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Abstract. A family of shock capturing schemes for the approximate solution of hyperbolic
systems of conservation laws is presented. The schemes are based on a modified ENO reconstruction
of pointwise values from cell averages and on approximate computation of the flux on cell boundaries.
The use of a staggered grid avoids the need of a Riemann solver. The integral of the fluxes is computed
by Simpson’s rule. The approximation of the flux on the quadrature nodes is obtained by Runge–
Kutta schemes with the aid of natural continuous extension (NCE). This choice gives great flexibility
at low computational cost. Several tests are performed on the scalar equation and on systems. The
numerical results confirm the expected accuracy and the high resolution properties of the schemes.
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1. Introduction. In this paper we present third- and fourth-order central schemes
for the approximate solution of quasilinear systems of conservation laws. The schemes
can be viewed as an extension of the second-order Nessyahu–Tadmor (NT) scheme
[11]. The main advantage of central schemes over upwind schemes is that they do
not require the solution of Riemann problems or the computation of characteristic
velocities of the system [11, 14].

These features make the central scheme approach very attractive for those systems
for which the solution to the Riemann problem is complicated or when there is no
simple analytical expression for the eigenvalues of the Jacobian matrix.

This is the case of systems arising, for example, in semiconductor modeling [1, 13].
In that case the NT scheme, suitably modified to incorporate source terms, has been
successfully used.

A third-order scheme has been presented by Liu and Tadmor [10]. They show
that the scheme is number of extrema decreasing (NED), and it gives good numerical
results both on the scalar equation and on the Euler equations.

The main focus of this paper is the development of third- and fourth-order
schemes, which are robust and efficient, so that they can be easily implemented for
several systems of conservation laws. The user has to provide only a subroutine for
the computation of the flux vector and an estimate of the eigenvalues (necessary to
satisfy the stability condition). This goal is obtained by using Runge–Kutta schemes
with NCE for the integration of the flux.

The plan of the paper is the following. In section 2 we derive the schemes. Es-
sentially nonoscillatory (ENO) and modified ENO reconstruction are presented. Two
approaches for the computation of the flux are considered: Taylor expansion and
Runge–Kutta schemes. We describe the use of Runge–Kutta with NCE for the in-
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tegration of the flux. Several schemes are derived, both of third and fourth order.
In this fashion high-order black box schemes for systems of conservation laws are
obtained. In section 3 we study the properties of the schemes. These include linear
stability analysis of all schemes considered and the evaluation of the truncation error.
The fourth section is devoted to numerical results. We consider the same tests de-
scribed by Liu and Tadmor [10]. We start from the scalar equation, where the order
of accuracy is computed on several smooth solutions, and we end with the shock tube
problem of gas dynamics with different initial and boundary conditions.

2. Description of the method. In this section we describe our high-order
central scheme. We start with a brief outline of the scheme for scalar equations in
section 2.1 followed by a more detailed description of the several steps composing the
method in the next subsections. Finally in section 2.5 the extension of the scheme to
systems of conservation laws is considered.

2.1. Central schemes for scalar conservation laws. We want to solve the
scalar conservation law

ut + fx(u) = 0,(2.1)

on an interval I, with suitable boundary conditions. We consider for simplicity a
uniform grid on I of points {xj}, j = 0, . . . , N , with xj+1−xj = h. Let k be the time
step, with unj = u(xj , t

n), tn = nk. Finally w will denote the computed solution of
(2.1).

At time tn, we start from a piecewise constant function wnj , representing the cell
averages of the computed solution w at time tn, namely,

wnj =
1

h

∫ h/2

−h/2
w(xj + y, tn) dy.(2.2)

From the values {wnj }Nj=0 we reconstruct the point values of the function w(x, tn)
via a suitable nonlinear piecewise polynomial interpolation. The reconstruction we
use is due to Harten, Engquist, Osher, and Chakravarthy [3]. We will describe
our implementation of the reconstruction step in section 2.2 for completeness. Let
R(wn; x) be the reconstruction operator, where wn is the vector with components
wnj , j = 0, . . . , N . Then

w(x, tn) := R(wn; x)(2.3)

is the function defined on I which will be used as initial data for the nth time step.
The reconstruction R(wn; x) is piecewise polynomial in the sense that

R(wn; x) ∈ Pmj for x ∈
[
xj − h

2
, xj +

h

2

]
,

where Pmj is the space of polynomials of degree m defined on the interval [xj−h/2, xj+
h/2]. Note that in general R will have jump discontinuities at the points xj ± h/2.

The evolution of the discontinuous data w(x, tn) can be computed by solving a
sequence of generalized Riemann problems centered at the points xj+1/2 = xj + h/2.
If the time step is restricted by the CFL condition as k ≤ h/max |f ′(u)|, then the
Riemann problems remain decoupled. This is the framework of upwind methods (see
[6] and references therein), where the updated solution is given by

wn+1
j = wnj − λ

1

k

∫ k

0

[
f
(
w(xj+1/2, t

n + τ)
)− f (w(xj−1/2, t

n + τ)
)]
dτ,(2.4)
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where λ = k/h. The computation of w(xj+1/2, t
n + τ) requires the (approximate)

solution of the generalized Riemann problem at xj+1/2. In the case of systems of
conservation laws, this step is the most expensive building block of upwind schemes.

On the other hand, in central schemes, the solution is updated on a staggered
grid. Thus, following Liu and Tadmor, [10], and Nessyahu and Tadmore, [11], we
compute

wn+1
j+1/2 =

1

h

{∫ h/2

0

w(xj + y, tn) dy +

∫ 0

−h/2
w(xj+1 + y, tn) dy

}

−λ1

k

∫ k

0

[f (w(xj+1, t
n + τ))− f (w(xj , t

n + τ))] dτ ;(2.5)

i.e., we integrate the conservation law on the staggered cells [xj , xj+1]× [tn, tn+k]. If
the time step is subjected to the more restrictive CFL condition k ≤ h/(2 max |f ′(u)|),
we can assume that w(x, tn + τ) is smooth at xj+1 and xj , since the discontinuities
starting at tn from the staggered grid points xj+1/2 have not had the time to reach
the cell boundaries.

Then the time integrals can be evaluated with a quadrature formula, say,

1

k

∫ k

0

f (w(xj , t
n + τ)) dτ '

L∑
l=0

f (w(xj , t
n + kτl))ωl,(2.6)

where τl and ωl ∈ [0, 1] are the knots and weights of the quadrature formula.
Since w is smooth at xj , we can evaluate w at the intermediate times tn + kτl

through Taylor expansion (see section 2.3) or with a Runge–Kutta method (see section
2.4).

In the following time step we repeat a similar process and go back to the original
grid.

Thus, in Godunov type upwind methods the weak form of the conservation law
is enforced in cells in space–time which are arranged like a pile of boxes. In central
type schemes, the weak form of the conservation law is enforced on cells which are
arranged like bricks in a wall (with due care to boundary conditions), as is shown in
Figure 2.1.

Upwind schemes enjoy a less restrictive CFL condition and are characterized by a
smaller amount of artificial diffusion. The main advantage of central schemes is their
simplicity: each time step is faster and their implementation is easier. See [4], [9],
and [14] for a discussion of the advantages of central schemes in a multidimensional
setting.

2.2. Reconstruction. Reconstruction is a key step in high resolution schemes.
The algorithm we consider here was introduced in [3] and it has been widely imple-
mented; see [16] and references therein. In this section we review the basic facts which
are essential for the construction of our scheme.

We will need two kinds of reconstruction:
(a) Given the point values of a function w(xj), we build a piecewise polyno-

mial interpolant I to evaluate the x-derivatives of w at the grid points xj ’s
(piecewise polynomial interpolation, see section 2.2.1).

(b) Given the cell averages wj of a function w, we reconstruct the point values
w(x) and the x-derivatives of w at the grid points xj ’s (reconstruction via
deconvolution; see section 2.2.2).
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Fig. 2.1. NT scheme on a staggered grid.

