
High-Order Central WENO Schemes for 1D

Hamilton-Jacobi Equations

Steve Bryson1 and Doron Levy2

1 Program in Scientific Computing/Computational Mathematics, Stanford
University and the NASA Advanced Supercomputing Division, NASA Ames
Research Center, Moffett Field, CA 94035-1000; bryson@nas.nasa.gov

2 Department of Mathematics, Stanford University, Stanford, CA 94305-2125;
dlevy@math.stanford.edu

1 Introduction

We consider high-order central approximations for solutions of one-dimensional
Hamilton-Jacobi (HJ) equations of the form

∂

∂t
φ(x, t) + H (φx, x) = 0, x ∈ R, (1)

subject to the initial data φ(x, t=0) = φ0(x). Solutions for (1) with smooth
initial data typically remain continuous but develop discontinuous derivatives
in finite time. Such solutions are not unique; the physically relevant solution
is known as the viscosity solution (see [1, 3, 4, 5, 8, 15] and the references
therein).

Various numerical methods were proposed in order to approximate the so-
lutions of (1). Examples for such methods are the high-order Godunov-type
schemes that were introduced in [20, 21], and were based on an Essentially
Non-Oscillatory (ENO) reconstruction step [7] that was evolved in time with
a first-order monotone flux. The least dissipative monotone flux, the Go-
dunov flux, requires solving Riemann problems at cell interfaces. A fifth-order
Weighted ENO (WENO) scheme, based on [10, 18], was introduced by Jiang
and Peng [9].

Recently, Lin and Tadmor introduced in [16, 17] central schemes for ap-
proximating solutions of the HJ equation. These schemes are based on the
Nessyahu-Tadmor scheme for approximating solutions of hyperbolic conser-
vation laws [19]. Unlike upwind schemes, central schemes do not require Rie-
mann solvers, which makes them attractive for solving systems of equations
and for multi-dimensional problems. A second-order semi-discrete version
of these schemes was introduced by Kurganov and Tadmor in [12]. While
less dissipative, the semi-discrete scheme requires the estimation of the lo-
cal speed of propagation, which is computationally intensive in particular in
multi-dimensional problems. In a later work [11], the numerical viscosity was
further reduced by computing more precise information about local speed of
propagation. To address the problem of schemes that are too computation-
ally intensive, we introduced in [2] efficient first- and second-order central
schemes for approximating the solutions of multi-dimensional versions of (1).
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Unlike the previous attempts, our schemes in [2] scale well with increasing
dimension.

In this paper we derive fully-discrete Central WENO (CWENO) schemes
for approximating solutions of (1), which combine our previous works [2,
13, 14]. We introduce third- and fifth-order accurate schemes, which are the
first central schemes for the HJ equations of order higher than two. The
core ingredient in the derivation of our schemes is a high-order CWENO
reconstructions in space.

Acknowledgment: We would like to thank Volker Elling for helpful discus-
sions.

2 CWENO Schemes for HJ Equations

We are interested in approximating solutions of (1) subject to the initial data
φ(x, t = 0) = φ0(x). For simplicity we assume a uniform grid grid in space
and time with mesh spacings, h := ∆x and ∆t. We denote the grid points by
xi = i∆x, tn = n∆t, and the fixed mesh ratio by λ = ∆t/∆x. Let ϕn

i denote
the approximate value of φ (xi, t

n), and (ϕx)n
i denote the approximate value of

the derivative φx (xi, t
n). We define ∆+ϕn

i := ϕn
i+1−ϕn

i , ∆−ϕn
i := ϕn

i −ϕn
i−1

and ∆0ϕn
i := ϕn

i+1 − ϕn
i−1.

