High-Order Central WENO Schemes for 1D Hamilton-Jacobi Equations

Steve Bryson ${ }^{1}$ and Doron Levy ${ }^{2}$
${ }^{1}$ Program in Scientific Computing/Computational Mathematics, Stanford University and the NASA Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA 94035-1000; bryson@nas.nasa.gov
${ }^{2}$ Department of Mathematics, Stanford University, Stanford, CA 94305-2125; dlevy@math.stanford.edu

1 Introduction

We consider high-order central approximations for solutions of one-dimensional Hamilton-Jacobi (HJ) equations of the form

$$
\begin{equation*}
\frac{\partial}{\partial t} \phi(x, t)+H\left(\phi_{x}, x\right)=0, \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

subject to the initial data $\phi(x, t=0)=\phi_{0}(\mathbf{x})$. Solutions for (1) with smooth initial data typically remain continuous but develop discontinuous derivatives in finite time. Such solutions are not unique; the physically relevant solution is known as the viscosity solution (see $[1,3,4,5,8,15]$ and the references therein).

Various numerical methods were proposed in order to approximate the solutions of (1). Examples for such methods are the high-order Godunov-type schemes that were introduced in [20, 21], and were based on an Essentially Non-Oscillatory (ENO) reconstruction step [7] that was evolved in time with a first-order monotone flux. The least dissipative monotone flux, the Godunov flux, requires solving Riemann problems at cell interfaces. A fifth-order Weighted ENO (WENO) scheme, based on [10, 18], was introduced by Jiang and Peng [9].

Recently, Lin and Tadmor introduced in $[16,17]$ central schemes for approximating solutions of the HJ equation. These schemes are based on the Nessyahu-Tadmor scheme for approximating solutions of hyperbolic conservation laws [19]. Unlike upwind schemes, central schemes do not require Riemann solvers, which makes them attractive for solving systems of equations and for multi-dimensional problems. A second-order semi-discrete version of these schemes was introduced by Kurganov and Tadmor in [12]. While less dissipative, the semi-discrete scheme requires the estimation of the local speed of propagation, which is computationally intensive in particular in multi-dimensional problems. In a later work [11], the numerical viscosity was further reduced by computing more precise information about local speed of propagation. To address the problem of schemes that are too computationally intensive, we introduced in [2] efficient first- and second-order central schemes for approximating the solutions of multi-dimensional versions of (1).

Unlike the previous attempts, our schemes in [2] scale well with increasing dimension.

In this paper we derive fully-discrete Central WENO (CWENO) schemes for approximating solutions of (1), which combine our previous works [2, $13,14]$. We introduce third- and fifth-order accurate schemes, which are the first central schemes for the HJ equations of order higher than two. The core ingredient in the derivation of our schemes is a high-order CWENO reconstructions in space.

Acknowledgment: We would like to thank Volker Elling for helpful discussions.

2 CWENO Schemes for HJ Equations

We are interested in approximating solutions of (1) subject to the initial data $\phi(x, t=0)=\phi_{0}(x)$. For simplicity we assume a uniform grid grid in space and time with mesh spacings, $h:=\Delta x$ and Δt. We denote the grid points by $x_{i}=i \Delta x, t^{n}=n \Delta t$, and the fixed mesh ratio by $\lambda=\Delta t / \Delta x$. Let φ_{i}^{n} denote the approximate value of $\phi\left(x_{i}, t^{n}\right)$, and $\left(\varphi_{x}\right)_{i}^{n}$ denote the approximate value of the derivative $\phi_{x}\left(x_{i}, t^{n}\right)$. We define $\Delta^{+} \varphi_{i}^{n}:=\varphi_{i+1}^{n}-\varphi_{i}^{n}, \Delta^{-} \varphi_{i}^{n}:=\varphi_{i}^{n}-\varphi_{i-1}^{n}$ and $\Delta^{0} \varphi_{i}^{n}:=\varphi_{i+1}^{n}-\varphi_{i-1}^{n}$.