2.2.1. ENO piecewise polynomial interpolation. Given the point values
{(xj , wj)}Nj=0 of a function w(x), we find an interpolant Irw(x) of degree r such that

1. Irw(xj) = wj ;
2. Irw(x) ∈ P rj for x ∈ [xj − h/2, xj + h/2];

3. If u is a smooth function, Iru(x)− u(x) = e(x)hr+1 +O(hr+2), where e(x) is
at least piecewise continuous;

4. Irw is ENO in the sense of Harten et al. in [3].
We start from the construction of a local polynomial q̃rj+1/2(x) of degree r, defined

on [xj , xj+1], satisfying the interpolation conditions

q̃rj+1/2(xj) = wj and q̃rj+1/2(xj+1) = wj+1.(2.7)

To satisfy the accuracy condition 3, we further require

q̃rj+1/2(xl) = wl for l ∈ {il(j), . . . , il(j) + r},(2.8)

where xil(j) is the leftmost point of the stencil on which the construction of q̃rj+1/2(x)

is based. The interpolation condition (2.7) requires that j − r + 1 ≤ il(j) ≤ j. Thus
the conditions (2.7) and (2.8) are satisfied by r polynomials. We use this freedom to
select the polynomial that is less oscillatory. The problem of the best choice of il(j)
is still not settled; see [3], [12], [15] and subsection 2.2.3 below.

Once il(j) has been chosen for all j, we construct the polynomial q̃rj+1/2(x) from

the coefficients of the table of divided differences based on the points (xil(j), wil(j)), . . . ,
(xil(j)+r, wil(j)+r).

Gluing together the q̃rj+1/2’s, we obtain a continuous interpolant with jumps in
the first and higher derivatives at the grid points xj ’s. We now observe that if q̃
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interpolates the point values of a smooth function u, then

H+,l
j := hl

dl

dxl
q̃rj+1/2

∣∣∣
xj+0+

= hl
dl

dxl
u
∣∣∣
xj

+ O(hr+1),

H−,lj := hl
dl

dxl
q̃rj−1/2

∣∣∣
xj+0−

= hl
dl

dxl
u
∣∣∣
xj

+ O(hr+1).

(2.9)

Now let

Dl
j = MinMod(H+,l

j , H−,lj ),(2.10)

where MinMod is as usual:

MinMod(x, y) =

{
smin(|x|, |y|) if sgn(x) = sgn(y) = s,
0 otherwise.

We finally define

qrj (x) =

r∑
l=0

1

l!
Dl
j

(
x− xj
h

)l
, x ∈

[
xj − h

2
, xj +

h

2

]
,(2.11)

and

w(x) = Irw (x) ,

where

Irw (x) = qrj (x) for x ∈
[
xj − h

2
, xj +

h

2

]
.(2.12)

Thus, if u is a smooth function, then

hl
(
dlu(x)

dxl
− dlIru (x)

dxl

)
= O(hr+1), 0 ≤ l ≤ h,(2.13)

except at the points xj+1/2, where Iru will be discontinuous in general. Note, however,
that the accuracy may deteriorate locally due to the clipping phenomena introduced
with the MinMod function on local extrema.

2.2.2. Reconstruction via deconvolution. Suppose we are given the cell av-
erages {uj} of a smooth function u(x). We consider the cell averaged function:

u(x) =
1

h

∫ h/2

−h/2
u(x+ y) dy.

We construct the piecewise polynomial interpolant of u(x) described in the previous
subsection, namely, Iru(x). Expanding the integrand appearing in the definition of u,
we find

u(x) =
1

h

∞∑
l=0

1

l!

dlu

dxl

∣∣∣∣
x

∫ h/2

−h/2
yl dy =

∞∑
l=0

hlαl
dlu

dxl

∣∣∣∣
x

,(2.14)

where

αl =
1

h

1

l!

1

hl

∫ h/2

−h/2
yl dy =

 1

(l + 1)!

(
1

2

)l
l even,

0 l odd.
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Moreover,

dku(x)

dxk
=
∞∑
l=0

hlαl
dl+ku

dxl+k

∣∣∣∣
x

.

Thus,

hk
dku(x)

dxk
=
r−k∑
l=0

hk+lαl
dl+ku

dxl+k

∣∣∣∣
x

+O(hr+1), k = 0, . . . , r.(2.15)

We now let x = xj , and we approximate the left-hand side with the interpolant Iru:

Dk
j =

r−k∑
l=0

hk+lαl
dl+ku

dxl+k

∣∣∣∣
xj

+O(hr+1), k = 0, . . . , r,(2.16)

where the Dk
j ’s have been defined in (2.10). Next we define the quantities D̃l

j through
the linear system:

Dk
j =

r−k∑
l=0

αlD̃
l+k
j , k = 0, . . . , r.(2.17)

Clearly

D̃l
j = hl

dlu

dxl

∣∣∣∣
xj

+O(hr+1), l = 0, . . . , r,

and the reconstruction is given by

R(un; x) =
r∑
l=0

1

l!
D̃l
j

(
x− xj
h

)l
, x ∈

[
xj − h

2
, xj +

h

2

]
.(2.18)

Note that the system for the D̃l
j ’s is upper triangular and can be solved via back

substitution. By construction we have that 1/h
∫ h/2
−h/2R(un; xj + y) dy = uj , so that

conservation is exactly enforced. This means that in general R(un; xj) 6= uj .

2.2.3. Choosing the stencil. We still need to specify a recipe for choosing the
stencil of the polynomials q̃rj+1/2 defined in section 2.2.1.

The divided differences appearing in the coefficients of q̃rj+1/2 are computed from

the data (xil(j), wil(j)) · · · (xil(j)+r, wil(j)+r). If the function w(x) is smooth in the
interval (xil(j), xil(j)+r), then the polynomial q̃rj+1/2 will have no spurious oscillations.

On the other hand, if w(x) or its derivatives of order l ≤ r have jumps in the
interval (xil(j), xil(j)+r), then q̃rj+1/2 will exhibit an oscillatory Gibbs phenomenon.

Thus we need to choose il(j) so that the interval (xil(j), xil(j)+r) lies in a region
of smoothness of w. This requires that the exact solution does not have points of
discontinuity that are too close. In particular, when two shocks interact, the scheme
might develop some local oscillations, until the waves separate.

The Harten–Engquist–Osher–Chakravarthy (HEOC) stencil. The algo-
rithm proposed by Harten et al. in [3] is

il(j) = j
for l = 2, . . . , r

if
∣∣w[xil(j), . . . , xil(j)+l]

∣∣ > ∣∣w[xil(j)−1, . . . , xil(j)+l−1]
∣∣

il(j) := il(j)− 1
end for

(2.19)
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where w[xil(j), . . . , xil(j)+l] is the divided difference of order l based on the abscissas
xil(j), . . . , xil(j)+l. Thus, we select the stencil yielding the smallest divided differences.
For more details, see [3].

With this technique, the position of the stencil is very sensitive to small variations
in the data {wj}. Thus, in some cases the behavior of il(j) versus j can be very
irregular. This phenomenon does not lead to oscillations in the computed solution,
but it can result in a severe loss of accuracy. See [12] and [15] for a discussion of
this problem for upwind schemes and our numerical results in section 4 for a central
scheme setting.

Shu’s stencil. This algorithm for choosing il(j) was proposed in [15] and it is
designed to regularize the behavior of il(j) versus j.

The idea is that the loss of accuracy experienced with the HEOC stencil may be
due to the fact that the scheme can temporarily select linearly unstable stencils. Let
jc(j) be the position of the stencil which is locally linearly stable. Then Shu biases
the choice of il(j) toward jc(j). Namely,

il(j) = j
for l = 2, . . . , r

if il(j) > jc(j) then
if ω

∣∣w[xil(j), . . . , xil(j)+l]
∣∣ > ∣∣w[xil(j)−1, . . . , xil(j)+l−1]

∣∣
il(j) := il(j)− 1

if il(j) ≤ jc(j) then
if
∣∣w[xil(j), . . . , xil(j)+l]

∣∣ > ω
∣∣w[xil(j)−1, . . . , xil(j)+l−1]

∣∣
il(j) := il(j)− 1

end for

(2.20)

where ω is a weight. Shu proposes ω = 2.
In our central scheme setting, we cannot compute jc(j) starting from the wind

direction, otherwise we would have to compute the sign of characteristic velocities,
and this would destroy the simplicity of the scheme. Thus, we set jc(j) = central
stencil. With this simplification, the performance of Shu’s stencil deteriorates; see
section 4.

