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Summary. The paper is devoted to the construction of a higher order Roe-
type numerical scheme for the solution of hyperbolic systems with relaxation
source terms. It is important for applications that the numerical scheme handles
both stiff and non stiff source terms with the same accuracy and computational
cost and that the relaxation variables are computed accurately in the stiff case.
The method is based on the solution of a Riemann problem for a linear system
with constant coefficients: a study of the behavior of the solutions of both the
nonlinear and linearized problems as the relaxation time tends to zero enables to
choose a convenient linearization such that the numerical scheme is consistent
with both the hyperbolic system when the source terms are absent and the correct
relaxation system when the relaxation time tends to zero. The method is applied
to the study of the propagation of sound waves in a two-phase medium. The
comparison between our numerical scheme, usual fractional step methods, and
numerical simulation of the relaxation system shows the necessity of using the
solutions of a fully coupled hyperbolic system with relaxation terms as the basis
of a numerical scheme to obtain accurate solutions regardless of the stiffness.

Mathematics Subject Classification (19935L99, 65C20, 76 T05

1. Introduction

Hyperbolic systems with relaxation are used in the modeling of a variety of
physical phenomena of great practical importance such as thermally non equilib-
rium fluid flows, non reacting two-phase fluid flows composed of solid particles
suspended in gas, viscoelasticity, ... The relaxation terms are source terms whose
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effect is the relaxation to zero of some algebraic quantity, namely the relaxation
variables. For instance, in the case of two-phase fluid flows composed of solid
particles in gas the relaxation terms model the drag force whose effect is the
relaxation to zero of the relative velocity between the two phases. In the case
of thermally non equilibrium fluid flows the relaxation term depend upon the
different temperatures involved in the modeling: here the thermal equilibrium of
the flow is characterized by a single temperature. A relaxation tinneay be
introduced to characterize the stiffness of the relaxation. In the case of the two-
phase fluid flows considered above the relaxation time is the drag time which is
proportionnal to inverse of the the square of the radius of the patrticles. In the
case of thermally non equilibrium flows the relaxation time depends on the heat
exchanges.

When the relaxation time tends to zero the model may be simplified. We
expect indeed that the for any positigrand any time the state vectou..(x,t)
whereu.. is the solution of the model tends to an equilibriuime,, a state such
that the relaxation variables are zero. It is then possible to use less variables
to describe the system. For instance, in the case of the two-phase fluid flows
considered above, the velocities of both phases should be equal in the limit
of small drag times and it suffices then to use a single velocity for the two
phases instead of the two velocities involved in the initial model. In the same
manner only one temperature may be used to describe a fluid flow in the limit
of thermal equilibrium. Following Chen-Levermore-Liu (1994) the relaxation
system that models the flow in the limit of small relaxation times may be deduced
from the original model with relaxation by using a Chapman-Enskog expansion.
Following Whitam (1974) and Liu (1987) the source terms are relaxation terms
if Liu's subcharacteristic condition is satisfied: this condition requires that the
characteristic velocities of the relaxation system are interlaced with those of the
convection system extracted from the original hyperbolic system with relaxation.
The examples given at the beginning of this section are hyperbolic systems with
relaxation. Chen-Levermore and Liu (1994) give sufficient conditions that ensure
that a system with source terms is an hyperbolic system with relaxation. In this
paper we shall only consider systems with relaxation.

Although very efficient and accurate methods have been developped for both
hyperbolic systems and systems of ordinary differential equations, many numer-
ical schemes for hyperbolic systems with relaxation are unsatisfactory and the
main difficulty arises from the need to handle very different relaxation times with
the same scheme. For instance solid particles are usually added in rocket engines
in order to damp the combustion instabilities. The particles burn inside the rocket
so that the stiffness of the drag terms range from nonstiff to very stiff. On the
other hand the computation of an initial value problem for an hyperbolic system
with relaxation also involves a wide range of stiffness of the source terms: if
the initial data is away from equilibrium, there is a boundary layer in time of
order 7 after which the solution is close to equilibrium. During a time interval
of order 7 the relaxation terms are thus stiff while they become nonstiff after
a time of orderr. The chalenge is thus to construct a numerical scheme that
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may handle any stiffness and whose computational cost is of the same order as
the cost of usual methods such as the Strang splitting for instance: in order that
the computational cost of the method be of the same order as the cost of usual
methods for hyperbolic systems of conservation laws, we want to chose the time
step only on the CFL condition relative to the convection terms and the source
terms should be underresolved in the stiff case.

The construction of numerical schemes for hyperbolic systems with relaxation
has attracted a lot of attention in recent years. See for instance Pember (1993)
a, Pember (1993, Jin (1995), Jin-Levermore (1995), Bereux (1995), Calfisch-
Jin-Russo (1995). Following Pember (19%83nd Calfisch-Jin-Russo (1995) we
want to construct a numerical scheme that satisfies the following conditions:

(a) The scheme is second order accurate in both space and time in the nonstiff
regime ¢ = O(1)).

(b) The limit scheme obtained whentends to zero is a second order accurate
upwind scheme for the relaxation system deduced from the original model
whent — 0.

Condition (b) ensures that no spurious solutions are observed: whemds
to zero the numerical solution tends to a solution of the relaxation system. Next,
conditions (a) and (b) should ensure that the scheme gives second order accurate
approximations of the quantities involved in the relaxation system, independently
of the relaxation time. But the original model involves both the quantities in
the relaxation model and the relaxation variables. However nothing is told in
conditions (a) and (b) about the relaxation variables when the relaxation time is
not infinitely stiff. In fact, we expect that the relaxation variables are of order
for small 7. Furthermore the accurate computation of the relaxation variables is
of primary importance for many practical applications so that we add to the two
conditions (a) and (b) the following requirement:

(c) the relaxation variables should be accurately computed.

The organization of the paper is the following: we review in Sect. 2 several
schemes that were introduced recently for the numerical simulation of hyperbolic
systems with relaxation. A discussion of the three conditions above is included.
Next we introduce in Sec3 a new numerical scheme and Sect. 4 is devoted
to its extension at second order. This is a stagered numerical scheme which
coincides with the Lax-Friedrichs scheme at first order and with the Nesshayu-
Tadmor scheme at second order when the source terms are omitted. The basic
step of the construction of this scheme is the solution of a Riemann problem
for a linearization of the initial hyperbolic system with relaxation. The constant
convection matrix is chosen so that when the source terms are omitted, the
shock waves solution of the nonlinear problem are still solutions of the linearized
problem. Next the constant matrix used for the linearization of the relaxation
terms is chosen so that the limit scheme obtained wheends to zero is an
upwind scheme for the relaxation system deduced from the original model. We
test the accuracy of our scheme on a practical example in Sects. 5 and 6: Sect. 5
is devoted to the statement of the problem and we compare in Sect. 6 our scheme
with two other different schemes, known for their good behavior in the stiff case
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and the nonstiff case respectively. It turns that our scheme enables us to compute
very accurately the relaxation variables both in the stiff and the nonstiff case
(and this is the difficult quantity to compute).

2. Review of several schemes for systems with relaxation

The purpose of this section is a brief discussion of the conditions (a), (b) and (c)
of Sect. 1. We consider an hyperbolic system with relaxation in the form

ou 0 1
ot Fox W= _RU)

where the state vectar belongs to some given subs@tof RP and where the
flux functionf is such that for any € 2, the matrixf’(u) can be diagonalized
on Ik: the first order system

(2.1)

ou
ot
is an hyperbolic system of conservation laws.

In the sense of Whitham (1977) and Liu (1992) the source terms are relaxation
terms if there exists a constantx p matrix Q with rankr < p such that

(2.2) + ;Xf(u) =0

(2.3) QR@U) =0, Vue
and if for any givenu® € 12, the differential equation

du _ _
at - R(u(t)), u(0)=u°

defines a functioni : R, — {2 such that lina_.. u(t) = Qu®. On the other hand
we assume that there exists a vector valued functionw = Q2 C R" — (2
such that

(2.4) R(Z(v)) =0, Q& (V) =V, W e w.

The image# (w) of & is thus the equilibrium manifoldZZ or the manifold of
local equilibria forR:

(2.5) At ={u e 2, Ru)=0}.

We assume further th&® : . # — w defines a bijection. Then, if € {2 is such
that R(u) = 0, we haveu = #(Qu). (Indeed,Q(u — #(Qu)) = 0 and bothu
and & (Qu) belong to.#Z by assumption.)
In Chen-Levermore-Liu (1994) the authors study the behavior of a solution
of (2.1) whenr is small: assume that is a solution of (2.1). Then, sind® is

a constant matrix an@R(u) = 0, Yu € 2, we obtain:
oQu 0

+ f(u) = 0.

ot 8XQ W=0
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Whenr is small we expect that the solutioris close to the euiglibrium manifold
#¢ and more precisely,
u=é&(v)+0(r)

where we have set = Qu. At zero-th order inm we deduce that is a solution
of the following system:

ov 0 _
(2.6) ot T ox gv)=0
where the flux functiorg is given by
2.7) g(v) = Qf(£(v)).