We assume that the approximate solution at time t^{n}, φ_{i}^{n} is given. In order to approximate the solution at the next time step $t^{n+1}, \varphi_{i}^{n+1}$, we start by reconstructing a continuous piecewise-polynomial from the data, φ_{i}^{n}, and sample it at the half-integer points, $\left\{x_{i+1 / 2}\right\}$, in order to obtain the pointvalues of the interpolant at these points $\varphi_{i+1 / 2}^{n}$ as well as the derivative, $\varphi_{i+1 / 2}^{\prime}$. We then evolve $\varphi_{i+\frac{1}{2}}^{n}$ from time t^{n} to time t^{n+1} according to (1),

$$
\begin{equation*}
\varphi\left(x_{i+\frac{1}{2}}, t^{n+1}\right)=\varphi\left(x_{i+\frac{1}{2}}, t^{n}\right)-\int_{t^{n}}^{t^{n+1}} H\left(\varphi_{x}\left(x_{i+\frac{1}{2}}, t\right)\right) d t \tag{2}
\end{equation*}
$$

This evolution is done at the half-integer grid points where the reconstruction is smooth (as long as the CFL condition $\lambda\left|H^{\prime}\left(\varphi_{x}\right)\right| \leq 1 / 2$ is satisfied). Finally, in order to return to the original grid, we project $\varphi_{i+1 / 2}^{n+1}$ back onto the integer grid points $\left\{x_{i}\right\}$ to end up with φ_{i}^{n+1}.

Since the evolution step (2) is done at points where the solution is smooth, we can approximate the time integral at the RHS of (2) using a sufficiently accurate quadrature rule. For example, for a third- and fourth-order method, this integral can be replaced by a Simpson's quadrature,

$$
\begin{align*}
\int_{t^{n}}^{t^{n+1}} H & \left(\varphi_{x}\left(x_{i+\frac{1}{2}}, t\right)\right) d t \approx \frac{\Delta t}{6}\left[H\left(\varphi_{x}\left(x_{i+\frac{1}{2}}, t^{n}\right)\right)\right. \tag{3}\\
& \left.+4 H\left(\varphi_{x}\left(x_{i+\frac{1}{2}}, t^{n+\frac{1}{2}}\right)\right)+H\left(\varphi_{x}\left(x_{i+\frac{1}{2}}, t^{n+1}\right)\right)\right]
\end{align*}
$$

The intermediate values of the derivative in time, $\varphi_{x}\left(x_{i+1 / 2}, t^{n+1 / 2}\right)$, and $\varphi_{x}\left(x_{i+1 / 2}, t^{n+1}\right)$, which are required in the quadrature (3), can be predicted using a Taylor expansion or with a Runge-Kutta (RK) method. For details we refer the reader to $[13,19]$ and the references therein.

The remaining ingredient is the piecewise-polynomial reconstruction in space. A careful study of the above procedure reveals that there are actually three different quantities that should be recovered in every time step. First, given φ_{i} at time t^{n} we need to reconstruct the point-values at the half-integer grid points, $\varphi_{i+1 / 2}$, at the same time t^{n}. This is the first term on the RHS of (2). The second term on the RHS of (2) requires evaluating the Hamiltonian H at the derivative $\varphi_{i+1 / 2}^{\prime}$. Hence, the second quantity we should recover is $\varphi_{i+1 / 2}^{\prime}$ from φ_{i}. Finally, the predictor step that provides the values at the quadrature nodes in (3), require us to estimate $\varphi_{i+1 / 2}^{\prime}$ from $\varphi_{i+1 / 2}$ at every step of the RK method. In the next two sections we will focus on the reconstruction of these three quantities, first for a third-order method and then for a fifth-order method.

The projection from $\varphi_{i+1 / 2}^{n+1}$ onto the original grid points to get φ_{i}^{n+1} is accomplished using the same reconstruction used to approximate $\varphi_{i+1 / 2}^{n}$ from φ_{i}^{n}.