The MC stencil. Our numerical experiments give the best results with the MC
(mostly centered) stencil which we propose. The central stencil can be defined as

il(j) := j − [r/2],

where r is the degree of the polynomial used in the reconstruction, R(wn; x), and [x]
is the integer part of x. The idea is to choose the central stencil when the function wj
is monotone and to fall back on the HEOC stencil if an oscillation in the data {wj}
is detected.

The advantage of this simple procedure is twofold: the behavior of il(j) versus j
becomes very stable, and this has a favorable effect on the truncation error (see section
3.2). Moreover, linear stability analysis shows that the central stencil is linearly stable
for all our schemes. This, according to our computations and the results shown in
[12] and [15], seems to be crucial for high accuracy; see also section 4.

On the other hand, we are able to exploit the nonoscillatory properties of the
HEOC stencil when the exact solution has a discontinuity; see section 4.1.

Moreover, if the exact solution has bounded derivatives, the central stencil mini-
mizes the error due to polynomial interpolation.
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2.3. Evaluation of the fluxes via Taylor expansion. To compute the time
integrals of the fluxes in (2.6), we need to evaluate the function f(w(xj , t

n + kτl)) at
the different instants kτl ∈ [0, k], l = 0, . . . , L. From the reconstruction step, we have
the values w(xj , t

n) and the derivatives dlw/dxl(xj , t
n), for l = 1, . . . ,m. Since w is

smooth at xj , we can expand w(x, tn + τ) in a Taylor series:

w(xj , t
n + τ) =

r∑
ν=0

1

ν!

∂νw

∂tν
(xj , t

n)τν +O(hr+1).(2.21)

For a method of order m, it is enough to consider r = m− 1; see section 3.2.
To evaluate the t-derivatives of w, we use the conservation equation. This can be

done in two ways.
A first possibility is to compute

wt = −fx(w).

With this approach, the computation of wt(xj , t
n) at all grid points requires the

following steps:
- Compute f(w(xj , t

n)) ∀j.
- Perform an interpolation of the grid values of f , as in section 2.2.1.
- Compute the x-derivative of the interpolant at the grid points.

Similarly the higher order derivatives for the scalar equation are given by

wtt = −∂x (f ′wt) ,
(2.22)

wttt = −∂x
(
f ′′(wt)2 + f ′wtt

)
.

With this approach, for a method of order m = 4 we need to compute only the first
and the second derivative of f . On the other hand, each time derivative requires an
interpolation step. This strategy will be called Timed .

A second possibility is to compute

wt = −f ′(w)wx,

and similarly

wtt = 2f ′f ′′(wx)2 + (f ′)2wxx,
(2.23)

wttt = −6(f ′′)2f ′(wx)3 − 3(f ′)2f ′′′(wx)3 − 9(f ′)2f ′′wxwxx − (f ′)3wxxx.

These formulas become clearly prohibitively complex when applied to systems of
equations. However, this approach is very fast for scalar equations, because we need
to perform only one interpolation per time step. This strategy will be called Timeux
in section 4.

2.4. Evaluation of the fluxes through a Runge–Kutta method. The time
integrals of the fluxes in (2.6) can also be evaluated with a Runge–Kutta method. In
this fashion no computation of the derivatives of f is required.

We consider the conservation law at the grid points x = xj . At each of these
points, the PDE reduces to an autonomous ODE in the time variable t.

Consider the Cauchy problem{
y′ = F (t, y(t)),
y(t0) = y0.
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We adapt to our case the notation used in [19]. Then the solution at the (n + 1)th
time step obtained with a ν stage Runge–Kutta scheme can be written as

yn+1 = yn + k
ν∑
i=1

big
(i),

where the g(i)’s are the approximate Runge–Kutta fluxes,

g(i) = F

(
tn + kci, y

n + k
ν−1∑
j=1

ai,jg
(j)

)
,

and the ci are given by ci =
∑
j ai,j . The method is of course completely determined

by the vector b and the matrix a, which is lower triangular for explicit schemes.
In our case, we are solving a sequence of Cauchy problems. At the jth grid point

we have

{
y′(τ) = F (τ, y(τ)) = −fx (y(xj , t

n + τ)) ,
y(τ = 0) = w(xj , t

n).
(2.24)

Thus the computation of the ith Runge–Kutta flux g(i) requires the evaluation of the
x-derivative of f at the intermediate time t = tn + cik.

Therefore, we must compute all grid values of f at the intermediate time t =
tn + cik and perform a piecewise polynomial interpolation of these data as in section
2.2.1 to maintain high accuracy and control over oscillations in the evaluation of fx.

For a method of order m = 4, we need a third-order accurate three stage Runge–
Kutta method. Thus we need to compute three polynomial interpolations for each
node τl in the quadrature formula appearing in (2.6).

Fortunately a great saving in computational time can be obtained with the use
of NCEs of a Runge–Kutta scheme. These will be reviewed in the next subsection.

2.4.1. NCEs. The properties of NCEs which are essential for their application
to our scheme are described and proved in [19]. Here we state only the main facts.

Each ν-stage Runge–Kutta method of order p has a natural continuous extension
u of degree d ≤ p in the sense that there exist ν polynomials bi(θ), i = 1, . . . , ν of
degree at most d such that

1. u(tn + θk) := yn + k
∑ν
i=1 bi(θ)g

(i), 0 ≤ θ ≤ 1;
2. u(tn) = yn and u(tn + k) = yn+1;
3. maxtn≤t≤tn+k

∣∣y(l)(t)− u(l)(t)
∣∣ = O(hd+1−l), 0 ≤ l ≤ d,

where y(t) is the exact solution of the equation with y(tn) = yn. Note that the
polynomials bi(θ) depend only on the Runge–Kutta method chosen and not on the
particular ODE being solved.

Thus, at each time step, we apply the Runge–Kutta scheme only once, and we
obtain all intermediate values w(xj , t

n+kτl) through the evaluation of the appropriate
NCE.
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We end this section listing the NCEs which are of interest for our scheme.

(1) RK1 (for our second-order scheme)
d = ν = p = 1,
b1(θ) = θ;

(2) RK2 (for our third-order scheme)
d = ν = p = 2,
b1(θ) = (b1 − 1)θ2 + θ,
b2(θ) = b2θ

2;
(3) RK3

d = 2, ν = p = 3,
bi(θ) = 3(2ci − 1)biθ

2 + 2(2− 3ci)biθ, i = 1, 2, 3,
No NCE of degree d = 3 exists in this case;

(4) RK4 (for our fourth-order scheme)
d = 3, ν = p = 4,
b1(θ) = 2(1− 4b1)θ3 + 3(3b1 − 1)θ2 + θ,
bi(θ) = 4(3ci − 2)biθ

3 + 3(3− 4ci)biθ
2, i = 2, 3, 4,

No NCE of degree d = 4 exists in this case.

(2.25)

Therefore, for m = 4 we will compute the integral of the flux with a fourth-order RK
scheme and its NCE of order three. This requires four function evaluations per time
step. The alternative would be to use two RK3 steps, which requires six function
evaluations.

2.5. Systems of conservation laws. We consider the system of conservation
laws

ut + fx(u) = 0,(2.26)

where u and f are vectors with M components.
We apply our scheme componentwise. At each time step, we start from the array

of cell averages, {wnj,i}, j = 1, . . . , N ; i = 1, . . . ,M . We apply the reconstruction step,
as described in section 2.2 at each component. The stencil chosen in general will be
different for each component. The evaluation of the space contribution appearing in
(2.5) is now straightforward.

The computation of the time integrals of the fluxes is a little more delicate.
If we approximate w(xj , t

n + τ) with its Taylor expansion as in (2.21), for the
Timed method, we have

wt = −∂x (f) ,(2.27)

wtt = −∂x (Jf ·wt) ,(2.28)

wttt = −∂x
(
wT
t ·Hf ·wt + Jf ·wtt

)
,(2.29)

where (Jf)i,j = ∂fi/∂uj is the Jacobian of f , while (Hf)i,j,k = ∂2fk/∂uj∂ui is the
tensor of second derivatives. These formulas become even more complicated if the
Timeux strategy is used.