Following Chen-Levermore-Liu (1994) one can proceed further to the first
order expansion: the functionis then formally proved to be a solution of the
following second order system:

ov

(2.8) o

0 0 ov
" axg(v) ~ T ox (D(V)8x> =0
where the matrix valued functioD is independent of and may be computed
in function off, R, & andQ. Furthermore the relaxation variablBgu) may be
evaluated in function of the solutionof (2.8).
It is proved in Chen-Levermore-Liu that if the continuous solutions of (2.1)
satisfy an additional conservation in the form
0S  OF
+ <
ot ox —
whereS : 2 — R is a strictly convex function, the system (2.7) is hyperbolic
and the eigenvalues of the matnik(v) are interlaced with those df(&(v)),
Vv € w. Furthermore the system (2.8) is well posed.
The Chapman-Enskog expansion as described in Chen-Levermore-Liu (1994)
is thus a very powerfull tool for the investigation of the solutions of system (2.1)
in the limit of small relaxation times. What we expect from a numerical scheme
is that it gives a good prediction of both the conserved quantifiesand the
relaxation variable®(u) whenr is small. To this extent a simple way to obtain
a numerical scheme for system (2.1) in the limit of small relaxation times is the
discretization of system (2.8) by using a fractionnal step method: we introduce
the spatial grid points;, j € Z with uniform mesh spacingdx = xj+1 — % for
all j. The time levelg,, n =0, 1, ... are also spaced uniformly with time step
At = th41 — ty. System (2.8) does not contain stiff terms any longer and Strang’s
fractionnal step method is convenient:

0

1/3 TAt
2+ e PV D =)

(2.9) ~ D1 = V)
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n+2/3 _ n+1y3 At 1/3
R e (B (v)

(2.9.ii ) _ ¢j _1/2 (Vn+1/3))
_2s, TA 2/3 2/3
I g e (PO
(2811) —) D0 )
where we have set e
Vi+1/2 = 5

In the step (2.9.ii) the quantity;./, is a numerical flux function taken j+1/2,
second order accurate in space and time, and consistant with (2.7). The sequence
(v]-“+l/3)j cz is written v™*1/3 for shortness. The scheme (2.9) gives a second
order accurate approximation of the solutions of (2.8). The implementation of
the scheme (2.9) is very simple and gives excellent results in the stiff case: Bereux
(1995) compares different methods for the computation of accoustic waves in a
two-phase medium composed of solid particles suspended in gas. It is possible to
derive an analytic expression of the sound velocity in the two-phase medium and
of the attenuation coefficient of the sound waves (see Culick (1981)). He shows
that when the problem becomes stitk., when the time period of the sound
wave is large in comparison with the relaxation timgthe relative velocity
between the two phases, which is here the relaxation variable, is very accurately
computed from the numerical solutionof (2.9) by applying the formulae in
Chen-Levermore-Liu (1994). Nevertheless the matri¢e$(v)) andg'(v) have
indeed different eigenvalues and one should not replace system (2.1) by (2.8) in
the nonstiff case. Obviously the numerical scheme (2.9) is not uniformly accurate
but this scheme will provide us with a reference solution when the relaxation
time 7 is very small.

The most commonly used method for the numerical solution of system (2.1)
is probably Strang’s splitting:

, At
10i)  u™M=ur+ TR

! 2T !
N At
(210i1) "= U - AX (@ye2/2(U™3) = 12 (u™3))
1_ nv2/3, At 1
(2.10.ii ) uJ-“+ =y, + o R(uj”” ).

Here 1j.1/> is a numerical flux function, second order accurate in space and
time, and consistant with (2.2). This gives a second order accurate scheme in
the nonstiff case: see for instance Langseth-Tveito-Winther (1993). The first and
third stages of the scheme are implicit in order to achieve stability independently
of the relaxation timer.

Bereux (1995) compares the numerical solution given by (2.10) with the ana-
lytical solution proposed in Culick (1981) for the computation of the propagation
of sound waves in a two-phase medium: in the nonstiff case Strang’s splitting
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(2.10) gives excellent results at a low computational cost. But this scheme proves
unable to compute accurately the solutions of system (2.1) in the stiff case: nu-
merical experiments prove that the attenuation coefficient of the sound wave
given by the numerical method does not converge to zero as the relaxation time
tends to zero, as it should do according to analytical calculations, but tends to a
finite value. This positive value decreases extremely slowly when the time step
and the space step tend to zero. Furthermore it is proved in Pember @l €88)

the scheme (2.10) is only first order accurate in the stiff case, even if a second
order accurate numerical flux is used for the solution of (2.2):4ar fixed, if

one diminishes the time stefit in order to better resolve the stiffness of system
(2.1), the CFL based on the eigenvalue$ @f) becomes small and the numerical
diffusion brought by the step (2.10.ii) polutes the numerical solution.

Even fourth order splittings are unsatisfactory and Pember proves that one
should use an unsplit approach in order to achieve second order accuracy (see
Pember (1993n). We would like to emphazise the fact that conditions (a) and
(b) in Sect. 1 can not ensure that a numerical scheme gives satisfactory results.
In fact condition (b) only deals with the conserved quantitidsut not with the
relaxation variables. This is made clear by the following

Proposition 2.1.Letv denote a numerical flux, second order accurate and consis-
tant with the hyperbolic system (2.2). The Strang splitting (2.10) is second order
accurate in the nonstiff regime and the limit scheme obtained whamds to

zero is a second order accurate scheme for the relaxation system (2.7).

Proof of Proposition 2.1.Consider the numerical scheme (2.10): in the limit
7 — 0 the first and third steps write:

ujn+1/3 - g(Qu]n)7 ujn+1 — g(QUerZ/S).

Settingv]' =Qu}', j € Z, n € N, we deduce that in the limit — O,

A ] )
@11) =V QM) — (£ (V)

where the sequenceS(V}')); ez is written & (v") for shortness.

Next letv denote a smooth solution of (2.6) and sft= v(x,tn), j € Z,
n € N. Set nextu = & (v). The functionu does not satisfy (2.1) but is a solution
of the following system:

ou 0 _ wr 1oy OU
ot + axf(u) =(1-Z'WQ)f (£(v) x
and, sinceQ# (v) = v, Vv € w we deduce that
ou 0
(2.12) Q (8t + axf(u)> =0.

On the other hand, sinceé is second order accurate we have the following
estimate:

Numerische Mathematik Electronic Edition
page 149 of Numer. Math. 77: 143-185 (1997)



150 F. Bereux, L. Sainsaulieu

urtt —up LY +1/2(U") = ¥ _1/2(U") _ Ou
At AX ot

whereup! = u(x, tn), j € Z, n € NN. Applying next on the left the projectd to
the last identity gives

Q (anﬂ —-uf . Yia1/2(U") — 77111—1/2(Un))

+ ;(f(u) +O(At? + Ax?)

At AX
ou 9
+

(2.13) =Q ( o 8Xf(u)> + O(At? + Ax?).

But v = Qu by assumption and we deduce from (2.12)-(2.13) that

vt =) U+1/2(Z V) = Ui—12(F M) | Z o0 aez g ag2

At +Q< Ax = O(At + Ax9).

But in the limit of small relaxation times Strang’s splitting takes the form (2.11)
and the proof of Proposition 2.1 is complete.

In fact, when Liu’s subcharacteristic condition is satisfied, spurious solutions
are not observed with a splitting method, unlike what happens in the case of the
ZND detonation model for instance: this result is proved by Pember (Pember
(1993) a) and Jin (Jin (1994)). But, as proved in Pember (1983%plitting
methods are at most first order in the stiff case and the relaxation variables
are miscomputed. Following Pember (1998)ne should thus use an unsplit
approach: to our knowledge this author was the first one to introduce an unsplit
approach for the solution of an hyperbolic system with relaxation that is uniformly
accurate independently of the stiffness of the system. However, as Pember notices
it, his method does not reduce to an upwind method for the relaxation system
as the model system becomes increasingly stiff: small oscillations are observed
in the numerical profiles. The oscillations arise from the use of the characteristic
velocities of (2.2) in both the nonstiff and the stiff case while in the stiff case,
the correct characteristic velocities are those of system (2.6). Pember’s scheme
writes

At At
1_ n+1/2  n+1/2 1
(2.14) Uit =l = W — ) + R

where
n+l/2 _ f n+1/2
Viv1j2 = (uj+l/2)
"1/2 is obtained by solving the Riemann problem for

j+1/2
(2.2) between two state.q”jll//zzl and ulnfll//zzr whose computation is described

in Pember (1993b. The latter two states depend upon the relaxaBomand

the characteristic velocities of system (2.2). But the characteristic velocities of
system (2.6) rather than (2.2) should be used in the stiff case in the Riemann
solver step. Pember believes that this is the reason of the presence of the small
oscillations in his numerical profiles.

and where the stata
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3. A first order numerical scheme based on a linearized Riemann problem

Let us consider an hyperbolic system with relaxation in the form (2.1) and let
denote a solution of (2.1). We introduce the spatial grid paipts j Ax, j € Z
and the time levelt, = nAt, n € N. Our aim is to derive a numerical scheme that
enables to compute an approximati.q’hof the quantity Alx f(?j??)ﬁi u(x, ty) dx.
Following Pember (1993p we wish to use an unsplit approach and, following
the ideas of Godounov we wish to compute a generalized Riemann solver:

wht, x<0

R

ow 0 R(w)

(3.1) MESRE

, w(x,O):{

T

wt, x>0.

