��u�� �D
�

j �u� � D��u�

As in the case of third order schemes� we consider three schemes� namely
Timeux � RK��� and NCERK�
 The �rst is based on a Taylor expansion� the
second on two steps of RungeKutta �� and the last uses one step of RK� with
NCE of degree �


Only the analysis for scheme NCERK� is shown in detail
 By applying Runge
Kutta � with NCE to ��� one has

wn��
j � wn

j � k�b����F �w
n� j� � b����F �K�� j� � b����F �K�� j�

�b����F �K�� j�	� � � ���� �

K��j � wn
j �

k

�
F �wn� j�

K��j � wn
j �

k

�
F �K�� j�

K��j � wn
j � kF �K�� j�

where the classical RK� scheme has been used with b
T � ��� �� �� ����� the terms

bi���� i � �� � � � � � are the NCE polynomials� and

kF �wn� j� � �� �D
�

j �w
n�

kF �Ks� j� � ��D�
j �Ks�� s � �� �� ��
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Third order schemes

Scheme Stencil Stability region
RK��� j��j��j�j�� ����
�����

j��j�j���j�� ����
�����
j�j���j�� unstable

NCERK� j��j��j�j�� ����
������
j��j�j���j�� ����
������
j�j���j���j�� unstable

Timeux j��j��j�j�� ������
j��j�j���j�� ������
j�j���j���j�� unstable

Table �� Stable stencils for third order schemes

After substitution� the expression of the predicted values is given by�

wn��
j � �D

�

j �w
n
j �� ���b���� �D

�

j �w
n� � b����D

�
j �K��

�b����D
�
j �K�� � b����D

�
j �K��	� � � ���� �

K��j � �D
�

j �w
n��

�

�
�D
�

j �w
n�

K��j � �D
�

j �w
n��

�

�
D�
j �K��

K��j � �D
�

j �w
n�� �D�

j �K��

Now we are ready to express ��� in terms of wn

The ampli�cation factor is obtained by looking for solutions of the form

wn
j � �neij� �

where i� � ��
 By substituting such expression in the numerical schemes one
obtains

wn��
j� �

�

� �����e
i���wn

j � � � ��� �		�

Stability is studied by analyzing the function

P���� � j�����j
��

Let �� be the maximum value of � for which

max
������

jP����j � �� ����

We say that the scheme is stable if there exists �� 
 �

From the analysis of P���� corresponding to the previous schemes one obtains

the stability results summarized in Table � and �� for third and fourth order
schemes respectively


The values of �� have been computed by solving an algebraic equation ob
tained from condition ����
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Fourth order schemes

Scheme Stencil Stability region
RK��� j��j��j��j�j�� unstable

j��j��j�j���j�� �������
j��j�j���j���j�� moder
 unstable
j�j���j���j���j�� unstable

NCERK� j��j��j��j�j�� unstable
j��j��j�j���j�� �������
j��j�j���j���j�� moder
 unstable
j�j���j���j���j�� unstable

Timeux j��j��j��j�j�� unstable
j��j��j�j���j�� ������
j��j�j���j���j�� moder
 unstable
j�j���j���j���j�� unstable

Table �� Stable stencils for fourth order schemes

The results of the analysis have been con�rmed by the numerical results
obtained by the above schemes


For third order schemes based on RungeKutta� we �nd that stencil ��� and �
�� are stable� and the stability region is slightly smaller than the one corresponding
to scheme Tadmor and the schemes based on Taylor expansion
 Stencil ��� is
unstable


For fourth order schemes based on RungeKutta� only the central stencil ���
is stable
 Stencil ��� is moderately unstable for � � ������� and this instability is
observed only after long integration time
 Stencil ��� and ��� are unstable


Note that for the third order schemes based on ENO reconstruction there
are two central stencils �i
e
 ��� and ����� and those are both stable
 If equation
ut � ux � � is considered� then the results for stencil ��� and ��� for third
order schemes are reversed
 In case of systems� because one does not want to do
upwinding� the most restrictive CFL condition has to be used
 For the fourth order
schemes based on ENO there is one central stencil� and it is stable
 In both cases�
therefore� the stability does not depend on the sign of the characteristic velocity


���� Numerical results�

Several tests have been performed� and the results are presented in ��	
 In particular
the scalar equation has been used to test the accuracy of the schemes� and several
test problems in gas dynamics have been considered� in order to study the shock
capturing and high resolution properties of the schemes
 The best performance�
in terms of accuracy and e�ciency� has been obtained by schemes NCERK� and
NCERK�
 The �rst is a third order scheme based on MCENO reconstruction
with piecewise cubic polynomials� and �ux evaluation obtained by RungeKutta
�� with NCE of degree �
 The second is a fourth order scheme based on MCENO
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reconstruction with piecewise polynomials of degree �� a nd RungeKutta � with
NCE of degree �
 Both schemes show the prescribed accuracy and sharp shock
resolution
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