We assume that the approximate solution at time tn, ϕn
i is given. In

order to approximate the solution at the next time step tn+1, ϕn+1
i , we start

by reconstructing a continuous piecewise-polynomial from the data, ϕn
i , and

sample it at the half-integer points, {xi+1/2}, in order to obtain the point-
values of the interpolant at these points ϕn

i+1/2 as well as the derivative,
ϕ′

i+1/2. We then evolve ϕn
i+ 1

2
from time tn to time tn+1 according to (1),

ϕ
(
xi+ 1

2
, tn+1

)
= ϕ

(
xi+ 1

2
, tn

)
−

∫ tn+1

tn

H
(
ϕx

(
xi+ 1

2
, t

))
dt. (2)

This evolution is done at the half-integer grid points where the reconstruc-
tion is smooth (as long as the CFL condition λ |H ′ (ϕx)| ≤ 1/2 is satisfied).
Finally, in order to return to the original grid, we project ϕn+1

i+1/2 back onto
the integer grid points {xi} to end up with ϕn+1

i .
Since the evolution step (2) is done at points where the solution is smooth,

we can approximate the time integral at the RHS of (2) using a sufficiently
accurate quadrature rule. For example, for a third- and fourth-order method,
this integral can be replaced by a Simpson’s quadrature,

∫ tn+1

tn

H
(
ϕx

(
xi+ 1

2
, t

))
dt ≈ ∆t

6

[
H

(
ϕx

(
xi+ 1

2
, tn

))
(3)

+4H
(
ϕx

(
xi+ 1

2
, tn+ 1

2

))
+H

(
ϕx

(
xi+ 1

2
, tn+1

))]
.
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The intermediate values of the derivative in time, ϕx

(
xi+1/2, t

n+1/2
)
, and

ϕx

(
xi+1/2, t

n+1
)
, which are required in the quadrature (3), can be predicted

using a Taylor expansion or with a Runge-Kutta (RK) method. For details
we refer the reader to [13, 19] and the references therein.

The remaining ingredient is the piecewise-polynomial reconstruction in
space. A careful study of the above procedure reveals that there are actually
three different quantities that should be recovered in every time step. First,
given ϕi at time tn we need to reconstruct the point-values at the half-integer
grid points, ϕi+1/2, at the same time tn. This is the first term on the RHS of
(2). The second term on the RHS of (2) requires evaluating the Hamiltonian
H at the derivative ϕ′

i+1/2. Hence, the second quantity we should recover
is ϕ′

i+1/2 from ϕi. Finally, the predictor step that provides the values at
the quadrature nodes in (3), require us to estimate ϕ′

i+1/2 from ϕi+1/2 at
every step of the RK method. In the next two sections we will focus on the
reconstruction of these three quantities, first for a third-order method and
then for a fifth-order method.

The projection from ϕn+1
i+1/2 onto the original grid points to get ϕn+1

i is
accomplished using the same reconstruction used to approximate ϕn

i+1/2 from
ϕn

i .

2.1 A Third-Order Scheme

Following the above procedure, a third-order scheme can be generated by
combining a third-order accurate ODE solver in time with a sufficiently
high-order reconstruction in space. Here we present fourth-order CWENO
reconstructions of the point values of ϕi+1/2 and its derivative ϕ′

i+1/2.

The reconstruction of ϕi+1/2 from ϕi.
In order to obtain a fourth-order reconstruction of ϕi+1/2 we will write a con-
vex combination of two quadratic polynomials, ϕ

[2]
− constructed on a stencil

which is left-biased with respect to xi+1/2, and the right-biased ϕ
[2]
+ ,

ϕ
[2]
− (x) = ϕi +

1
h

(
∆+ϕi

)
(x − xi) +

1
2h2

(
∆+∆−ϕi

)
(x − xi) (x − xi+1) + O

(
h3

)
,

ϕ
[2]
+ (x) = ϕi +

1
h

(
∆+ϕi

)
(x − xi) +

1
2h2

(
∆+∆+ϕi

)
(x − xi) (x − xi+1) + O

(
h3

)
.

An evaluation of these approximations at {xi+ 1
2
} reads

ϕ
[2]
−

(
xi+ 1

2

)
=

1
8
(−ϕi−1+6ϕi+3ϕi+1), ϕ

[2]
+

(
xi+ 1

2

)
=

1
8
(3ϕi+6ϕi+1−ϕi+2).