The solution of the Riemann problem (3.1) is denoted/Mfx, t, w-, wR) (note

that this solution is not self-similar as in the case of hyperbolic systems with no
source terms) and a stagerred consistent first order numerical scheme is given by
the following expression:

. 1 (+1/2)Ax
(3.2) uli, = / W (x, At,ul, ul,,) dx.
i+1/27 Ay (—1/2)ax ( i J+1)
This is obviously an unsplit approach and we expect that under an appropriate
CFL like condition this scheme is stable. But the explicit solution of the Riemann
problem (3.1) seems out of reach and, following Roe (1984) we replace the
nonlinear problem (3.1) by a linear problem with constant coefficients:

ow  ow  Bw wht, x<0
+A =

0) =
ot Thox T 40 WO {WR X >0,

)

(3.3)

The choice of the matrice& andB should of course depend upon the left and
right statesvt andwR in order that the linearization (3.3) is consistent with (3.1).
Before we precise the choice of the matricksand B let us first write

explicitly our numerical scheme. The scheme is initialized by setting

o1 (i+1/2)Ax .
(3.4) ur = / uwx)dx, jez
I Ax (i—1/2)Ax

where u° is the initial data. We consider next the following familly of linear
generalized Riemann problems with constant coefficients:

au n ou _ Bjn_l/z
(3.5) ot +Aj_l/28x = u

and with initial data:

L. 0) = { Ej”_l if x < (j —1/2)Ax

Pt x > () - 1/2)Ax

(3.6)

A staggered approximate numerical scheme is then obtained by setting
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iz _ 10 1
(3.7) UZin= A /(jl)Axu(x,At/Z) dx
whereu is the solution of (3.5)-(3.6). The explicit computation of the formula
(3.7) relies on the following

Lemma 3.1.Let A and B be two given matrices. We assume that there exists a
positive definite symmetric matr& such that the matrix8A is symmetric. The
matrix A may then be diagonalized dh and we denote by, 1 < k < p its
eigenvalues. Lat denote the solution of the generalized Riemann problem

. ou ou B
8. +A =
(381) ot X € !
with initial data
L -
.. u- ifx <0
3.8.i u(x,0) =
( ) *.0) { uR ifx > 0.
Then, under the CFL like condition
At 1
. <
@) B2 4 <2

the function

1 AX/Z
(3.10) H(t) = / u(x,t) dx
AX J_ax2
is obtained fol0 <t < At by solving the following system of ordinary differential
equations:

_ aH . 1 1 R L _ub+uR
(3.11i) ot (t) = 6BH(t)— AXA(u (t) —ut(t)), H(0)= )
where the functionsR(t) and u‘(t) are given by

R
Y o="wr0, o=
dt €

(3.1Lii) d(;‘tL t) = EuL(t), ut(0) = ut.

Proof. Before proving Lemma 3.1 we need to prove some properties of the
solution of (3.8): we assume that the matfixsatisfies the same properties as in
Lemma 3.1. Then,

Proposition 3.2.Let be given two states- and uR. For any given positive time
T, there exists a unique solutian€ C*([0, T], BV (R)) of system (3.8). Here
BV (R) denotes the set of functions with bounded variations.
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Next proposition precises the propagation of the discontinuities in the solu-
tion u of (3.8): decompose the jump of the initial data on the right eigenbasis
{rk}1<k<p of matrix A:

p

(3.12) uR—ut=> adr.

k=1

Proposition 3.3.Letu denote the unique solution of (3.8). The functzatefined
by

p
(3.13) 2(x,t) =u(x,t) = > ac(t)reH (x — Act) — exp(Bt) u*
k=1

where H denotes Heavyside’s function and where the functipng & k < p
are given by
(3.14) ax(t) = exp(l - Brit) a?

is continuous. Furthermore its derivati@ belongs to the setoﬁ([o, T],BV (}R))
for any positive time T.

Finally the solution of (3.8) remains constant outside a bounded interval:
Proposition 3.4.Letu denote the unique solution of (3.8). Then

u(x,t) = exp(Bt)u, ifx < At
u(x,t) = exp(Bt)u®, ifx > Apt.

The proofs of Propositions 3.2, 3.3 and, 3.4 are given in Appendix A. We can
now proceed to the proof of Lemma 3.1: according to Proposition 3.3 the solution
u of system (3.8) is composed withshock waves with respective velocitigg,

1 < k < p separated by functions whose derivatives have bounded variation. We
may thus compute for ¥ k < p:

d [t Ak+1l gy .
/ u(x,t)dx = / X + AU (Asat) 75 t) = Meu ()™, t)
dt Akt Akt at

whereu((Act)*,t) denotes the right (resp. left) value of functiaron the dis-
continuity linex = Act. But u satisfies (3.8.i)) and we deduce:

d Ak+1t 1 Ak+1t
/ u(x,t)dx = B/ u(x,t) dx
by €

dt Kkt Akt
— (A - )\k+1l)u((x\k+1t)7,t) + (A — )\kl)u(()\kt)+,t).

In the same manner,
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d /Alt u(x,t) dx =:B/Alt u(x,t)dx — (A — A1)u((Aat)~,t)

dt _Ax/2 —Ax/2
+Au( — Ax/2,t)

and

d Ax/2 1 Ax/2
/ u(x,t)dx = B/ u(x,t) dx — Au(Ax/2,t)
dt Jpt € Iopt

+ (A = Xp)u((Apt)*, t).
Summing thep + 2 above differential equations gives:

d Ax/2 1 Ax/2
/ u(x,t)dx = B/ u(x,t) dx — A(u(Ax/2,t) — u(—Ax/2),t))
dt —Ax/2 € —Ax/2

P
(3.15) +> (A= X)) () 1) — u((t) 7, ).
k=1
But we have by Proposition 3.3 that for<lk < p,
(A = X\2) (u((Mt)™ 1) —u((At)~,t)) =0.
On the other hand, under the CFL condition (3.9), Proposition 3.4 gives
u(Ax/2,t) = uR(t), u(—Ax/2,t) = uk(t)

where the functions — u'(t), uR(t) are given by (3.11.ii). Then (3.11.i) follows
from (3.12).

We precise now the choice of the matriog3 , , andB;' ; , in (3.5). This
choice is such that the linearized problem (3.3) is consistent with the non linear
problem (3.1). First, when the source terms are absent (0), system (2.1)
is an hyperbolic system of conservation laws and, following Roe (1984), the
matrix A in (3.3) is taken as a Roe linearization of the flux functfobpetween
the two statesi* and uR: we assume that there exists a matrix valued function
A : (ug,up) € 22 — A(ug, up) with the following properties:

A(ug, up)(uz — ug) = f(up) — f(uy), Vuy, up € 2
A(u,u)=f'(u), Yuen
A(ug, uy) can be diagonalized oR , Yu;, Uz € 2.

The matrixAy' , , in (3.5) is then
(3.16) Al =AU ).

When r tends to zero the system (2.1) formally tends to the relaxation sys-
tem (2.6). On the other hand, we expect that the linear system with constant
coefficients

ou ou _Bu

(317) ot Pox T o
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converges whemn tends to zero to a system in the form

ov  ~ 0V
+ =
ot A oX

under some appropriate assumptions on the matAcasdB. In order to ensure
that the linearized problem (3.3) is consistent with (3.1) we require that the
matrix A is a Roe linearization of the flux functiognin (2.6): we have then the
following commutative diagram:

(3.18) 0

ou, 0 - R(u =0 ov, 0 -
FRTAOEEE S ot *ox9W =0
(3.19) Iinearizationl Iinearizationl
ou ou _ Bu =0 OV L AOV
o AT T - ot TAx =0

Assume that

[H1] There exists a x p matrix Q and ap x r matrix E such thatQB = 0,
BE =0 andQE = 1,. (The matriceQ andE are respectively left and right
pseudo-inverses of matrik, — B.)

[H2] Ther x r matrix A = QAE hasr distinct eigenvaluesy, 1 < k < r. We
denote byfy, 1 < k <r (resp.ly, 1 < k < r) the associated right (resp. left)
eigenvectors.

[H3] The matrixB hasp—r negative eigenvalueg, r +1 < k < p. The associated
eigenvectors are denoted by, r +1 <k <p.

Then, the behavior of the solutions of the linear system with constant coef-
ficients (3.3) is given by the following

Proposition 3.5. Assume that assumptions [H1] to [H3] hold true. Letbe a
solution of system (3.3) and latbe the solution of the following system

du  ~ou _
(3.20) ot PR =0
with the following initial data:
L .
(3.21) U(x,0) = { Qu, ifx <0
QuR, ifx >0,

Then, for t> 0 given, we can find a positive numbgy small enough such that
(822)  |QUE D~ TED)| < CA)(elg] +e?), for elé| < fo

whered andd denote the Fourier transform of the functiomand i respectively.

The proof of Proposition 3.5 is given in appendix B.
In order that we obtain the commutative diagram (3.19) we need thus that
the matrixA is a Roe linearization of the flux functiogn
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Proposition 3.6. Assume that there exists a constant ma@ixvith rank p and

a vector valued functio®® : w — (2 that satisfy (2.4). Next assume that there
exists a Roe linearizatioA : (ut, uR) € 22 — A(u*,uR) of the flux functiorf
and a matrix valued functiok with

(3.23) E(VEVRY(WVR —vh) = £(WR) — & (vh), wWh VR ew.
Assume further that there exists a parameter vegi@t, v®) such that
(3.24) E(vE,VR) = &7 (p(vh, V), WhH VR ew.

Set finally

(3.25) B(U', uR) =R’ ((5 (@(QUL, QuR))).

Then, the matrice®, B andE satisfy the assumption [H1] and the matrix valued
functionA defined by

(3.26) AN, VR) = QA(Z(V1), & (VR))E(VH,VR)
is a linearization of the flux functiog:

g(v®) — g(vh) = AV, VRY(VR — Vh).

Proof of Proposition 3.6SinceQR(u) =0, Yu € {2, we have by definition oB
thatQB = 0. Next, BE = 0 follows by derivation from the identitR (¢(v)) =0,
Vv € w. We obtain in the same mann@&E = 1, from the identityQé& ' (v) = 1;,
Vv € w, and the assumption [H1] is satisfied.