2.1 A Third-Order Scheme

Following the above procedure, a third-order scheme can be generated by combining a third-order accurate ODE solver in time with a sufficiently high-order reconstruction in space. Here we present fourth-order CWENO reconstructions of the point values of $\varphi_{i+1 / 2}$ and its derivative $\varphi_{i+1 / 2}^{\prime}$.

The reconstruction of $\varphi_{i+1 / 2}$ from φ_{i}.
In order to obtain a fourth-order reconstruction of $\varphi_{i+1 / 2}$ we will write a convex combination of two quadratic polynomials, $\varphi_{-}^{[2]}$ constructed on a stencil which is left-biased with respect to $x_{i+1 / 2}$, and the right-biased $\varphi_{+}^{[2]}$,
$\varphi_{-}^{[2]}(x)=\varphi_{i}+\frac{1}{h}\left(\Delta^{+} \varphi_{i}\right)\left(x-x_{i}\right)+\frac{1}{2 h^{2}}\left(\Delta^{+} \Delta^{-} \varphi_{i}\right)\left(x-x_{i}\right)\left(x-x_{i+1}\right)+O\left(h^{3}\right)$,
$\varphi_{+}^{[2]}(x)=\varphi_{i}+\frac{1}{h}\left(\Delta^{+} \varphi_{i}\right)\left(x-x_{i}\right)+\frac{1}{2 h^{2}}\left(\Delta^{+} \Delta^{+} \varphi_{i}\right)\left(x-x_{i}\right)\left(x-x_{i+1}\right)+O\left(h^{3}\right)$.
An evaluation of these approximations at $\left\{x_{i+\frac{1}{2}}\right\}$ reads
$\varphi_{-}^{[2]}\left(x_{i+\frac{1}{2}}\right)=\frac{1}{8}\left(-\varphi_{i-1}+6 \varphi_{i}+3 \varphi_{i+1}\right), \quad \varphi_{+}^{[2]}\left(x_{i+\frac{1}{2}}\right)=\frac{1}{8}\left(3 \varphi_{i}+6 \varphi_{i+1}-\varphi_{i+2}\right)$.
A straightforward computation shows that

$$
\frac{1}{2} \varphi_{-}^{[2]}\left(x_{i+\frac{1}{2}}\right)+\frac{1}{2} \varphi_{+}^{[2]}\left(x_{i+\frac{1}{2}}\right)=\varphi_{i+\frac{1}{2}}+O\left(h^{4}\right)
$$

The fourth-order WENO estimate of $\varphi_{i+1 / 2}$ is therefore given by the convex combination

$$
\varphi_{w}^{[4]}\left(x_{i+\frac{1}{2}}\right)=w_{i+\frac{1}{2}}^{-} \varphi_{-}^{[2]}\left(x_{i+\frac{1}{2}}\right)+w_{i+\frac{1}{2}}^{+} \varphi_{+}^{[2]}\left(x_{i+\frac{1}{2}}\right)
$$

where the weights satisfy $w_{i+1 / 2}^{-}+w_{i+1 / 2}^{+}=1, w_{i+1 / 2}^{ \pm} \geq 0, \forall i$. In smooth regions we would like to satisfy $w_{i}^{-} \approx w_{i}^{+} \approx \frac{1}{2}$ to attain an $O\left(h^{4}\right)$ error, while when the stencil $\left\{x_{i-1}, x_{i}, x_{i+1}, x_{i+2}\right\}$ supporting $\varphi_{w}\left(x_{i+\frac{1}{2}}\right)$ contains a discontinuity, the weight of the more oscillatory polynomial should vanish. Following [10, 18], we meet these requirements by setting

$$
\begin{equation*}
w_{i+\frac{1}{2}}^{k}=\frac{\alpha_{i+\frac{1}{2}}^{k}}{\sum_{l} \alpha_{i+\frac{1}{2}}^{l}}, \quad \alpha_{i+\frac{1}{2}}^{k}=\frac{c^{k}}{\left(\epsilon+S_{i+\frac{1}{2}}^{k}\right)^{p}} \tag{4}
\end{equation*}
$$