A straightforward computation shows that

1
2
ϕ

[2]
− (xi+ 1

2
) +

1
2
ϕ

[2]
+ (xi+ 1

2
) = ϕi+ 1

2
+ O

(
h4

)
.
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The fourth-order WENO estimate of ϕi+1/2 is therefore given by the convex
combination

ϕ[4]
w

(
xi+ 1

2

)
= w−

i+ 1
2
ϕ

[2]
−

(
xi+ 1

2

)
+ w+

i+ 1
2
ϕ

[2]
+

(
xi+ 1

2

)
,

where the weights satisfy w−
i+1/2 + w+

i+1/2 = 1, w±
i+1/2 ≥ 0, ∀i. In smooth

regions we would like to satisfy w−
i ≈ w+

i ≈ 1
2 to attain an O

(
h4

)
error,

while when the stencil {xi−1, xi, xi+1, xi+2} supporting ϕw

(
xi+ 1

2

)
contains

a discontinuity, the weight of the more oscillatory polynomial should vanish.
Following [10, 18], we meet these requirements by setting

wk
i+ 1

2
=

αk
i+ 1

2∑
l α

l
i+ 1

2

, αk
i+ 1

2
=

ck(
ε + Sk

i+ 1
2

)p (4)

where k, l ∈ {+,−} (k and l will range over a larger space of symbols when
we use more interpolants). The constants c± = 1/2 and are independent of
the grid-point. We choose ε as 10−6 to prevents the denominator in (4) from
vanishing, and set p = 2 (see [10]). The smoothness measures S±

i should be
large when ϕ is nearly singular. Following the standard practice with WENO-
type schemes [10], we take S±

i to be the sum of the L2-norms of the first and
second derivatives on the stencil supporting ϕ

[2]
± . If we approximate the first

derivative at xi+1/2 by 1
h∆+ϕi+1/2, the second derivative by 1

h2 ∆+∆−ϕi+1/2,
and define the smoothness measure

Si+ 1
2

[r, s] = h

s∑
j=r

(
1
h

∆+ϕi+j+ 1
2

)2

+ h

s∑
j=r+1

(
1
h2

∆+∆−ϕi+j+ 1
2

)2

, (5)

then for the fourth-order interpolation of ϕw

(
xi+ 1

2

)
we have S−

i+1/2 =

Si+1/2 [−1, 0] and S+
i+1/2 = Si+1/2 [0, 1].

The reconstruction of ϕ′
i+1/2 from ϕi.

To obtain a fourth-order estimate of the derivative ϕ′(xi+1/2) from ϕ(xi), we
start from the cubic interpolants

ϕ
[3]
− (x) = ϕi +

1
h

(
∆+ϕi

)
(x − xi) +

1
2h2

(
∆+∆−ϕi

)
(x − xi) (x − xi+1)

+
1

6h3

(
∆−∆+∆−ϕi

)
(x − xi) (x − xi+1) (x − xi−1) + O

(
h4

)
,

ϕ
[3]
+ (x) = ϕi +

1
h

(
∆+ϕi

)
(x − xi) +

1
2h2

(
∆+∆+ϕi

)
(x − xi) (x − xi+1)

+
1

6h3

(
∆+∆+∆+ϕi

)
(x − xi) (x − xi+1) (x − xi+2) + O

(
h4

)
.

Differentiating ϕ
[3]
± at xi+ 1

2
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ϕ
′[3]
−,i+ 1

2
=

1
24h

(ϕi−2 − 3ϕi−1 − 21ϕi + 23ϕi+1) ,

ϕ
′[3]
+,i+ 1

2
=

1
24h

(−23ϕi + 21ϕi+1 + 3ϕi+2 − ϕi+3) .