Define next the matrix valued functiof by (3.26): by the definition (2.7)
of the flux functiong we compute:

g(v®) — g(v") = Q(f(Z (v®)) — F(Z (V1))
= QA(#(WH), £ (V) (£ (V) — £ (M)
= QA(& (Vh), & (VR))E(VE, V) (VR — V)
since A and E are respectively Roe linearizations of functiohsnd &. The
proof of Proposition 3.6 is complete.

We can finally write our numerical scheme: when a picewise constant function
u" is given, we first solve foj € Z the following systems of ODEs:

dut(t) 1
dt() BJ 12ut(®), Ut 0) =ul
duR(t) 1
U ter a0, o=
dH ut(t) — uR(t)
] /(t) =Bj_ oH 1 5(t) — AL 1/2( Ax ),
3.27 HP 4 50 —u“l d
(3.27) L1200 =7
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where the matrices\j“_1 /2 and Bj“_1 /o are respectively
Ajn—l/z = A(an—la an), Bjn—1/2 = B(an—b an)
for A, a Roe linearization of andB given by (3.25). We set next
n+1l/2 _
(3.28) U 5= HJ-”_l/Z(At/Z).

Applying again the above staggered scheme gives an approximation of the solu-
tion u of (2.1) at timet,.1. We expect that this scheme is stable under the CFL
like condition

. <
(3.29) A <1

where A denotes the largest propagation velocity involved in the solution of the
different linear Riemann problems with constant coefficients.

4. A higher order numerical scheme

Following Van Leer (1977), in order to obtain a second order version of our

numerical scheme, we approximate a solutioof (2.1) by a piecewise linear
function instead of a piecewise constant function:

. 1 o1
(41) u"(x)=ul+p]'(x —jAx), for (j - 2) Ax < x < (1 + 2) AX.

The numerical scheme runs as follows: given a piecewise constant approximation
of a solutionu of system (2.1) we first compute the following slopes:

u',, —u?
(42) VS
which are next corrected with thmin-modlimiter:
(4.3) pf' = min-mods'_y 5, §\12)-

We thus obtain a piecewise linear approximation of functionhose total vari-
ation is bounded by that af. Setting next

AX AX
(4-4) ujnfl/2,+ = ujn - 2 pjna L'|jn+1/2,7 = ujn + 2 pjn

and
(4.5) Ajnfl/Z = A(anfl/z,fv anfl/27+)v Berl/Z = B(anfl/zﬁa an71/2,+)

whereA is a Roe linearization of the flux functidrandB is chosen as in Sect. 4,
we replace the solution of the Riemann problem (3.5)-(3.6) by the solution of
the following generalized Riemann problem as in Van Leer (1977):
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ou ou _ Bjn,1/2
(4.6) ot +Ajn*1/25x = u

with initial data:
4.7)
Uj_l + pj—l(x — (J — 1)AX) =

=Ul12- *P-1 (X - (j - ;)) if x < (j —1/2)Ax
uj +pj(x = ( — 1)Ax) =
= ujn,l/z,+ P (x - (j - ;)) if x > (j —1/2)Ax.

We are thus left with the computation of functithdefined by

u(x,0) =

AX

H(t):Alx /72 u(x, t) o,
2

whereu is a solution of (2.1) with the following initial data:

L+ L i
uo(x)={uR pr |Tx<0
ut+p~x ifx>0.

We obtain after a straightforward computation similar to the proof of Lemma 3.1
that

dH A
ot (t) = BH(t) — Ax (u(Ax/2,t) — u(—Ax/2,1)).

Unfortunately the explicit value of functiorts — u( — Ax/2,t) is here much
more difficult to compute than in Sect. 3 where it remained constant in space
under the CFL condition (3.9). Noticing that the functiogx,t) = v(t) + q(t)x

is a solution of (2.1) if

49) ) =Bqn), ) =AW +BUY),
we may compute explicithu( — Ax/2,t) by solving the coupled differential
system (4.8) with initial datai" + p-x provided that the wave pattern produced
by the initial discontinuity inx = 0 has not reached yet the positieAx/2 at
timet. (This is true, at least at the first order in time: see Ben Artzi (1989)).
This numerical scheme requires the solution of several differential systems
which may lead to complicated computations in practical applications. Fol-
lowing Godlewski-Raviart (1994), we introduce below a simplification of Van
Leer's method that leads to a low cost second order numerical scheme. This
scheme coincides with Nessyahu-Tadmor non-oscillatory central differencing (see
Nessyahu-Tadmor (1990)) when the relaxation terms are omitted.
Given an approximation of a solutiom of system (2.1) in the form of a
piecewise constant function, we first determine a piecewise linear approximation
of u in the form (4.1) using (4.2) and (4.3). We compute next
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AX AX
(4.9) Uy, =uf — 4 P, Uy =yl 4 p;'.
A prediction of solutionu in x = (j + }) Ax at time (n + 1/2) At is then:

At At
(4.10) Urfl//i =Ulky/g — Ax (f(uin+l/4) - f(uinfl/4>) iy R(urfl//i)

Then uJ“jll/z is obtained by applying the first order numerical scheme of Sect. 4
for time At/2 between the two states, 11// 2 and u;‘+31//f, distant fromAx/2: we

setuf’:ll//f =H (At/z) where functiorH is the solution of the following ordinary

differential equations:

duR 1., n+1)2 U™y R uR n+1/2
dt t) = B(UJ+1/47 J+3/4) (t), u™(0)= Uit3/4
dut 1 n+1/2 n+1/2 ot ut n+1/2
dt (t) - € B<UJ+1/47 J+3/4) (t) (0) uJ+1/4
aH 1 ne1)2 U2 n+1/2 | n+1/2) (R ut
dt (t) - €B<uj+l/4’ J+3/4)H(t) (uj+1/4’ J+3/4)( (t) (t))’
n+1/2 n+1/2
u +U'
411 HO)= /4 Tirs/s
(4.11) (0) 5

We prove the

Lemma 4.1. Applied to the linear hyperbolic problem with constant coefficients
ou + Adku = 0, our numerical scheme coincides with the Nessyahu-Tadmor
numerical scheme:

412
. u'+ul, o Ax At At?
Utz = 2] g (Pfha— pf)—AXA(“P+1—UF)+2A “(Pfa = PY)-

Lemma 4.2.When the initial data® is a constant function, system (2.1) reduces
to the following ordinary differential equation

du

(4.13) ¥ = TR(u)

and the numerical scheme (4.10)-(4.11) reduces to the second order following
ODE solver consistent with (4.13):

At At
n+l/2 _ n n+1/2 n+l _ n+1/2
u u+2€R(u ), u @(2,u )
where@ is the integral flow of the ODE (4.13).
Proof of Lemma 4.1We compute indeed:

M2 _on AX |, AtAp-n

Uit/ = Y; 4 Py~ 2 i
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so that
(4.14)
tA

At AX A
H(41/2) =HO) = A (U= = pram) = 5 (R BD)).

But

n+l/2 n+l/2 Ul -+l Ax AtA
j+1/4 j+3/4 j+1 j
HE)= " = I S ) = T, ()

and we insert the latter identity in (4.14) to conclude the proof of Lemma 4.1.
The proof of Lemma 4.2 is straightforward.

5. A mathematical model of two-phase fluid flows

Let us consider the flow of a spray of solid particles in a gas in a one-dimensional
slab geometry: the mathematical model of this flow is a pertinent example of an
hyperbolic system with relaxation terms whose numerical solution involves the
approximation of both stiff and nonstiff problems.

We denote byn the volume fraction of the gas phase so that & is the
volume fraction of the dispersed phase. The gas is characterized by its mass
densityp, and by its velocityu,. Similarly the dispersed phase is characterized
by quantitiesp, andu,. We assume that, is a positive constant. Omitting the
specific internal energies of the gas and the liquid phases, we only retain in our
model the mass and impulsion conservation equations which write as follows:

BL) o) os) =0

(5.1ii) ;(pgug) + ;((pgug) + %‘;g - f

(5.Liii) gt (L — a)pp) + aax ((1— a)pplp) =0

(G.1iv) gt (L — a)ppllp) + 51 ((1— a)ppt2) + gz - _(73_

wherep, andé are pressure functions of the form

(5.2.0) Py =K (pg)’
(5.2.ii) 0 = 6p(1 — ).

Here p, is the isotropic gas pressure law aKdis an appropriate positive
constant whiled is a function of the dispersed phase volume fraction énis
representative of the gas rest pressure on the particle. In fact

peff:pg"'e
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represents the effective pressure of the two-phase flow. Us@akysmall in
comparison with the gas pressyrgand makes a small contribution to the effec-
tive pressure of the two-phase flow. (We refer the reader to Raviart-Sainsaulieu
(1994) for more detail about the model (5.1)-(5.2))

Taking as the drag force acting on a single particles the Stokes force, the

impulsion exchanges between the two phases &Ad where the functiorG
and the relaxation time are in the following form (see Williams (1985))

(5.31) G = (1 a)pp(tp — )
2
(5.3.ii) = 1:;#?