Thus for the m = 4 Timed scheme we need three piecewise polynomial interpo-
lations for each component.

For the NCE Runge–Kutta (NCERK) scheme, we must compute all components

of the approximate Runge–Kutta fluxes g
(j)
i , i = 1, . . . ,M , before computing the

successive fluxes g
(j+1)
i . As for the Timed scheme, the method requires m− 1 inter-

polations for each component, but no differentiation of the flux function f is required.
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We only need an estimate of the maximum characteristic velocity to satisfy the CFL
condition.

3. Stability and truncation analysis.

3.1. Linear stability analysis. In this section we report our results for the
linear stability analysis of the different schemes we are proposing. The analysis has
two purposes: identify the linearly stable central schemes and compute the critical
Courant number of the scheme. The former information will be used as a guideline
for the choice of the stencil in the nonlinear schemes. The results summarized here
are described in detail in the proceeding [2].

Let us consider a generic central scheme of third and fourth order, applied to the
linear equation

ut + ux = 0.

Such a scheme will take the form

wn+1
j+ 1

2

=

m−1∑
l=0

(
1

2

)l+1
1

(l + 1)!
[D̃

l

j(w
n) + (−1)lD̃

l

j+1(wn)]

− λ

6
{[wnj+1 + 4w

n+ 1
2

j+1 + wn+1
j+1 ]− [wnj + 4w

n+ 1
2

j + wn+1
j ]},(3.1)

where the discrete space derivatives of the field, D̃
l

j , are obtained from cell averages

{wnj } by deconvolution (see (2.17)). We will also need the quantities Dl
j defined in

(2.10), which also approximate the derivatives but are obtained from interpolation.

The explicit expressions of D̃
l

j and Dl
j as functions of wn can be easily written

and depend on the particular stencil chosen. We shall consider separately third- and
fourth-order schemes. We want to study the linear stability of central schemes with
a fixed stencil.

The values w
n+ 1

2
j and wn+1

j are obtained from wnj by a suitable Runge–Kutta
scheme, with or without its NCE. Moreover they depend on the particular stencil

chosen through the expressions for the D̃
l

j ’s and the Dl
j ’s.

The different stencils will be labeled by the value of il(j) − j, where il(j) is the
leftmost point of the stencil, as in section 2.2.

Since the stencil of third-order schemes is formed by four points, the possible
stencils are (−2), (−1), and (0).

For fourth-order schemes the stencil contains five points. The possible stencils
are (−3), (−2), (−1), and (0).

Now we are ready to express (3.1) in terms of wn. The details can be found in
[2].

The amplification factor is obtained by computing the evolution of the initial data

wnj = ρneijξ,

where i2 = −1. By substituting such expression in the numerical scheme one obtains

wn+1
j+ 1

2

= ρλ(ξ)eiξ/2wnj , ξ ∈ [0, 2π].

Stability is studied by analyzing the function

Pλ(ξ) = |ρλ(ξ)|2.
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Table 3.1
Stable stencils for third-order schemes.

Third-order schemes
Scheme Stencil Stability region
RK2-2 j − 2, j − 1, j, j + 1 λ∗ = 0.35099

j − 1, j, j + 1, j + 2 λ∗ = 0.43403
j, j + 1, j + 2 unstable

NCERK2 j − 2, j − 1, j, j + 1 λ∗ = 0.348086
j − 1, j, j + 1, j + 2 λ∗ = 0.435831
j, j + 1, j + 2, j + 3 unstable

Timeux j − 2, j − 1, j, j + 1 λ∗ = 1/2
j − 1, j, j + 1, j + 2 λ∗ = 1/2
j, j + 1, j + 2, j + 3 unstable

Tadmor j − 1, j, j + 1 λ∗ = 0.5
TadRK2 j − 1, j.j + 1 λ∗ = 3/7
TadRK2-2 j − 1, j, j + 1 λ∗ = 3/7

Table 3.2
Stable stencils for fourth-order schemes.

Fourth-order schemes
Scheme Stencil Stability region
RK 3-2 j − 3, j − 2, j − 1, j, j + 1 unstable

j − 2, j − 1, j, j + 1, j + 2 λ∗ = 9/22
j − 1, j, j + 1, j + 2, j + 3 moder. unstable
j, j + 1, j + 2, j + 3, j + 4 unstable

NCERK 4 j − 3, j − 2, j − 1, j, j + 1 unstable
j − 2, j − 1, j, j + 1, j + 2 λ∗ = 9/22
j − 1, j, j + 1, j + 2, j + 3 moder. unstable
j, j + 1, j + 2, j + 3, j + 4 unstable

Timeux j − 3, j − 2, j − 1, j, j + 1 unstable
j − 2, j − 1, j, j + 1, j + 2 λ∗ = 1/2
j − 1, j, j + 1, j + 2, j + 3 moder. unstable
j, j + 1, j + 2, j + 3, j + 4 unstable

Let λ∗ be the maximum value of λ for which

max
0≤ξ≤2π

|Pλ(ξ)| ≤ 1.(3.2)

We say that the scheme is stable if there exist λ∗ > 0.
From the analysis of Pλ(ξ) corresponding to the previous schemes one obtains

the stability results summarized in Tables 3.1 and 3.2, for third- and fourth-order
schemes, respectively. Scheme Tadmor is the third-order scheme described in [10].

The values of λ∗ have been computed by solving an algebraic equation obtained
from condition (3.2).

The results of the analysis have been confirmed by the numerical results obtained
by the above schemes.

For third-order schemes based on Runge–Kutta, we find that stencil (−2) and
(−1) are stable, and the stability region is slightly smaller than the one corresponding
to scheme Tadmor and the schemes based on Taylor expansion. Stencil (0) is unstable.

For fourth-order schemes based on Runge–Kutta, only the central stencil (−2)
is stable. Stencil (−1) is moderately unstable for λ < 0.4251, and this instability is
observed only after long integration time. Stencil (−3) and (0) are unstable.

Note that for the third-order schemes based on ENO reconstruction there are two
central stencils (i.e., (−2) and (−1)), and those are both stable. If equation ut−ux = 0
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is considered, then the results for stencil (−2) and (−1) for third-order schemes are
reversed. In the case of systems, because one does not want to do upwinding, the
most restrictive CFL condition has to be used. For the fourth-order schemes based
on ENO there is one central stencil, and it is stable. In both cases, therefore, the
stability does not depend on the sign of the characteristic velocity.

3.2. Truncation error. The purpose of this section is to explain why it is
necessary to use an m degree interpolation polynomial in the reconstruction step to
obtain a method of order m.

We consider a set of data {wnj } defining the numerically computed values of the
cell averages of an approximation to the solution of the conservation law (2.1) at time
tn. We apply the reconstruction operator introduced in section 2.2 to the data {wnj },
obtaining the function w(x, tn) = R(wn; x). Then our solutions can be written in
the form

wn+1
j+1/2 =

1

h

[∫ h/2

0

w(xj + y, tn) dy +

∫ 0

−h/2
w(xj+1 + y, tn) dy

]

− 1

h

L∑
`=0

k[f(w(xj+1, t
n + τ`))− f(w(xj , t

n + τ`))]ω`,(3.3)

where w(·, tn + τ`) are the values of w(·, t) evaluated on the nodes of the quadrature
formula through a suitable Runge–Kutta scheme (section 2.4) or via Taylor expansion
(section 2.3).

From now on we let u(x, t) and w(x, t) denote the exact solution of (2.1) and the
numerical solution obtained by (3.3). We study the error produced by one time step;
i.e., we suppose that the cell averages are exact at time tn, namely, wnj = unj , j = 0, . . . .