where $k, l \in\{+,-\}(k$ and l will range over a larger space of symbols when we use more interpolants). The constants $c^{ \pm}=1 / 2$ and are independent of the grid-point. We choose ϵ as 10^{-6} to prevents the denominator in (4) from vanishing, and set $p=2$ (see [10]). The smoothness measures $S_{i}^{ \pm}$should be large when φ is nearly singular. Following the standard practice with WENOtype schemes [10], we take $S_{i}^{ \pm}$to be the sum of the L^{2}-norms of the first and second derivatives on the stencil supporting $\varphi_{ \pm}^{[2]}$. If we approximate the first derivative at $x_{i+1 / 2}$ by $\frac{1}{h} \Delta^{+} \varphi_{i+1 / 2}$, the second derivative by $\frac{1}{h^{2}} \Delta^{+} \Delta^{-} \varphi_{i+1 / 2}$, and define the smoothness measure

$$
\begin{equation*}
S_{i+\frac{1}{2}}[r, s]=h \sum_{j=r}^{s}\left(\frac{1}{h} \Delta^{+} \varphi_{i+j+\frac{1}{2}}\right)^{2}+h \sum_{j=r+1}^{s}\left(\frac{1}{h^{2}} \Delta^{+} \Delta^{-} \varphi_{i+j+\frac{1}{2}}\right)^{2} \tag{5}
\end{equation*}
$$

then for the fourth-order interpolation of $\varphi_{w}\left(x_{i+\frac{1}{2}}\right)$ we have $S_{i+1 / 2}^{-}=$ $S_{i+1 / 2}[-1,0]$ and $S_{i+1 / 2}^{+}=S_{i+1 / 2}[0,1]$.

The reconstruction of $\varphi_{i+1 / 2}^{\prime}$ from φ_{i}.

To obtain a fourth-order estimate of the derivative $\varphi^{\prime}\left(x_{i+1 / 2}\right)$ from $\varphi\left(x_{i}\right)$, we start from the cubic interpolants

$$
\begin{aligned}
\varphi_{-}^{[3]}(x)= & \varphi_{i}+\frac{1}{h}\left(\Delta^{+} \varphi_{i}\right)\left(x-x_{i}\right)+\frac{1}{2 h^{2}}\left(\Delta^{+} \Delta^{-} \varphi_{i}\right)\left(x-x_{i}\right)\left(x-x_{i+1}\right) \\
& +\frac{1}{6 h^{3}}\left(\Delta^{-} \Delta^{+} \Delta^{-} \varphi_{i}\right)\left(x-x_{i}\right)\left(x-x_{i+1}\right)\left(x-x_{i-1}\right)+O\left(h^{4}\right) \\
\varphi_{+}^{[3]}(x)= & \varphi_{i}+\frac{1}{h}\left(\Delta^{+} \varphi_{i}\right)\left(x-x_{i}\right)+\frac{1}{2 h^{2}}\left(\Delta^{+} \Delta^{+} \varphi_{i}\right)\left(x-x_{i}\right)\left(x-x_{i+1}\right) \\
& +\frac{1}{6 h^{3}}\left(\Delta^{+} \Delta^{+} \Delta^{+} \varphi_{i}\right)\left(x-x_{i}\right)\left(x-x_{i+1}\right)\left(x-x_{i+2}\right)+O\left(h^{4}\right)
\end{aligned}
$$

Differentiating $\varphi_{ \pm}^{[3]}$ at $x_{i+\frac{1}{2}}$

$$
\begin{aligned}
\varphi_{-, i+\frac{1}{2}}^{\prime[3]} & =\frac{1}{24 h}\left(\varphi_{i-2}-3 \varphi_{i-1}-21 \varphi_{i}+23 \varphi_{i+1}\right) \\
\varphi_{+, i+\frac{1}{2}}^{\prime[3]} & =\frac{1}{24 h}\left(-23 \varphi_{i}+21 \varphi_{i+1}+3 \varphi_{i+2}-\varphi_{i+3}\right)
\end{aligned}
$$