Herer denotes the radius of the particles angis the viscosity of the gas: they
are taken as positive constants.
We can write system (5.1) in the following condensed form:

. ou 0 R(u)

4. + =
(41 o o (W)=
or formally in the following non conservation form

. ou ou _ B(u)

4. +A = .
(5.4.ii) ot (u) Ix . u
where the state vectar is

Pg
i - PgUy
5.5. u=
(5.31) (1— a)op
(1 — a)ppup

and where the matrix valued functioAsandB are respectively:

0 1 0 0

c2—uZ 2u 0 0
Aw=|"7 7 77
0 0 0 1

)

0 0 ci—u 2u
0 0 0 O
o - o 1
5.5.ii B(u) = Py
(5.5.i) (u) 0 0 0 0
0 (1—=c)pp 0 -1

Pg
Then a straightforward computation proves the following (we refer the reader
to Godlewski-Raviart (1991) or Smoller (1982) for any notion about hyperbolic
systems):

Proposition 5.1. When the function G is set to zero, system (5.1) consists of two
decoupled hyperbolic systems of conservation laws whose characteristic velocities
are respectively
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(56|) A1 = U, — Cy, Ao = Ug +Cy

H . YPg
where ¢ is the gas sound speed; & \/ P and

where ¢ is the following positive number:;,c= \/Go/pp. Furthermore the four
characteristic fields of the hyperbolic system extracted from (5.1) are genuinely
non linear.

Next, we can derive an entropy associated with system (5.1):

Proposition 5.2.Let S and F denote the following two functions:
1
(5.7) S=, (pguZ + (1 — a)ppul) + pgPy(py) + bo(1 — a)log (1 — a)

where the function Pis given by B(p,) = W‘fl(pg)%l, (i.e., P; = pg/pg) and

1
F :2 (Pgug +(1- Q)Ppug) + pgUgPg(pg) + Py (Ug +(1- Oé)Up)
(5.8) +0o(1 — a)up log (1 — o).

Then, the functiom = (p,, pyUy, (1 — a), (1 — a)up)T — S(u) is strictly convex
and ifu is a continuous solution of system (5.1), it satisfies the following additional
equation:

(Ug —Up)G _ (1 —a)pp(uy — Up)zl

(5.9) 68t (S(u)) + 8ax (Fu) =

(See Bereux (1994) for the proof of Proposition 5.2.) We deduce from Propo-
sition 2.3 thatS is an entropy function for system (5.1) and that the relaxation
terms are compatible with the entropy in the sense that the entropy production
in (5.9) is always non positive. Furthermore the convection terms extracted from
(5.1) can be symmetrized: for any € (2, the matrixS”(u) is symmetric and
positive definite and the matrig” (UW)A(u) is symmmetric: see Harten-Lax-Van
Leer (1981) for the proof.

We consider next the limit tends to zero. According to Propositions 5.1
and 5.2 our system satisfies the assumptions in Chen-Levermore-Liu (1994) and
we may thus apply their formalism to write the relaxation system limit of (5.1)
when 7 tends to zero. It is however more instructive to perform explicitly the
computations.

The relaxation variable is here the relative velocity between the two phases
and, in order to derive the relaxation system, we introduce the set of dependent
variablesv defined by

(5.10.) vl = (pg, (1 — a)pp, pguy + (1 — a)ppUp, Ug — up).
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For simplicity we denote respectively lpy and u the mean mass density and
mean velocity of the two-phase flow:

(G.11ii) p=p,+(L—a)pp, U= pg;z : 8: Z;Zz“p

and byv the relative velocity between the two phases:

(5.1%iii) v = Uy — Up.

We first have the following

Lemma 5.3.For continuous solutions, system (5.1) takes the equivalent form:

: 0 0 pg(1—a)pp _
(5.12i) ot (pg) + % (pgu + ) v]=0

(5.12ii) gt (L a)pp) + aax ((1 —ayppu— 7 (:)pppg v) -0

pg(1—a)pp v2> 0

0 +8X(pg+0) 0

D o[
(5.12iii ) ot (pu) + ix (pu +

oo ((M2%)0)

. 0 Ky _1 0o P
12 1 Pog(1-a) )=~ " w
GAZ) - i (7 g eu a)) Pt

Proof. By definition of the total mass density and of the mean velocity of the
two-phase flow, we have

—u+ (1— a)ppv
p

Pgv

P

Let u be a continuous solution of system (5.1). Then (5.12.i) and (5.12.ii) are
obtained respectively from (5.1.i)) and (5.1.ii)). Next the total impulsion conser-
vation equation (5.12.iii) is obtained by summing equations (5.1.ii) and (5.1.iv).
To obtain equation (5.12.iv), insert the gas mass conservation (5.1.i) in the gas
impulsion conservation equation (5.1.ii):

6ug+u 8ug+ l1op, _ G

Ug

Up = U —

5.13i .
( 2 ot TOX  pg OX  Tpg
Similarly, equations (5.1.iii) and (5.1.iv) yield

Oup + Oup 1 00 G

(G13i) ot TPax Taoappox T r(d—a)pp

Subtracting (5.13.ii) from (5.13.i) gives
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oug  Oup N 1 dp, 1 06 pG

ov
+ - = :
Yax "W ax T o, ax T (L—a)pp9x  mpy(L— )y

ot

But u is continuous. Inserting the definition (5.2) of the pressure functmns
and#é in the latter equation gives:

ov 0 Uy +Up B K~ b
at " ox (( 2 )U) T ox (7_1(;)9)7 " o Iog(la))
Tpg(1— )pp

Equation (5.12.iv) is finally obtained by inserting the expression (5.3p ah
the latter equation.

Whenr is very small, we expect the relative velocity between the two phases
to be of orderr. The Chapman-Enskog expansion developed in Chen-Levermore-
Liu (1994) consists in doing a formal expansion of the solutions of system (5.12)
in form of a power serie inr. At zero-th order intT, we obtain readily the
following hyperbolic system of conservation laws in the unknown vector valued
function (pg, (1 — a)pp, pu):

0 0

(5.14.) ot (pg) + % (pgu) =0

(5.14.i) gt (- a)pp) + ;X (1 - a)ppu) = 0
) 0 0

(5.14iii ) ot (pu) + o (pu?) + o (py+6) =0.

Next, at first order inr, function v is obtained from equation (5.12.iv) in the
form

(5.15) p=_"Ps 9 < Ky

o (- Proga- )

6

Pp

and inserting expression (5.15) in equations (5.12.i), (5.12.ii) and (5.12.iii) gives
the following convection-diffusion system:

0 0
ot ('O‘J) + ox (pgu)

. 9 (pg 0 (( Ky 1 o -
(5.16.1) 7 ox (p % (7— 1pg — 2o log(1— a))) =0
3] 3]
ot ((1 - Q)Pp) + ox ((1 - Oé)PpU)"'

, d (pg 0 ( Ky 1 0o B _
(5.16.ii) +Tax <p % (fy— 1P Po log(l— «) =0

0 0
(5.16.iii ) ot (pu) + ox (pu?+p, +0) = 0.
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It follows from Chen-Levermore-Liu (1994) that system (5.15) is hyperbolic, and
that the diffusion matrix in (5.16) is compatible with the entrdpy S(pg, a-
a)pp, pgU, (1 — a)ppu). In fact we prove the

Proposition 5.4.System (5.15) is an hyperbolic system of conservation laws whose
characteristic velocities are

(5.17) :\\1 = U — Cdiph, X2 =u, X3 = U + Cyiph

YPg 0

where the sound speed in the two-phase medlumpls:c\/ . Furthermore

the pair (T, E) defined by
T = 2002+ ,P(o,) + (1 — o) log (1~ o)
E= ;pu3 +u (ng(pg) +00(1 — ) log (1 — a)) +up,(2—a)
is an entropy-flux pair for system (5.15), compatible with the diffusion terms in

(5.16): any continuous solution of (5.16) satisfies the following additional con-
servation:

aT 3E 9
ot [ (7 - % (1+og(1- a)))x
( — Iog(l—a))}
Pp
0 K 0 2
(5.18) =T/;f [8X (J_ lp;*lf PZ Iog(la))] > 0.

Remark 5.1.The numbercgpn is the sound speed in the two-phase medium in
the limit 7 — 0 and is smaller than the sound spegdn gas alone: indeed, in

the limit - — 0, the inertia of the two-phase medium is the sum of the inertia
of the gas and dispersed phases while its compressibility is that of the gas alone
since the particles are incompressible and this explainsciat< c,.

Proof. The expression of the characteristic velocities of system (5.15) follow
from a straightforward computation. Let us prove the entropy balance (5.18): let
(pg, (1 — @)pp, pu) be a continuous solution of system (5.16). We first compute:

0 (1 L\ 0 (1 3\ _ puf0u_ du u/o 0, 5
ot <2pu>+ax (2"“)‘ 2 <6t +“ax>+2<at(p”)+ax(p“> '

But the mass conservation equation of the two phase fluid flow obtained by
summing equations (5.16.i) and (5.16.ii) writes

ap N dpu -0
gt ox

Numerische Mathematik Electronic Edition
page 165 of Numer. Math. 77: 143-185 (1997)



166 F. Bereux, L. Sainsaulieu

and inserting the latter equation in the total impulsion conservation equation
(5.16.iii), we obtain:

ou ou 10
+

at T Yox pax(p9+9) =0

We deduce that

o (1 , 0 (1 3\ _ 0
(5.19) ot <2pu ) * o (Zpu > =-Ug (pg +6).
On the other hand, we have by definition of functiB
0

0
PPyt 6o (1 —a)log(l— ) + % (u (ngg +6o(1 — a)log(l— a))) =
—(Pg Ipg  Opgu 0
_<pg +Pg> ( a " oox > P x !

0 0 0
1% @ rlogta o) gy (A= adn) + o (@ )

o

ou
—0o(1 — ) ox

and inserting the gas and dispersed phases mass conservation equations (5.16.i)
and (5.16.ii) in the latter equation, we obtain:

0

o (PP + 00 (1= a)log(1— a)) + 5(1 [u (pgPy +0o(1 — o) log(1 — a)))

= [Pre, - (11092 a)]

8 pg ’YK =1 __ 90 _
(5.20) % (p <7_ 1P Po log(l—a) ) .