Again,
1
2
ϕ
′[3]
−,i+ 1

2
+

1
2
ϕ
′[3]
+,i+ 1

2
= ϕ′

i+ 1
2

+ O
(
h4

)
,

and a fourth-order WENO reconstruction of ϕ′
(
xi+ 1

2

)
is

ϕ
′[4]
i+1/2 = w−

i+ 1
2
ϕ
′[3]
−,i+ 1

2
+ w+

i+ 1
2
ϕ
′[3]
+,i+ 1

2

where the weights are of the form (4) with c± = 1/2 and S−
i+1/2 =

Si+1/2 [−2, 0] and S+
i+1/2 = Si+1/2 [0, 2].

The reconstruction of ϕ′
i+1/2 from ϕi+1/2.

Repeating the above procedure, this time with three quadratic interpolants

ϕ̃
[2]
− (x) = ϕi+ 1

2
+

1
h

(
∆−ϕi+ 1

2

) (
x − xi+ 1

2

)

+
1

2h2

(
∆+∆−ϕi+ 1

2

) (
x − xi+ 1

2

)(
x − xi+ 3

2

)
+ O

(
h3

)
,

ϕ̃
[2]
0 (x) = ϕi+ 1

2
+

1
2h

(
∆0ϕi+ 1

2

)(
x − xi+ 1

2

)

+
1

2h2

(
∆+∆−ϕi+ 1

2

) (
x − xi− 1

2

) (
x − xi+ 3

2

)
+ O

(
h3

)
,

ϕ̃
[2]
+ (x) = ϕi+ 1

2
+

1
h

(
∆+ϕi+ 1

2

) (
x − xi+ 1

2

)

+
1

2h2

(
∆+∆+ϕi+ 1

2

) (
x − xi+ 1

2

)(
x − xi+ 3

2

)
+ O

(
h3

)
,

results with
1
6
ϕ̃
′[2]
−,i+ 1

2
+

2
3
ϕ̃
′[2]
0,i+ 1

2
+

1
6
ϕ̃
′[2]
+,i+ 1

2
= ϕ′

i+ 1
2

+ O
(
h4

)
,

where

ϕ̃
′[2]
−,i+ 1

2
=

1
2h

(ϕi− 3
2
− 4ϕi− 1

2
+ 3ϕi+ 1

2
), ϕ̃

′[2]
0,i+ 1

2
=

1
2h

(ϕi+ 3
2
− ϕi− 1

2
),

ϕ̃
′[2]
+,i+ 1

2
=

1
2h

(−3ϕi+ 1
2

+ 4ϕi+ 3
2
− ϕi+ 5

2
).

The fourth-order WENO estimate of ϕ′
i+1/2 is

ϕ̃
′[4]
i+1/2 = w−

i+ 1
2
ϕ̃
′[2]
−,i+ 1

2
+ w0

i+ 1
2
ϕ̃
′[2]
0,i+ 1

2
+ w+

i+ 1
2
ϕ̃
′[2]
+,i+ 1

2

where the weights w are of the form (4) with c− = c+ = 1/6, c0 = 2/3, and
the oscillatory indicators S−

i+1/2 = Si+1/2 [−2,−1], S−
i+1/2 = Si+1/2 [−1, 0],

and S+
i+1/2 = Si+1/2 [0, 1].
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2.2 A Fifth-Order Scheme

Once again, similarly to the third-order scheme, we need to reconstruct the
point-values of ϕ and ϕ′. We start with the reconstruction of ϕi+1/2 and
ϕ′

i+1/2 from ϕi. We write sixth-order interpolants as a convex combination

of cubic interpolants, ϕ
[3]
− (x) and ϕ

[3]
+ (x) introduced above and

ϕ
[3]
0 (x) = ϕi +

1
h

(
∆+ϕi

)
(x − xi) +

1
2h2

(
∆+∆−ϕi

)
(x − xi) (x − xi+1)

+
1

6h3

(
∆+∆−∆+ϕi

)
(x − xi) (x − xi+1) (x − xi+2) + O

(
h4

)
.