We recall that the reconstructed solution at time tn is given by (2.18):

w(x, tn) =
r∑
`=0

1

l!
D̃
l

j

(x− xj)l
hl

, x ∈ Ij ≡ (xj−h/2, xj+h/2).(3.4)

In this section the D̃
l

j ’s are approximations of the exact derivatives defined in (2.17).
By construction they satisfy

D̃
`

j = h`
∂lu

∂x`

∣∣∣∣
xj

+ hR+1ej,`(x) +O(hR+2)(3.5)

for a suitable R. If u is smooth enough, one can assume that the functions ej,`’s are at
least piecewise continuous. The index R (accuracy of the computed derivatives) and
r (degree of the reconstructed polynomials) need not coincide. In our computations
we will actually use R = m and r = m− 1.

The error due to the time step of the scheme in the (j+1/2)th cell can be written
as

un+1
j+1/2 − wn+1

j+1/2

k
= ES − ET ,

where un+1
j+1/2 = u(xj+1/2, t

n+k), and ES and ET are the space and time contributions

to the error, respectively, namely,

ES =
1

kh

(∫ h/2

0

u(xj + y, tn) dy −
∫ h/2

0

w(xj + y, tn) dy
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+

∫ 0

−h/2
u(xj+1 + y, tn) dy −

∫ 0

−h/2
w(xj+1 + y, tn) dy

)
(3.6)

while

ET =
1

kh

(∫ k

0

[(f(u(xj+1, t
n + τ))− f(u(xj , t

n + τ))] dτ

−
L∑
`=0

k [f(w(xj+1, t
n + τ`))− f(w(xj , t

n + τ`))]ω`

)
.(3.7)

Here we used the fact that u solves exactly the weak form of the PDE on the cell
(xj−1/2, xj+1/2)× (tn, tn + k).

Space contribution. We start from the space contribution. Substituting u with
its Taylor expansion and w with (3.4) and integrating, we find

ES =
1

kh

( ∞∑
`=0

1

(`+ 1)!

∂`u

∂x`

∣∣∣∣
xj

(
h

2

)`+1

−
r∑
`=0

1

(`+ 1)!
D̃
`

j

(
1

2

)`+1

h

−
∞∑
`=0

1

(`+ 1)!

∂`u

∂x`

∣∣∣∣
xj+1

(
−h

2

)`+1

+
r∑
`=0

1

(`+ 1)!
D̃
`

j+1

(
−1

2

)`+1

h

)
.

We substitute (3.5) into the D̃
`

j ’s. Next, rearranging and keeping only higher order
terms, we have

ES =
1

λ

[
1

(r + 2)!

(
h

2

)r (
∂r+1u

∂xr+1

∣∣∣∣
xj

− (−1)r
∂r+1u

∂xr+1

∣∣∣∣
xj+1

)

− hR
r∑
`=0

1

2`+1(`+ 1)!

(
ej,` − (−1)`+1ej+1,`

)]
+O(hR+1) +O(hr+1),

where we have used the fact that kh = λh2. The first term gives a contribution

O(hr) if r is odd,

O(hr+1) if r is even.

The second term gives a contribution of order O(hR). Thus, if we want a method of
order m we must have

R = m, r =

{
m− 1, m odd,
m, m even.

Our accuracy tests show that the requirement R = m is strict, while r can be chosen
as r = m− 1 in all cases. This shows that the estimate may be too pessimistic in the
evaluation of the number of terms needed in the Taylor expansion. However, the cost
of the scheme depends more on the value of R, which must be chosen equal to m, and
for this value the estimate is sharp.

Note that the space contribution to the error is entirely due to the staggered grid.
Upwind schemes do not need cell staggering and for them ES = 0. In central schemes,
however, it is precisely ES that introduces the stabilizing effect that counterbalances
the negative diffusion characteristic of central differencing. Since our scheme is not
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symmetric (i.e., the stencil selection may be different at neighboring points and the
same holds for the MinMod switch) the functions enj,` and enj+1,` do not in general
cancel out. Therefore, we are forced to use an m-degree interpolation to obtain an
m-order scheme. Moreover, even if the scheme is symmetric, ej,` and ej+1,` in general
will not cancel out if the grid is not uniform.

Time contribution. We write the time contribution ET to the truncation error
(3.7) as the sum of the two contributions at xj and xj+1, namely, ET = −ET,j +
ET,j+1, where ET,j has been written as

ET,j =
1

kh

[∫ k

0

f(u(xj , t
n + τ))−

L∑
`=0

kf(u(xj , t
n + τ`))ω`

]

+
1

kh

L∑
`=0

[kf(u(xj , t
n + τ`))− kf(w(xj , t

n + τ`))]ω`

= ET1,j + ET2,j .

ET1
is the error due to the quadrature formula. Since we are using Simpson’s rule,

the error due to the quadrature formula is O(k5) for each of the two time integrals
appearing in ET,j and ET,j+1. Because of cancellation we find that ET1

= −ET1,j +
ET1,j+1 = O(k6)/(kh) = O(k4).1 Next we evaluate ET2,j . In the following we consider
only the evaluation of u(·, tn+ τ`) via Taylor expansion; that is, we study the Timeux
strategy of section 2.3. We have

ET2,j = E
(1)
T2,j

+ E
(2)
T2,j

with

E
(1)
T2,j

=
1

kh

L∑
`=0

k

[
f(u(xj , t

n + τ`))− f
(
m−1∑
i=0

τ i`
i!

∂iu

∂ti

∣∣∣∣
(xj ,tn)

)]

=
1

kh

L∑
`=0

kO(τm` ) = O(km−1).

If the grid is uniform, subtracting E
(1)
T2,j+1 − E(1)

T2,j
we gain one order, because f and

u are smooth functions; therefore, E
(1)
T2

= O(km). We now consider

E
(2)
T2,j

=
1

kh

L∑
`=0

k

[
f

(
m−1∑
i=0

τ i`
i!

∂iu

∂ti

∣∣∣∣
(xj ,tn)

)
− f

(
m−1∑
i=0

τ i`
i!

∂iw

∂ti

∣∣∣∣
(xj ,tn)

)]
,

where we have substituted w(xj , t
n + τ`) with its Taylor expansion. If we use a

reconstruction based on a polynomial of degree R = m, and we apply (3.5), we find

τ i`
∂iu

∂ti
= τ i`

∂iw

∂ti
+O(hm+1).

Time derivatives of w are computed by Timeux strategy, by making use of the equa-
tion. We therefore find

E
(2)
T2,j

=
1

kh

M∑
`=0

kO(hm+1) = O(hm).

1This is enough for both m = 3 and m = 4. For more accurate schemes Simpson’s rule is not
enough.
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If E
(2)
T2,j

and E
(2)
T2,j+1 cancel out we can use a lower degree polynomial, namely, R =

m − 1. However, if the grid is not uniform, and/or the scheme is not symmetric
around xj+1/2, this cancellation may not hold, and a reconstruction of degree R = m
becomes necessary.

Accuracy of Tadmor scheme. We noted that an m-degree interpolation is
needed in order to obtain an m-order accurate method. Usually, however, we expect
that a polynomial of degree m− 1 should be enough for a uniform grid.

The extra computational effort required by our schemes is due to the high non-
linearity of the reconstruction scheme. We illustrate this problem by computing the
space contribution to the truncation error (ES) for Tadmor’s third-order scheme, as
defined in [10]. We start from the definition of ES given in (3.6), but now w(x, tn) is
obtained starting from the cell averages {wnj } with Tadmor’s third-order NED recon-
struction, namely,

w(x, tn)|Ij = wnj + θj(qj(x)− wnj ), 0 < θj ≤ 1,

where θj is the flux limiter, see [10], and qj(x) is the second degree interpolant of the
cell averages, namely,

qj(x) = wnj −
1

24
∆2wnj + ∆0w

n
j

(
x− xj
h

)
+

1

2
∆2wnj

(
x− xj
h

)2

,

where

∆0w(x) =
1

2
(w(x+ h)− w(x− h)),

∆2w(x) = w(x+ h)− 2w(x) + w(x− h).

We define the integrals of the initial conditions, S1 and S2, as follows:

S1 =

∫ h/2

0

w(xj + y, tn) dy = wj
h

2
+

h

16
θj(wj+1 − wj−1),

S2 =

∫ 0

−h/2
w(xj+1 + y, tn) dy = wj+1

h

2
− θj+1

h

16
(wj+2 − wj).