Then the entropy balance (5.18) follows from (5.19) and (5.20).

To conclude this section we consider the numtai(s) defined by (3.14) in
the particular case of system (5.1). We denoterpyresp.lx(u)), 1 < k < 4
the right (resp. left) eigenvectors &f(u). The left eigenvectors are normalized
by Ik(u) - rg(u) =1, 1< k < 4 (we do not need to specify the normalization of
the right eigenvectors here). The relaxation terms in system (5.1) are compatible
with the convection matriA in the following sense:

Proposition 5.6. Assume that the condition
(5.21) lug| < ¢y, |Up| < Cp,

is satisfied. Then the left and right eigenvectors of ma(ix) satisfy the following
estimates:

(5.22) l(u) - (BQ)rk(u)) <0, 1<k<4.
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Corollary 5.7. Under the condition (5.21) the functiong defined by (3.14) tend
to zero as t— +oo exponentially fast.

Proof of Proposition 5.6We compute the four right eigenvectors of mathitu):

1 1 0 0
— +

r = ugocg , T2= ugocg , 3= 2 , Ta= 2
0 0 Up — Cp Up +Cp

while the left eigenvectors are respectively

—Ug — Cy —Ug +Cy
1 1 o1 1
1T 2, 0 T%T o, 0
0 0
0 0
|l = -1 0 14 = 1 0
8 2Cp *up — Cp ’ 4 2Cp *Up + Cp
1 1

By definition of matrixB, we compute the following expressions:

[1(u) - Bu)ry(u) = (g —cg)(L—a)pp

ZTCgpg

L) - By = o ¥ )= )n
27Cypy

I3(u) - B(u)rs(u) = UF’ZT_C::D

l4(u) - B(U)ra(u) = — “;:C;?p

and the proof of Proposition 5.6 is complete.

6. Application of our scheme to the computation of model (5.1)

We apply the numerical schemes written in Sects. 3 and 4 to system (5.1) that
models two-phase fluid flows composed of liquid particles in a gas phase. We first
note that system (5.1) is an hyperbolic ystem with relaxation. Indeed a convenient
pair Q, &) is given by

v1

1000 oo

(6.1) Q=(0 0 1 of, #(=| =™
V2

0101 vy

v1+Up
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Next our numerical scheme is based on a linearization in the form (3.3) of
(5.1) which satisfies assumptions [H1] to [H3] of Sect. 3: according to Lem-
mas 4.2 and 4.3 the assumption [H1] relies on convenient linearizations of the
vector valued function$ and &'.

Lemma 6.1. Let be given two given state$ anduR in 22, Define the interme-

diate stateu < {2 as
VP = <\/p; + \/pS) /2
Vo = (\feus +/ohu) /2
Vo= (Vob+\/of) 12

(6.2) \/ppup = (\/pF%U,E + \/pffu,?) /2

Then the4 x 4 matrix
0 1 0 0

2 2

L Ry = | Cg—Ug 2u, 0 0

(6.3) A(u-,u®) 0 0 0 1
2 2

0 0 cp—u; 2up

where
k(ﬁff)” — (p5)"
(6.4.) 2= Py — Py
kypy =t if pl = pR = p,

if pg # g

and
. 0
(6.4.ii) Cs =70
ol
is a Roe linearization of the flux functidn
The proof of Lemma 6.1 is straightforward. We have next the

Lemma 6.2.Let be given two stateg andvR in w = Q2. There exists a param-
eter vectorp(vt, vR) in w such that the4 x 4 matrix valued functiorE defined

by
(6.5) E(VE,VR) = &7 (p(vh, V)
is a linearization of the vector valued functiéfi : w — 2.

Proof. It suffices in fact to linearize the real valued functign defined by

U1U3

V)=
x1(V) vy + o

in the form
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(6.6) X1(v5) = xa(v") = xq (vt vE)) - (VR = V).
Assume indeed that (6.6) holds true. Then, setting
V2V
xov)= 27
v+ U2
we compute
v1v
o) =vs— 7
V1 T U2
so that

X2(V®) — x2(V") = v§ — v — x2(V¥) — x2(V")
= 0§ — v5 — xa (V5 VR)) - (VR =)
= Xa (W, VR)) - (VR =),
Then by the definition (6.1) of functioff:

LR = ZW) =2 (o) - (=)

and the matrix valued functiofv-, vR) — &7 (p(v-, VvR)) is indeed a lineariza-
tion of &.

Let us linearizeyy: setx(s) = x1 (V- +s(vR —Vv*)) for s € [0, 1]. There exists
a real numbes(v-, vR) € [0, 1] such thaty(1) — x(0) = x/(s): it suffices to set

@(VE,VR) = vE +s(vE VR (VR —vh)

to obtain (6.6).

Define next the 4x 4 matrix valued functionu®,u®) € 2?2 — B(u‘, uR)
by (3.25). Then, according to Lemma 4.3, f@r and uR given, the following
linearization

ou ou_1_. . R
ot 6X_GB(U’U Ju

satisfies [H1]. Next matriB(u-, uR) has one negative eigenvalue and the triple
eigenvalue zero such that [H3] holds. Finally a straightforward computation
shows that forig-, uR) € 22 given the 33 matrixA = QA (u‘, u?)E(Qu", QuR)

has the following three distinct eigenvalues at least when— u,| is small
enough:

(6.7) +A(u-, uR)

_PgUg + (1—a)ppup

A
T+ (- a)pp
2 2
: PgCqtaCy  py(l—a)p 2
(6.8.i) —\/gg A (TAET)
P p
(6.8.ii ) Ao =U
A =y = Pt T (L et
pg+ (1 —a)pp
c2+ac? 1-—
(6.8.iii ) + \/pg gp P py( pza)Pp (Ug _ up)2
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where Vs ) -
us= o+ 1y v = Qp(Qu-, Quf).

Hence our linearization satisfies [H1] to [H3] and is compatible with the equi-
librium system (2.15) in the sense that f@r and vR given in w the 3x 3
matrix

A(VEVR) = QA(Z (1), & (VR))E(VH, VR)
is a Roe linearization of the flux function in (5.14). We may thus apply the
numerical schemes described in Sects. 3 and 4.

From now on we work with the second order version (4.9)-(4.10)-(4.11) of
our scheme. It is important to note that the system of differential equations (4.11)
may be solved explicitly: these are the formulae that are actually encoded.

In order to test the quality of our scheme, we compute the solution of some
Riemann problems and the propagation of sound waves in a two-phase medium
and we compare our numerical results with those obtained with two other meth-
ods. The study of the propagation of sound waves at different frequencies and
for different particles radii is very interesting since we dispose of analytical so-
lutions and we may easily cover the whole range of stiffness for system (5.1).
Govern indeed the time step used for the computation of the propagation of a
sound wave with frequendy and celerityc by the CFL condition relative to the
convection terms alone:

At ~ Ax/c

wherec is the velocity of the sound wave. A good resolution of the wave requires
that the space step is several times smaller than the waveldngty

A
AX—N

whereN ~ 50. Then, the ratio between the time stdp and the relaxation time
€ writes:
At Ax A 1

(6.9) € Ce Nce - fNe

System (5.1) is stiff if ratio (6.9) is largée.,if the frequencyf of the sound wave

is small or if the relaxation time is small. The quality of the numerical scheme
may thus be tested by computing several sound waves for different dimensionless
numbers

(6.10) B=

and by comparing the numerical results with the following analytical solution
(see Bereux (1994) and Culick (1981)):

(6.1Li) u=u’+u’ exp(-at) eXp(i 2nt (t - )é))

where the attenuation coefficieatis given in function of the frequendy by
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e(2nf)? 1 pp(1 — )
) .
2 1+ (Zﬂf;(gopg) pO

The second order numerical scheme of Sect. 5 is referred as Method | in the
sequel. Let us describe the two other methods used in the comparison: Method
Il is a fractional step method which runs as follows: {etdenote a numerical
flux at second order consistent with the convection system extracted from (5.1).
(For instance we choose a second order scheme based on the Roe linearization
(6.3) of the flux functionf.) Then a second order fractional step method is the
following:

(6.1Lii) a=

n+1/3
n+1/3 _ o, At R(u™")

i i 2 €
n+2/3 _ n+1/3 At n1z ne1y3
ur =g = (B — 91))
n+2/3
ne1 _ o on+2/3 At R(u™")
Ut = Ut
2 €

Finally Method Il is a second order fractional step applied to the relaxation
system (5.16): let) denote a second order numerical flux that approximates the
flux in system (5.14). Then Method Il allows to compute an approximation of
the solutionv of (5.16) and runs as follows:

n+1/3 _ At
Vj = V]-n - Ax (fojnﬂ/z - wjn—l/z)
n+2/3 _  n+1/3 1 n+1/3 n+1/3 n+l/3
Vit TV T Ak (D(Vj+1/2) (Vi =) -

DY) ()

VJ J Ax

n+1/3 n+1/3

wherev,, 7, = (v; +vj”++11/3)/2 and whereD is the diffusion matrix such

that the diffusion terms in system (5.16) writ¢ (D(v)5¥). Functionu is then
deduced from the numerical solutierthanks to (5.15). This method is described
in more details in Bereux (1994).