Again,

$$
\frac{1}{2} \varphi_{-, i+\frac{1}{2}}^{\prime[3]}+\frac{1}{2} \varphi_{+, i+\frac{1}{2}}^{\prime[3]}=\varphi_{i+\frac{1}{2}}^{\prime[}+O\left(h^{4}\right)
$$

and a fourth-order WENO reconstruction of $\varphi^{\prime}\left(x_{i+\frac{1}{2}}\right)$ is

$$
\varphi_{i+1 / 2}^{\prime[4]}=w_{i+\frac{1}{2}}^{-} \varphi_{-, i+\frac{1}{2}}^{\prime[3]}+w_{i+\frac{1}{2}}^{+} \varphi_{+, i+\frac{1}{2}}^{\prime[3]}
$$

where the weights are of the form (4) with $c^{ \pm}=1 / 2$ and $S_{i+1 / 2}^{-}=$ $S_{i+1 / 2}[-2,0]$ and $S_{i+1 / 2}^{+}=S_{i+1 / 2}[0,2]$.

The reconstruction of $\varphi_{i+1 / 2}^{\prime}$ from $\varphi_{i+1 / 2}$.
Repeating the above procedure, this time with three quadratic interpolants

$$
\begin{aligned}
\tilde{\varphi}_{-}^{[2]}(x)= & \varphi_{i+\frac{1}{2}}+\frac{1}{h}\left(\Delta^{-} \varphi_{i+\frac{1}{2}}\right)\left(x-x_{i+\frac{1}{2}}\right) \\
& +\frac{1}{2 h^{2}}\left(\Delta^{+} \Delta^{-} \varphi_{i+\frac{1}{2}}\right)\left(x-x_{i+\frac{1}{2}}\right)\left(x-x_{i+\frac{3}{2}}\right)+O\left(h^{3}\right) \\
\tilde{\varphi}_{0}^{[2]}(x)= & \varphi_{i+\frac{1}{2}}+\frac{1}{2 h}\left(\Delta^{0} \varphi_{i+\frac{1}{2}}\right)\left(x-x_{i+\frac{1}{2}}\right) \\
& +\frac{1}{2 h^{2}}\left(\Delta^{+} \Delta^{-} \varphi_{i+\frac{1}{2}}\right)\left(x-x_{i-\frac{1}{2}}\right)\left(x-x_{i+\frac{3}{2}}\right)+O\left(h^{3}\right), \\
\tilde{\varphi}_{+}^{[2]}(x)= & \varphi_{i+\frac{1}{2}}+\frac{1}{h}\left(\Delta^{+} \varphi_{i+\frac{1}{2}}\right)\left(x-x_{i+\frac{1}{2}}\right) \\
& +\frac{1}{2 h^{2}}\left(\Delta^{+} \Delta^{+} \varphi_{i+\frac{1}{2}}\right)\left(x-x_{i+\frac{1}{2}}\right)\left(x-x_{i+\frac{3}{2}}\right)+O\left(h^{3}\right)
\end{aligned}
$$

results with

$$
\frac{1}{6} \tilde{\varphi}_{-, i+\frac{1}{2}}^{\prime[2]}+\frac{2}{3} \tilde{\varphi}_{0, i+\frac{1}{2}}^{\prime[2]}+\frac{1}{6} \tilde{\varphi}_{+, i+\frac{1}{2}}^{\prime[2]}=\varphi_{i+\frac{1}{2}}^{\prime}+O\left(h^{4}\right)
$$