Let us consider S1. We compute the cell averages w` = u`, ` = j − 1, j, j + 1 in terms
of the derivatives of u at xj . Expanding u in a power series we find

wnj =
1

h

∫ h/2

−h/2
u(xj + y) dy =

1

h

∞∑
`=0

1

(`+ 1)!

∂`u

∂x`

∣∣∣∣
xj

(
h

2

)`+1

α`+1,

where

α`+1 = 1− (−1)`+1.

Similarly

wnj+1 =
1

h

∞∑
`=0

1

(`+ 1)!

∂`u

∂x`

∣∣∣∣
xj

(
h

2

)`+1

(3`+1 − 1),

wnj−1 =
1

h

∞∑
`=0

1

(`+ 1)!

∂`u

∂x`

∣∣∣∣
xj

(
h

2

)`+1

((−1)`+1 − (−3)`+1).
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We substitute the expansion for the cell averages in S1 and we compute

ES1
=

1

kh

[∫ h/2

0

u(xj + y, tn) dy −
∫ h/2

0

w(xj + y, tn) dy

]

=
1

k

{
3∑
`=0

c+`
∂`u

∂x`

∣∣∣∣
xj

(
h

2

)`
+O(h4)

}
.

Elementary calculations show that

c+0 = 0, c+1 =
1

2
(1− θj),

c+2 = 0, c+3 =
1

4!
(1− 10θj).

Similarly, expanding around xj+1,

ES2
=

1

kh

[∫ 0

−h/2
u(xj+1 + y, tn) dy −

∫ 0

−h/2
w(xj+1 + y, tn) dy

]

=
1

k

{
3∑
`=0

c−`
∂`u

∂x`

∣∣∣∣
xj+1

(
h

2

)`
+O(h4)

}
,

where

c−0 = 0, c−1 =
1

2
(1− θj+1),

c−2 = 0, c−3 =
1

4!
(1− 10θj+1).

Note that if θj = 1 +O(h2) then both ES1
and ES2

are O(h2). Adding the previous
expressions we find

ES1
+ ES2

=
1

k

{[
1

2
(1− θj) ∂u

∂x

∣∣∣∣
xj

− 1

2
(1− θj+1)

∂u

∂x

∣∣∣∣
xj+1

]
h

2

+

(
h

2

)3
[

1

4!
(1− 10θj)

∂3u

∂x3

∣∣∣∣
xj

− 1

4!
(1− 10θj+1)

∂3u

∂x3

∣∣∣∣
xj+1

]}

=
1

k
(θj+1 − θj) ∂u

∂x

∣∣∣∣
ξ

h

2
+

10

4!k
(θj+1 − θj) ∂

3u

∂x3

∣∣∣∣
η

(
h

2

)3

+O(h3),

where ξ, η ∈ (xj , xj+1). If θj ≡ 1 and the grid is uniform the method is O(h3). If the
grid is not uniform, and the change in the grid size is not smooth, then the method
is O(h2). If θj oscillates without continuity the method is not third-order accurate,
even on a uniform grid. Summarizing, the scheme is third order provided the grid is
uniform or varies smoothly, and θj = 1 +O(h) and varies smoothly.

We see therefore that if θj is not regular enough, accuracy deteriorates, as is
apparent in the results obtained in section 4.1 with the scheme TadRK . On the other
hand, for our schemes, ES1

and ES2
are each O(hm+1). Thus we do not have to rely

on cancellation to obtain a method of order m. This of course is obtained with the
use of an m-degree polynomial in the reconstruction. However, the extra effort in the
reconstruction is compensated by the robustness of the accuracy.
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4. Numerical results. In this section we first compare our third-order schemes
with central schemes based on Tadmor’s third-order NED reconstruction on a single
scalar equation. Next we test our fourth-order schemes. We conclude the discussion
of the scalar equation addressing the crucial point of the choice of the stencil. Our
results show that Timeux with the MC stencil and NCERK with the MC stencil are
accurate, robust, and efficient third- and fourth-order shock capturing schemes.

Finally, we consider the application of our schemes to systems of conservation
laws. In this case, we show only results obtained with NCERK schemes which are
particularly suited for systems of equations, as discussed in section 2.5.

4.1. Scalar equation. We study the performance of our schemes by using three
test cases.

Test 1.

ut + ux = 0,
u(x, t = 0) = sin(πx),
periodic boundary conditions on [−1, 1],
integration time: T = 10.

This test is used to check the convergence rate at large times.
Test 2.

ut + ux = 0,
u(x, t = 0) = sin4(πx),
periodic boundary conditions on [−1, 1],
integration time: T = 1.

This test is used to detect possible deterioration of accuracy due to strong oscillations
in the parameters that determine the stencil (such as in ENO schemes) or the flux
limiter (such as in TadRK ).

Test 3.

ut + ( 1
2u

2)x = 0,
u(x, t = 0) = 1 + 1

2 sin(πx),
periodic boundary conditions on [−1, 1],
integration times: T = 0.33 and T = 1.5.

Here T = 0.33 is chosen for convergence tests and T = 1.5 for shock capturing tests.
(Note that the shock develops at Ts = 2/π ' 0.7.)

Let u(x, tn) and wnj be the exact solution and the computed solution, respectively,
at (xj , t

n). Then the norms of the error are given by

L1 error : ||u− w||1 =
∑N
j=1 |u(xj , t

n)− wnj |h,
L∞ error : ||u− w||∞ = max1≤j≤N |u(xj , t

n)− wnj |.
Third-order schemes. We compare the following schemes.
1. Tadmor : it is the third-order scheme described in [10].
2. TadRK : it is based on Tadmor’s piecewise quadratic third-order reconstruc-

tion, and the computation of the flux is performed with a second-order Runge–
Kutta method, coupled with its NCE.

3. NCERK 2: this scheme is based on ENO reconstruction, and the time evolu-
tion is computed by a second-order Runge–Kutta scheme with NCE.

4. Timeux : it is as in NCERK , but with the time evolution computed via Taylor
expansion.



312 FRANCA BIANCO, GABRIELLA PUPPO, AND GIOVANNI RUSSO

Table 4.1
Third-order schemes.

Scheme Reconstruction Flux evaluation Stencil selection
Tadmor NED, r = 2 Taylor expansion
TadRK NED, r = 2 RK2 + NCE

NCERK2 ENO, r = 3 RK2 + NCE MC, Shu, HEOC
Timeux ENO, r = 3 Taylor expansion MC, Shu, HEOC

Table 4.2
Accuracy Test 1. Scheme Tadmor has λ = 0.45; the others have λ = 3/7 ∗ .9. MC stencil.

Linear advection, T = 10, u0(x) = sin(πx),m = 3

N Tadmor TadRK Timeux NCERK2

L1 error
20 0.1101E-01 0.3791E-01 0.7921E-02 0.1387E-01
40 0.1384E-02 0.4778E-02 0.5409E-03 0.1483E-02
80 0.1730E-03 0.6023E-03 0.3813E-04 0.1799E-03

160 0.2185E-04 0.7512E-04 0.3187E-05 0.2229E-04
320 0.2731E-05 0.9390E-05 0.3509E-06 0.2774E-05
640 0.3413E-06 0.1174E-05 0.4236E-07 0.3463E-06

L1 order
20 - - - -
40 2.9925 2.9879 3.8721 3.2252
80 2.9998 2.9880 3.8264 3.0436

160 2.9847 3.0032 3.5805 3.0125
320 3.0004 2.9999 3.1835 3.0065
640 3.0002 3.0000 3.0503 3.0020

Table 4.3
Accuracy Test 1. Scheme Tadmor has λ = 0.45; the others have λ = 3/7 ∗ 0.9. MC stencil.