We compute the propagation of sound waves in a two-phase medium for
different number®8 with the three methods: the computation is initialized with a
given rest state®. We use Neumann boundary conditions at the right boundary of
the computational domain and Dirichlet boundary conditions at the left boundary.
The left state is the rest stati® whose gas mass density is modified to impose a
gas pressure oscillation with a frequerfcand an amplitud®,s.. The rest state
u® in (6.11.i) is defined by

1_ .tz Al a2z 23
=Y, - (1/’j+1/2 _¢j71/2)

a®=.9991 p) =378kgm >, u;=u, =0ms 1.
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On the other hand, the constant mass dengityand the gas viscosity, are
respectively

pp = 1766 kgm~3, p, = 8.8510°° kgm 1.s7%.
The coefficients in the pressure laws (2.2) are:
K =974216 Pa =123 6, =10000Pa
Finally the amplitude and the frequency of the pressure oscillation are
Posc=50000Pa f =70Hz

Figure 1 gives the attenuation coefficient of the three numerical methods
considered here compared with the theoretical attenuation coefficient given by
(6.11.ii) in function of the radius of the particles: by definition of numler
numberB writes

8114

16r 2f
and is large for small particle radius. Hence the relaxation terms in (5.1) are stiff
for small particle radius and non stiff for large radius. We used 400 grid points
for the computations and the time step is governed by the CFL condition alone:
CFL = 0.8. The profiles given in fig. 1 lack smoothness due to the postprocessing
of the numerical solutions.

Method Il gives good results for large particle radius but is unable to deal
with stiff systems. Indeed it is proved in Langseth-Tveito-Whinter (1993) that
the solutions computed with the fractional step method converge to the solutions
of system (5.1) when both the time steyp and the ratioAt /e tend to zero. Here
the second condition is not fulfilled since we want to govern the time step with
the CFL condition alone and when the particle radius is small the attenuation
given by Method Il is large and does not tend to zero with the particle radius as
it should according to the theoretical formula (6.11.ii). Hence Method Il can not
be used even when low precision is required. On the contrary Method Il gives
excellent results for very small particle radius: here the attenuation coefficient
given by method Ill indeed tends to zero withHowever this method is based
on system (5.16) which was derived assuming that the relative velocity between
the two phases is very small and this is definitely false when nuBbscomes
of order unity. The attenuation predicted by Method Il is an increasing function
of B, in contradiction with the theoretical formula (6.11.ii). Furthermore, in some
applications, particles are included in some gas in order to reduce combustion
instabilities and one tries to maximize the damping produced by the patrticles,
i.e., to haveB = 1. Method lll is thus of no help in the simulation of such
devices. Method | gives excellent results in the whole range of nunihe(See
in particular the zoom in the small radius zone.)

The numerical solutions of a representative Riemann problem are computed
for different particle radius using the three methods: the left and right values of
the initial state are listed in table below:

B =
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Fig. 1.
Table 1.
(kgm—3) a ug (ms™1) up (ms™1)
PglKg g p
ut 1. .9991 5. 10.
uR 2. .991 10. 5.

The different physical constants used in the computation are:
pp = 1766 kgm~3, p, = 8.8510°° kgm 1.s7?,
K =100000Pa ~ =14, 6,=10000Pa
The particle radius are respectively
rhn=0110°%m, r,=110°%m, r3=1010°m.
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We use 400 grid points and the CFL@GFL = 0.6.

The profile of the relative velocity between the two phases at time
5.6810°4s are given in Figs. 2-7: Figs. 2, 3 and 4 compare methods 1 and
3 for the three radiry, r, andrs respectively. Next Figs. 5, 6 and 7 compare
methods 1 and 2 for the three radii, r, andrs respectively. We observe that
for large radius method 3 induces too much numerical attenuation of the waves
while methods 1 and 2 give results of the same qualityrfoandr,. On the
contrary method 2 induces too much attenuation for small radii (see Figs. 5 and
6) but gives almost the same profiles as method Irfofrhese results confirm
the behavior observed in the case of the propagation of sound waves in a two-
phase medium: method 2 induces a too important attenuation of the waves in the
range of smalB numbers and gives correct profiles for largerOn the contrary
method 3 is very accurate for in the region of smlinumbers but definitely
inaccurate when numbds is of order unity. Method 1 is very satisfactory in
the whole range of numbeiB and is the best among the three methods tested
in this paper.

-0.05 |- _

relative velocity

01+ u

[ method | ]
method I11 |

e e b e e b b e e b b e
-05 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 05

X (r=0.1micron)

Fig. 2.

Finally Method | turns to be an excellent tool for the numerical computation
of sound waves in a two-phase medium and gives the expected results in the so-
lution of Riemann problems. The relaxation variables are accurately computed,
no matter the stiffess of the source terms. This proves the necessity of using so-
lutions of a fully coupled linearization of system (5.1) as the basis of a numerical
scheme in order to obtain accurate solutions regardless of the stiffness.
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Appendix A

This appendix is devoted to the proof of some properties of the solution of
the generalized Riemann problem with constant coefficients (3.8): we prove the
Propositions 3.2, 3.3 and, 3.4. We first deal with the global existence of a unique
solution with bounded variations of (3.8): in Fourier variables system (3.8) takes
the form of the following system of ODEs:

ou
ot

whose formal solution writes

= —i¢AT +BU
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Fig. 5.

I

relative velocity

method |
method |1
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Fig. 6.

G(f, t) = eXp(( - IfA + B)t)ﬁ(ga 0)
But the Fourier transform of the initial is given by
R L

(A1) G(e,0)=—i - g“ +Ubs

whereé denotes Dirac’s measure so that

uR — ut
(A.2) U, t)y=—iexp((—i¢A+B)t) - ¢ +exp(Bt)u-é.
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Recalling that the functions iBV (R) are precisely the functions — z(x) whose
Fourier transformt — Z(¢) satisfies¢z(¢) € L>(R), we obtain that the function
u defined by (A.2) belongs to the s&t'([0, T], BV (R)) thanks to the following

Lemma A.1. For any fixed t the functiog — |exp(( —i£A +B)t)| is bounded
overR

and the proof of Proposition 3.2 is complete.
Proof of Lemma A.1llLet be given{ and leti denote an eigenvalue of matrix
—i£A + B: there exists a vecta with |s| = 1 such that

(—i¢A+B)s=yus.

But we have assumed the existence of a symmet8Zer matrix A: multiply on
the left the above system by the vec&rwheres denotes the complex conjugate
of vectors:. sinceS is symmetric, we get

—iés- SAs+s- SBs= us- Ss

Since S is positive definites- Ssis a positive real number. Furthermore matrix
SA is symmetric ands- SAsis a real number. We deduce that

Re(u) = Re(ss SSSBQ

and the latter expression is bounded independentfy ®his concludes the proof
of Lemma A.1.

We prove next Proposition 3.®roof of Proposition 3.3Let be givenu“, uR
and letz denote the function defined by (3.13). In Fourier variabkegrites

p .
26,0 = i exp(-iga+B)y ¢ iy e ™ P M)
k=1
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or, by (3.12),

p

(A3 D= D [exp((-igA+B)D A - atexp(— iAut)] i
k=1

The behavior of the eigenvalues of matri£A + B is given by the following

Lemma A.2. Let A be a given px p matrix with p distinct eigenvalues,
1 < k < p and letB be a given matrix. Denote by, 1 < k < p (resp.l;,
1 < k < p) the right (resp. left) eigenvectors of matdx When¢ is large
enough, the matrix-i €A + B has p distinct eigenvaluas(£), 1 < k < p with
the following asymptotic behavior:

(A4) () = —i €A + I - Bry + (g) .

The associated right eigenvectags) have the following behavior:
1
(A5) 5@ =rc+0 ().

The proof of Lemma A.2 follows from the results in Wilkinson (1978), pp.
66-67.
We deduce from (A.5) thatfor &t < T,

exp((—i&A +B)t)ri = exp((—i (A +B)t) s +exp(( — €A +B)t) (r — s)
= exp(u(€)t)sc + O (1/¢).
We insert next (A.4) in the latter estimate to deduce:
exp((—iéA+B)t)r =exp( —iAt)exp(lg - Brit)r +O(1/¢)
or, by definition of the functionsy, 1 < k < p:

exp(( —iEA+B)t) ri =exp(—it) akag)rk +0(1/¢).

We deduce from (A.3) and the latter estimate that for ® < T, the function
€ — £22(¢,1) is uniformly boundedi.e., that the functiongi belongs to the set
L>°([0, T], BV (R)). The proof of Proposition 3.3 is complete.

Proof of Proposition 3.4Let u denote the unique solution of (3.8) and set

z(x,t) = u(x + Apt, t) — exp(Bt)u®.

According to Proposition 3.% is continuous on J0+oc[ for t > 0 andz(x, 0) =
0, x > 0. Next let be givenp, a positive decreasing function with(0) = 1 and
—¢'(x) < 9(x), x = 0. Set

I(t) = ;/Om P(X)2(X,t) - SAX, t) dx
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whereSis a symmetrizer oA. Sincez is continuous on ]0+oo[ and has bounded
variations, we compute:

di oo 0z
dt(t)_/o q/;z-Satdx
+00 az +00
= —/ Yz-S(A = Xpl) = dx +/ )z - SBzdx
0 Ox 0

B 1 +oo aw +oo
—2/0 aXz-S(A—>\,)1)zdx+ ; ¥z - SBzdx

+2(z-S(A -~ 1)2)(0". 1)

The matricesS and SA are indeed symmetric. Decompose next the function
on the eigenbasis, 1 < k < p of A:

p
2(x,1) = Z(x, Or.
k=1

Recalling that the left eigenvectors of matdxwrite Iy = Sry, 1 < k < p, we

compute:
p

z-S(A = X1)z=> (M — A%

k=1
and the latter expression is non positive. We deduce that

dl 1 (7 9y +o0
< . _ )
ot (t) < 2/0 ox 2 S(A — M\pl)zdx + ; Yz - SBzdx

and sincey’| < 1, we get
PROEESI0

for some positive numbeZ. But| (0) = 0 and we deduce thaft) < 0 fort > 0.
This enables us to conclude that

u(x,t) = exp(Bt)uR, x> Apt.
The proof of the identity
u(x,t) = exp(Bt)ut, x < Aot

is similar and the proof of Proposition 3.4 is complete.