In this case

3
16

ϕ
[3]

−,i+ 1
2

+
5
8
ϕ

[3]

0,i+ 1
2

+
3
16

ϕ
[3]

+,i+ 1
2

= ϕi+ 1
2

+ O
(
h6

)
,

where

ϕ
[3]

−,i+ 1
2

=
1
16

(ϕi−2 − 5ϕi−1 + 15ϕi + 5ϕi+1),

ϕ
[3]

0,i+ 1
2

=
1
16

(−ϕi−1 + 9ϕi + 9ϕi+1 − ϕi+2),

ϕ
[3]

+,i+ 1
2

=
1
16

(5ϕi + 15ϕi+1 − 5ϕi+2 + ϕi+3).

In a similar way,

− 9
80

ϕ
′[3]
−,i+ 1

2
+

49
40

ϕ
′[3]
0,i+ 1

2
− 9

80
ϕ
′[3]
+,i+ 1

2
= ϕ′

i+1/2 + O
(
h6

)
,

where

ϕ
′[3]
−,i+ 1

2
=

1
24h

(ϕi−2 − 3ϕi−1 − 21ϕi + 23ϕi+1),

ϕ
′[3]
0,i+ 1

2
=

1
24h

(ϕi−1 − 27ϕi + 27ϕi+1 − ϕi+2),

ϕ
′[3]
+,i+ 1

2
=

1
24h

(−23ϕi + 21ϕi+1 + 3ϕi+2 − ϕi+3).

The sixth-order WENO estimates for ϕi+1/2 and ϕ′
i+1/2 are

ϕ
[6]

i+ 1
2

= w−
i+ 1

2
ϕ

[3]

−,i+ 1
2

+ w0
i+ 1

2
ϕ

[3]

0,i+ 1
2

+ w+
i+ 1

2
ϕ

[3]

+,i+ 1
2
,

ϕ
′[6]
i+ 1

2
= w′−

i+ 1
2
ϕ̃
′[3]
−,i+ 1

2
+ w′0

i+ 1
2
ϕ̃
′[3]
0,i+ 1

2
+ w′+

i+ 1
2
ϕ̃
′[3]
+,i+ 1

2
,

where the weights for ϕ are given by (4), with c− = c+ = 3/16, c0 = 5/8 and
the oscillatory indicators are S−

i+1/2 = Si+1/2 [−2, 0], S0
i+1/2 = Si+1/2 [−1, 1]

and S+
i+1/2 = Si+1/2 [0, 2]. The negative weights for ϕ′ require special treat-

ment (see [22] for details). Following [22] we split the positive and negative
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weights in the following way: first, we set γ−
− = γ+

− = 9/40, γ0
− = 49/40 and

γ−
+ = γ+

+ = 9/80, γ0
+ = 49/20. Then, For k, l ∈ {−, 0, +}, set σ± =

∑
k γk± so

that similarly to (4),

αk
±,i+ 1

2
=

γk
±

σ±
(
ε + Sk

i+ 1
2

)p

and

w′k
i+ 1

2
= σ+

αk
+,i+ 1

2∑
l αl

+,i+ 1
2

− σ−
αk
−,i+ 1

2∑
l α

l
−,i+ 1

2

.

Because ϕ
[3]
i+1/2 and ϕ

′[3]
i+1/2 are defined on the same stencils, they use the

same smoothness measures Si+1/2.
All that is left is the reconstruction of ϕ′

i+1/2 from ϕi+1/2. In this case
a sixth-order approximation to ϕ′

i+1/2 requires a weighted sum of four cubic
interpolants. This reconstruction is similar to the previous ones. We skip the
details and summarize the result:

ϕ̃
′[6]
i+ 1

2
= w−

i+ 1
2
ϕ̃
′[3]
−,i+ 1

2
+ w0−

i+ 1
2
ϕ̃
′[3]
0−,i+ 1

2
+ w0+

i+ 1
2
ϕ̃
′[3]
0+,i+ 1

2
+ w+

i+ 1
2
ϕ̃
′[3]
+,i+ 1

2
,

where

ϕ̃
′[3]
−,i+ 1

2
=

1
6h

(−2ϕi− 5
2

+ 9ϕi− 3
2
− 18ϕi− 1

2
+ 11ϕi+ 1

2
),

ϕ̃
′[3]
0−,i+ 1

2
=

1
6h

(ϕi− 3
2
− 6ϕi− 1

2
+ 3ϕi+ 1

2
+ 2ϕi+ 3

2
),

ϕ̃
′[3]
0+,i+ 1

2
=

1
6h

(−2ϕi− 1
2
− 3ϕi+ 1

2
+ 6ϕi+ 3

2
− ϕi+ 5

2
),

ϕ̃
′[3]
+,i+ 1

2
=

1
6h

(−11ϕi+ 1
2

+ 18ϕi+ 3
2
− 9ϕi+ 5

2
+ 2ϕi+ 7

2
).

Here, c− = c+ = 1/20, c0− = c0+ = 9/20, S−
i+1/2 = Si+1/2 [−3,−1], S0−

i+1/2 =
Si+1/2 [−2, 0], S0+

i+1/2 = Si+1/2 [−1, 1] and S+
i+1/2 = Si+1/2 [0, 2].

3 Numerical Examples

In all our numerical simulations, the ODE solvers we use are the non-linear
fourth-order Strong-Stability Preserving Runge-Kutta (SSP-RK) methods of
[6].

We start by testing the accuracy of our new CWENO methods when
approximating the solution of the linear advection equation, ϕt + ϕx = 0.
The initial data is taken as ϕ (x, 0) = sin4 (πx), the mesh ratio λ = 0.9 and
the time T = 4. The results obtained with the fifth-order method of §2.2 are
shown in Table 1.
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Table 1. Error and convergence rate for linear advection with initial condition
ϕ (x, 0) = sin4 (πx)

N L1 error L1 order

50 5.03 × 10−2 –
100 8.36 × 10−5 9.23
200 2.56 × 10−6 5.03
400 8.24 × 10−8 4.96
800 2.99 × 10−9 4.78

Next, we test the CWENO methods with two nonlinear Hamiltonians:
a convex Hamiltonian ϕt + 1

2 (ϕx + 1)2 = 0 and a non-convex Hamilto-
nian ϕt − cos (ϕx + 1) = 0. The interval is [0, 2], the boundary conditions
are periodic and the initial conditions for both Hamiltonians are taken as
ϕ (x, 0) = − cos (πx). The exact solution to both problems is smooth until
t ≈ 1/π2, after which a singularity forms. A second singularity forms in the
non-convex H example at t ≈ 1.29/π2.

The results of the accuracy test with the fifth-order method are shown in
Table 2, and the solution at time T = 1.5/π is plotted in Figure 1. Following
[9] the errors in Table 2 after the formation of the singularity are computed
at a distance of 0.1 away from any singularities.

Table 2. L1 Error and convergence rate estimates for convex and non-convex
Hamiltonians. top: T = 0.5/π2, bottom: T = 1.5/π2. λ = 0.3

N convex convex non-convex non-convex
L1 error L1 order L1 error L1 order

50 6.35 × 10−6 – 4.17 × 10−5 –
100 1.62 × 10−7 5.30 1.49 × 10−6 4.81
200 5.72 × 10−9 4.82 4.19 × 10−8 5.15
400 2.73 × 10−10 4.39 1.34 × 10−8 4.97
800 1.45 × 10−11 4.23 4.20 × 10−8 4.99

N convex convex non-convex non-convex
L1 error L1 order L1 error L1 order

50 2.12 × 10−4 – 2.56 × 10−5 –
100 1.03 × 10−5 4.37 7.80 × 10−7 5.03
200 9.68 × 10−8 6.73 1.70 × 10−8 5.52
400 6.20 × 10−10 7.29 5.02 × 10−10 5.08
800 1.90 × 10−11 5.03 1.71 × 10−11 4.88
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Fig. 1. left: Convex Hamiltonian right: non-convex Hamiltonian at T = 1.5
π2 com-

pared with the exact solution, N = 100.
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