Linear advection, T = 10, u0(x) = sin(πx),m = 3

N Tadmor TadRK Timeux NCERK2
L∞ error

20 0.8567E-02 0.2931E-01 0.9511E-02 0.1553E-01
40 0.1084E-02 0.3738E-02 0.1085E-02 0.1921E-02
80 0.1358E-03 0.4725E-03 0.1234E-03 0.2293E-03

160 0.1716E-04 0.5898E-04 0.1382E-04 0.2710E-04
320 0.2145E-05 0.7374E-05 0.1552E-05 0.3210E-05
640 0.2681E-06 0.9218E-06 0.1742E-06 0.3817E-06

L∞ order
20 - - - -
40 2.9824 2.9711 3.1313 3.0151
80 2.9972 2.9836 3.1363 3.0666

160 2.9840 3.0021 3.1586 3.0813
320 3.0002 2.9997 3.1551 3.0775
640 3.0002 3.0000 3.1550 3.0721

The different schemes are summarized in Table 4.1, where r denotes the degree
of the piecewise polynomial used in the reconstruction. We perform several runs with
different grid sizes and evaluate error and convergence rate. For each scheme we
select a value of λ = ∆t/∆x that satisfies the linear stability condition. NCERK2
and Timeux have the MC stencil.

The results for Test 1 are summarized in Tables 4.2 and 4.3. Timeux appears to
be most accurate; however, Tadmor’s original scheme is less expensive because it uses
piecewise parabolic reconstruction, instead of a piecewise cubic reconstruction, and it
enjoys a slightly less restrictive CFL condition (λ = 0.9 ∗ 1/2 versus λ = 0.9 ∗ 3/7).
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Table 4.4
Accuracy Test 2. Scheme Tadmor has λ = 0.45; TadRK* has λ = 0.5 ∗ (3/7 ∗ 0.9); the others

have λ = 3/7 ∗ 0.9. NCERK and Timeux have the MC stencil.

Linear advection, T = 1, u0(x) = sin4(πx),m = 3

N Tadmor TadRK TadRK* Timeux NCERK2

L1 error
20 0.2339E-01 0.6750E-01 0.1706 0.3025E-01 0.4466E-01
40 0.3594E-02 0.1035E-01 0.3172E-01 0.2777E-02 0.6076E-02
80 0.5001E-03 0.1553E-02 0.5412E-02 0.2929E-03 0.6403E-03

160 0.8388E-04 0.2729E-03 0.7241E-03 0.2137E-04 0.7415E-04
320 0.1543E-04 0.1603E-03 0.1046E-03 0.1665E-05 0.9084E-05
640 0.2746E-05 0.4894E-04 0.1748E-04 0.1631E-06 0.1129E-05

L1 order
20 - - - - -
40 2.7021 2.7054 2.4272 3.4452 2.8777
80 2.8453 2.7366 2.5509 3.2453 3.2465

160 2.5758 2.5084 2.9019 3.7770 3.1102
320 2.4422 0.7678 2.7915 3.6821 3.0290
640 2.4908 1.7114 2.5806 3.3516 3.0083

The results of Test 2 are shown in Table 4.4 for the L1 norm. We observe that
both Timeux and NCERK2 are fully third-order accurate, while a deterioration of
accuracy appears on NED-based schemes, especially on TadRK . This phenomenon
can be partly reduced by using a smaller time step (see the column labeled TadRK∗).
This effect is associated with the presence of strong oscillations in the flux limiter θ
that appears in the NED reconstruction.

If θ is set to 1, i.e., if we use a fixed centered stencil, full third-order accuracy
is recovered. The oscillations in θ decrease in time, and they are more pronounced
on fine grids. Figure 4.1 shows the oscillations in the flux limiter at time t = 0.5 for
TadRK . Two different grid sizes are shown. We can see clearly that a smaller time
step dampens the oscillations.

Next we consider the convergence results for the Burgers equation at T = 0.33.
Once more, Timeux and NCERK2 are fully third-order methods both in L1 and L∞.
The results in the L1 norm are shown in Table 4.5. Again, a deterioration of accuracy
is apparent in TadRK , which is mitigated if λ is reduced well below the linear stability
critical value. We obtain similar results in the L∞ norm.

We conclude this accuracy comparison noting that our third-order Timeux scheme
is comparable with Tadmor’s scheme, because it yields smaller errors in all tests
considered. We believe this compensates for the fact that it is slightly more expensive.
On the other hand, scheme NCERK2 is superior to its NED analogue, TadRK , because
it is more robust.

Fourth-order schemes. We now compare our fourth-order schemes. Tables 4.6,
4.7, and 4.8 contain the data for Test 1, Test 2, and Test 3, respectively. As already
noted in section 2.4, the most economical version of NCERK in this case requires an
RK scheme of order 4. All data shown were obtained with the MC stencil.

We note that in all test cases our schemes are even more than fourth-order ac-
curate. Moreover, the error is much smaller than third-order schemes, even on the
coarsest mesh. This extra improvement with respect to the m = 3 case can be proba-
bly explained in part with the symmetry of the m = 4 stencil. In the m = 3 case, the
stencil of the polynomial interpolant consists of four points which cannot be symmet-
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Fig. 4.1. Flux limiter θ for scheme TadRK in Test 2 at t = 0.5.

Table 4.5
Accuracy Test 3. Scheme Tadmor has λ = 0.33; TadRK* has λ = 0.5 ∗ (3/7 ∗ 0.66); the others

have λ = 3/7 ∗ 0.66. NCERK and Timeux have the MC stencil.

Burgers’s equation, T = .33, u0(x) = 1 + 1
2

sin(πx),m = 3

N Tadmor TadRK TadRK* Timeux NCERK2

L1 error
20 0.2195E-02 0.3342E-02 0.7259E-02 0.1429E-02 0.1538E-02
40 0.3145E-03 0.5096E-03 0.1132E-02 0.1229E-03 0.1446E-03
80 0.4330E-04 0.9011E-04 0.1770E-03 0.9969E-05 0.1514E-04

160 0.5862E-05 0.4031E-04 0.2708E-04 0.9395E-06 0.1643E-05
320 0.7788E-06 0.4718E-04 0.4730E-05 0.8835E-07 0.1869E-06
640 0.1073E-06 0.1404E-04 0.9078E-06 0.9433E-08 0.2179E-07

L1 order
20 - - - - -
40 2.8034 2.7135 2.6812 3.5392 3.4114
80 2.8606 2.4995 2.6766 3.6244 3.2557

160 2.8849 1.1605 2.7085 3.4075 3.2037
320 2.9121 -0.2269 2.5174 3.4106 3.1367
640 2.8590 1.7490 2.3815 3.2274 3.1004

rically distributed around the base point. Since in a central scheme we cannot bias
the stencil selection on the characteristic direction, we arbitrarily chose a left bias for
the central stencil. The scheme might improve if this bias were changed at each time
step. Furthermore, the ODE solver is comparatively more accurate than in the m = 3
case.
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Table 4.6
Accuracy Test 1. Timeux has λ = 3/7 ∗ 0.9; NCERK4 has λ = 2/7 ∗ 0.9. MC stencil.

Linear advection, T = 10, u0(x) = sin(πx),m = 4

Timeux NCERK4

N L1 error L1 order L1 error L1 order
20 0.7513E-03 - 0.2131E-02 -
40 0.2620E-04 4.8419 0.7699E-04 4.7905
80 0.9701E-06 4.7552 0.2923E-05 4.7192

160 0.4374E-07 4.4710 0.1387E-06 4.3970
320 0.2371E-08 4.2055 0.7798E-08 4.1529
640 0.1409E-09 4.0727 0.4719E-09 4.0467

Table 4.7
Accuracy Test 2. Timeux has λ = 3/7 ∗ .9; NCERK4 has λ = 2/7 ∗ .9. MC stencil.

Linear advection, T = 1, u0(x) = sin4(πx),m = 4

Timeux NCERK4

N L1 error L1 order L1 error L1 order
20 0.1469E-01 - 0.3921E-01 -
40 0.9947E-03 3.8842 0.2340E-02 4.0668
80 0.4115E-04 4.5953 0.8991E-04 4.7018

160 0.2032E-05 4.3399 0.4248E-05 4.4037
320 0.1164E-06 4.1260 0.2439E-06 4.1226
640 0.5855E-08 4.3131 0.1297E-07 4.2328

Table 4.8
Accuracy test 3. Timeux has λ = 3/7 ∗ 0.9; NCERK4 has λ = 2/7 ∗ 0.9. MC stencil.