Appendix B

We consider in this appendix the proof of Proposition 3.5: we consider the linear
Riemann problem with constant coefficients (3.3) and we assume that the three
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assumptions [H1], [H2] and [H3] hold true. Before we begin the proof let us
notice that when [H1] holds, if a vectari such thatBs= 0, s writes

(B.1) s=EQs.

We compute indee®(s — EQs) = 0 andB(s— EQs) = 0 so that vectow =
s — EQs belongs to the vector space Ign kerQ. But sinceBE = 0, we have
that rangel) = ker(B) and we deduce fronQE = 1, that kerB N kerQ =
kerQ NnrangeE = {0}, which gives (B.1).

On the other hand,

(B.2) Quk=0,g+1<k<p.

Indeed, apply on the left matri to the identityBgyx = n«Qqk: sinceQB =0, we
getnxQqx = 0 and we deduce th&qy = 0 since numbery is negative.

The proof of Proposition 3.5 relies on the study of the behavior of the eigen-
values of the matrices-i (A + B/7, at least forr|¢| small enough. When the
r negative eigenvalues @ are distinct, the perturbation Lemma A.1 gives
distinct real negative eigenvalues of matrix£A + B/e, at least fore|£| small
enough. These eigenvalues are of ordérdse tends to 0. Next zero is a multi-
ple eigenvalue oB for which things are more complicated. In fact the splitting
of this multiple eigenvalue depends on the matkidand is determined with the
ingredients used to perform the Chapman-Enskog expansion of system (3.1) (see
Chen-Levermore-Liu (1992) or Bereux (1994) for instance). We first prove the

Lemma B.1.We can find a positivéy such that fore|¢| < (o, the matrix—i A +
iB has p—r eigenvalues (&, ¢), r + 1 < k < p with the following asymptotic
behavior:

(B.31) (& — ™ <clg, r+vi<k<p.
€

The associated eigenvectors are denotedlfy, ¢) and satisfy

(B.3.ii) [Sc(§,€) —a| < Cel¢], r+1<k<p.

The proof of Lemma B.1 follows from Lemma A.1 and assumption [H3].
We consider next the splitting of the multiple eigenvalue Bof

Lemma B.2. We can find a positive numbgp such that fore|¢| < (5o, matrix
—iEA + iB has r distinct eigenvaluegk(é,¢€), 1 < k < r with the following
behavior:

(B.4i) (€, €) + €| < C(o)es®.
The associated eigenvectors satisfy

(B.4ii) S(6,€) — EFul < C(Bo)ele].
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Proof of Lemma B.2We are looking for a pairy(, s) solution of
. 1
(B.5) (—i¢A+ B)s=pus
€

in the form of the following formal expansion:

,u:Zulel, S:Zslel.

1>0 >0
At order —1 in ¢, we obtain that
Bs =0
and (B.1) yields
(B.6) L = EQS.
We obtain next at zero-th order:
—iéAS? +Bs! = 1,08,

Apply matrix Q on the left to the later equation: recalling that by assumption
QB =0, we deduce thaf, satisfies

—i£QAS® = ;°Q<.
By using (B.6) we deduce that vectgt= Q<° satisfies
—i E,K\AS"O =i,

i.e.,that vector® is either zero or an eigenvector of matdx When¥ is zero,
vector s = EF is itself zero and we are not interested in that case. On the
contrary, wherg’ is non zero, we have

(B.7) L=Ef, p®=-itk

for some indexk € [1,...,r]. B
At zero-th order ine, the pair(uo,so) is an eigenpair of matriA. Let us
now look for an eigenpaits, ;) of matrix —i £A + 1B in the form

(B.8) s=L+etw, u:—ig(Xk +Teg).
Equation (B.5) is then replaced by
(B.9) Bw =i (A — X\1)$”+i6(A — NL)w — i 768 — i 762w

where we have set = ¢£. Recalling that the range of matr& is the kernel of
Q, equation (B.9) has a solution provided that

(B.10) Q(A — X1)w = 7Q + 67Qw.
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According to the implicit functions theorem, system (B.9)-(B.10) has a one pa-
rameter family of solutiong — (W(é), 7(6)) provided that there exists a solution
(w(0), 7(0)) whens = 0 of system (B.9)-(B.10) and that system (B.9)-(B.10) de-
termines the derivativéw’(0), 7/(0)) of the one parameter family. Settidg= 0,
system (B.9)-(B.10) takes the form:

(B.11) Bw=i(A- X1, Q(A - Al)w=rQs.

Next the formal derivative taken in = 0 of system (B.9)-(B.10) writes
(B.12)
BW(0) =i (A—N1)w(0)—iT(0)%, Q(A—X1)W(0) =7'(0)Qs+7(0)Qw(0).

Both systems (B.11) and (B.12) are solved thanks to the following

Lemma B.3. Let be given a vectoy in the range oB and two vectorg® and z*
such thatl, - Qz° # 0. Then system

(B.13) Bw=y, Q(A - X\1l)w=7QZ+Qz

has a solution(w, 7). Furthermore

(B.14i) ol <c M7
[l - QZ°
0
(B.14iii) wj<C <1+ T '_ZQZO|> (Il +[2Y)-

Sinces® = EFy, we havel, - Qs = Ik - Tk = 1. Next, by definition ofs’,
Q(A — A1)’ = 0 so that the vectoir(A — \1)s” belongs to the vector space
rangeB and we can apply Lemma B.3 to the solution of system (B.11): we
obtain the existence of a pa(w(O),T(O)) solution of (B.11). We apply again
Lemma B.3 to obtain the existence ©f'(0), 7'(0)) solution of (B.12). Indeed
by (B.13), the vector (A — Xkl)so belongs to rangeR). We may thus apply the
implicit functions theorem to conclude the existence of a one parameter family
(W((S),T((S)) of solutions of (B.9), at least foj¢| small enough or equivalently
for €|¢| small enough. The corresponding solution of (B.5) then satisfies estimate
(B.4). The proof of Lemma B.2 is complete.
Proof of Lemma B.3Let be giveny, z° andz! as in Lemma B.3. We write vector
w in the formw = w! + w? wherew! = EQw andw? = (1 — EQ)w. The first
equation in (B.13) giveBw? = y. But Qw? = 0 and because k&nkerQ = {0},
we obtain that? is uniquely determined and satisfies

w? < Clyl.
Next, the second equation in (B.13) writes
(A — X)) Qw! = 7QZ° + QZ* — Q(A — A1p)wA
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Since )y is an eigenvalue of matrid, the latter equation has a solution only if
I - Q2 =Tc - Q(A — AeLp)W? — Ik - QZ%.
But Iy - QZ° is by assumption non zero so that

)
k- Q20

We deduce thaiv! satisfies:

Wh < C (7][2°] + [w?| +2"])

<c(1+ B ) v+
: T Q2 |

This concludes the proof of Lemma B.3.

We can now conclude the proof of Proposition 3.5:tléke fixed. According
to Lemmas B.1 and B.2, foe|¢| small enough, matrix-i¢A + B may be
diagonalized in basisc(§,¢), 1 < k < p of RP. For ¢ ande given, decompose
vectorG(¢, 0) on the latter basis:

p
U(¢,0) =) G(O%E 0.
k=1
Then,

p
G(xit) = exp( i €tA + B) (€, 0) = Y exp (&, ) K(OK(6: ).

k=1
But, according to Lemma B.1, the eigenvalygg¢,e), r +1 < k < p tend to
—oo and more precisely, we deduce from Lemma B.1 and (B.2) that

r

QU(E, 1) — Y exp (&, ) T()Q (€, €)

k=1

< Cel¢].

Next, according to Lemma B.2, ford k <,
exp(jak(€, 9) = exp(—i ¢ + 0 (e€2) ) = exp( — iA€) (1+0 (e€?)),

and we deduce that faf¢| small enough,

QU 1) — > exp(— iEN)TE()Qx (&, €)| < C (elg] +e€?) .

k=1

Inserting (B.4.ii) in the latter estimate gives

QU(E, 1) — > exp( — i) TE(E)Fi| < C (el¢] +ec?).

k=1

(B.15)
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On the other hand estimates (B.3.ii) and (B.4.ii) give

QU(E, 0) = Y TE(&Tk| < Cel¢|

k=1

and together with (B.15) we obtain:

(B.16)

But letting U denote the solution of (3.19)-(3.20), we have

QU(E, 1) — exp( — 1EA)QU(E, 0)] < C (elé]| +e&?).

U(¢, 1) = exp( — i£tA)QU(E, 0)

and estimate (3.21) is precisely (B.16). The proof of Proposition 3.5 is complete.
Table 2. Table of figures

Figure No Type of calculation Plotted quantity Methods used Radius (10 m)

Figure 1 Sound wave Attenuation coefficient Methods 1, 2, 3 0...50

Figure 2 Riemann problem Relative velocity Methods 1,3 0.1

Figure 3 Riemann problem Relative velocity Methods 1,3 1

Figure 4 Riemann problem Relative velocity Methods 1,3 10

Figure 5  Riemann problem Relative velocity Methods 1,2 0.1

Figure 6 Riemann problem Relative velocity Methods 1,2 1

Figure 7 Riemann problem Relative velocity Methods 1,2 10
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