Burgers’s equation, T = 0.33, u0(x) = 1 + 1
2

sin(πx),m = 4

Timeux NCERK4

N L1 error L1 order L1 error L1 order
20 0.1202E-02 - 0.1659E-02 -
40 0.7253E-04 4.0511 0.1195E-03 3.7948
80 0.2648E-05 4.7759 0.4706E-05 4.6671

160 0.9922E-07 4.7379 0.1817E-06 4.6946
320 0.4514E-08 4.4580 0.8004E-08 4.5048
640 0.2239E-09 4.3338 0.4016E-09 4.3169

Table 4.9
NCERK2 with λ = 0.9 ∗ (3/7). Deterioration of accuracy with the Shu and HEOC stencils.

Burgers’s equation, T = .33, u0(x) = 1 + 1
2

sin(πx),m = 3

Shu HEOC
N L∞ error L∞ order L∞ error L∞ order
20 0.4981E-02 - 0.6804E-02 -
40 0.8881E-03 2.4876 0.6714E-03 3.3410
80 0.1096E-03 3.0184 0.2962E-02 -2.1414

160 0.1177E-04 3.2190 0.4267E-02 -0.5267
320 0.1447E-02 -6.9413 0.2611E-02 0.7085
640 0.1345E-02 0.1050 0.5007E-03 2.3827

We obtain similar results with the equation ut − ux = 0 for both m = 3 and
m = 4.

In the previous results, the stencil in NCERK and Timeux was chosen with the
MC technique. We now show that other commonly used choices in upwind-based
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Table 4.10
NCERK4 with λ = 0.9 ∗ (2/7). Deterioration of accuracy with the Shu and HEOC stencils.

Burgers’s equation, T = .33, u0(x) = 1 + 1
2

sin(πx),m = 4

Shu HEOC
N L∞ error L∞ order L∞ error L∞ order
20 0.4690E-02 - 0.3767E-02 -
40 0.7195E-03 2.7045 0.3155E-03 3.5775
80 0.1452E-03 2.3088 0.2832E-04 3.4780

160 0.4763E-04 1.6082 0.6485E-04 -1.1953
320 0.3416E-04 0.4796 0.4108E-04 0.6586
640 0.4586E-04 -0.4249 0.7215E-04 -0.8124
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Fig. 4.2. Solution of Test 3 and corresponding stencils at time T = 0.5 and T = 1.5.

schemes perform poorly when coupled with our central schemes. More precisely,
when the HEOC and Shu’s stencil selections are applied to our NCERK schemes a
deterioration of accuracy can be observed. These results are shown in Tables 4.9 and
4.10 for Test 3. Similar results are obtained also for Test 2.

A possible explanation of this pathological behavior can be found in the frequent
choice of linearly unstable stencils by HEOC and Shu methods. This problem is
illustrated in Figures 4.2 and 4.3, respectively, for the HEOC and Shu stencils on the
Burgers equation. Figure 4.4 shows the corresponding results obtained with the MC
stencil.

The solution is shown before and after shock formation for both m = 3 and
m = 4. The bottom part of each figure superimposes the numerical solution to
the stencil selected at each grid point. More precisely, we have plotted the function
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Fig. 4.3. Solution of Test 3 and corresponding stencils at time T = 0.5 and T = 1.5.
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Fig. 4.4. Solution of Test 3 and corresponding stencils at time T = 0.5 and T = 1.5.
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s(j) = il(j) − j, where il(j) is the leftmost point of the stencil. (See section 2.2.)
Thus s(j) = 0 corresponds to a stencil completely shifted to the right of the point
xj . The linearly stable selections are s = −1 and s = −2 for m = 3 and s = −2 for
m = 4. (See section 3.1.)

In Figure 4.2, we see that the HEOC stencil selects frequently the linearly unstable
positions. From Figure 4.3 we note that, although Shu’s stencil spends less time in the
linearly unstable positions, it oscillates rapidly, with very irregular behavior. Instead,
Figure 4.4 shows that the MC stencil is always located on the linearly stable positions,
unless a biased choice is necessary to prevent the onset of oscillations.

Note, however, that all three schemes present a sharp shock resolution, without
oscillations.

4.2. Systems of equations. In this section we test our schemes on the system
of Euler equations for a polytropic gas, with γ = 1.4. We consider the same test
problems studied in [10]. Below we briefly restate the test problems for the sake
of completeness. The variables ρ,m,E, and p denote the density, momentum, total
energy per unit volume, and the pressure, respectively.

Test 4. Shock tube problem with Sod’s initial data [17]:{
(ρl,ml, El) = (1, 0, 2.5), x < 0.5,
(ρr,mr, Er) = (0.125, 0, 0.25), x > 0.5.

Test 5. Shock tube problem with the Lax initial data [5]:{
(ρl,ml, El) = (0.445, 0.311, 8.928), x < 0.5,
(ρr,mr, Er) = (0.5, 0, 1.4275), x > 0.5.

In both cases the computational domain is [0, 1]; we integrate the equations up to
T = 0.16, i.e., before the perturbations reach the boundary of the computational
region (free flow boundary conditions). The computational parameters are λ = 0.1
and N = 200.

Test 6. Double blast wave by Woodward and Colella [18]: (ρl,ml, pl) = (1, 0, 1000), x < 0.1,
(ρc,mc, pc) = (1, 0, 0.01), 0.1 < x < 0.9,
(ρr,mr, pr) = (1, 0, 100), x > 0.9.

In this case, the boundary is reflective at both ends. The equations are integrated
up to T = 0.038, with λ = 0.01 and N = 400. By this time, the shock waves arising
from the initial discontinuities have already collided, giving rise to a complex wave
pattern. This structure is further complicated by the interactions with the reflected
rarefaction waves.

All results shown are obtained with the NCERK scheme and the MC stencil.
Figure 4.5 contains the results obtained with Sod’s initial data for m = 3

(NCERK2) and m = 4 (NCERK4). The solution obtained with m = 3 has some
small oscillations that disappear for m = 4. Note also a slight improvement in the
resolution of the contact discontinuity. (The transition occurs in seven points when
m = 3 and in five points for m = 4.) Also the corners at the back and the front of
the rarefaction are improved. There is no qualitative improvement in the resolution
of the shock wave.

The improvement in the resolution of contact waves is more apparent in Figure 4.6
(the Lax test problem). We note that our NCERK schemes produce a sharp solution
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Fig. 4.5. Solution of the Euler equations for Test 4 at time T = 0.16.

on both contacts and shocks, at least in this case. There are some slight oscillations
at the back of the rarefaction in the velocity field, but they remain bounded.

Figure 4.7 contains a further comparison between NCERK 2 and NCERK 4, for
Test 6, at T = 0.01. The improvement in the resolution of the density peaks is
noticeable. Comparing with the “exact” solution by Woodward and Colella, we see
that when m = 4 the density peaks have almost the correct value (they should be
both ' 6). Moreover, the rarefaction occurring on the left between the contact and
the shock wave is well resolved for the m = 4 case.

There are some oscillations in the velocity and the pressure (especially for m = 3)
which tend to diminish at later times. (Compare with Figure 4.8 for m = 4.)

Figure 4.8 shows the results obtained with the NCERK 4 scheme at T = 0.03 and
T = 0.038. We note that the small oscillations present before tend to disappear. As
already noted, the ENO reconstruction is not enough to prevent local oscillations at
the time of wave interactions. Such oscillations, however (if they do arise), tend to
disappear as time increases, and the waves separate. Therefore, these oscillations are
a temporary phenomenon, which does not trigger the choice of unphysical solutions
or herald a breakdown in the computation.

On the other hand, high resolution of discontinuous solutions is maintained at all
stages of the computation.

Conclusions. The central approach, combined with high-order ENO reconstruc-
tion and Runge–Kutta–NCE flux evaluation, provides accurate easy-to-use shock cap-
turing schemes for conservation laws. The use of weighted ENO reconstruction may
result in more efficient schemes (for the same accuracy). Such an approach has been
tested in one dimension [7] and is used for two-dimensional extension of the method [8].
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Fig. 4.6. Solution of the Euler equations for Test 5 at time T = 0.16.
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Fig. 4.7. Solution of the Euler equations for Test 6. λ = 0.01.
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Fig. 4.8. Solution of the Euler equations for Test 6. λ = 0.01.
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