where

$$
\begin{aligned}
& \tilde{\varphi}_{-, i+\frac{1}{2}}^{\prime[2]}=\frac{1}{2 h}\left(\varphi_{i-\frac{3}{2}}-4 \varphi_{i-\frac{1}{2}}+3 \varphi_{i+\frac{1}{2}}\right), \quad \tilde{\varphi}_{0, i+\frac{1}{2}}^{\prime[2]}=\frac{1}{2 h}\left(\varphi_{i+\frac{3}{2}}-\varphi_{i-\frac{1}{2}}\right), \\
& \tilde{\varphi}_{+, i+\frac{1}{2}}^{\prime[2]}=\frac{1}{2 h}\left(-3 \varphi_{i+\frac{1}{2}}+4 \varphi_{i+\frac{3}{2}}-\varphi_{i+\frac{5}{2}}\right)
\end{aligned}
$$

The fourth-order WENO estimate of $\varphi_{i+1 / 2}^{\prime}$ is

$$
\tilde{\varphi}_{i+1 / 2}^{\prime[4]}=w_{i+\frac{1}{2}}^{-} \tilde{\varphi}_{-, i+\frac{1}{2}}^{\prime[2]}+w_{i+\frac{1}{2}}^{0} \tilde{\varphi}_{0, i+\frac{1}{2}}^{\prime[2]}+w_{i+\frac{1}{2}}^{+} \tilde{\varphi}_{+, i+\frac{1}{2}}^{\prime[2]}
$$

where the weights w are of the form (4) with $c^{-}=c^{+}=1 / 6, c^{0}=2 / 3$, and the oscillatory indicators $S_{i+1 / 2}^{-}=S_{i+1 / 2}[-2,-1], S_{i+1 / 2}^{-}=S_{i+1 / 2}[-1,0]$, and $S_{i+1 / 2}^{+}=S_{i+1 / 2}[0,1]$.

2.2 A Fifth-Order Scheme

Once again, similarly to the third-order scheme, we need to reconstruct the point-values of φ and φ^{\prime}. We start with the reconstruction of $\varphi_{i+1 / 2}$ and $\varphi_{i+1 / 2}^{\prime}$ from φ_{i}. We write sixth-order interpolants as a convex combination of cubic interpolants, $\varphi_{-}^{[3]}(x)$ and $\varphi_{+}^{[3]}(x)$ introduced above and

$$
\begin{aligned}
\varphi_{0}^{[3]}(x)= & \varphi_{i}+\frac{1}{h}\left(\Delta^{+} \varphi_{i}\right)\left(x-x_{i}\right)+\frac{1}{2 h^{2}}\left(\Delta^{+} \Delta^{-} \varphi_{i}\right)\left(x-x_{i}\right)\left(x-x_{i+1}\right) \\
& +\frac{1}{6 h^{3}}\left(\Delta^{+} \Delta^{-} \Delta^{+} \varphi_{i}\right)\left(x-x_{i}\right)\left(x-x_{i+1}\right)\left(x-x_{i+2}\right)+O\left(h^{4}\right)
\end{aligned}
$$

In this case

$$
\frac{3}{16} \varphi_{-, i+\frac{1}{2}}^{[3]}+\frac{5}{8} \varphi_{0, i+\frac{1}{2}}^{[3]}+\frac{3}{16} \varphi_{+, i+\frac{1}{2}}^{[3]}=\varphi_{i+\frac{1}{2}}+O\left(h^{6}\right)
$$

where

$$
\begin{aligned}
\varphi_{-, i+\frac{1}{2}}^{[3]} & =\frac{1}{16}\left(\varphi_{i-2}-5 \varphi_{i-1}+15 \varphi_{i}+5 \varphi_{i+1}\right), \\
\varphi_{0, i+\frac{1}{2}}^{[3]} & =\frac{1}{16}\left(-\varphi_{i-1}+9 \varphi_{i}+9 \varphi_{i+1}-\varphi_{i+2}\right), \\
\varphi_{+, i+\frac{1}{2}}^{[3]} & =\frac{1}{16}\left(5 \varphi_{i}+15 \varphi_{i+1}-5 \varphi_{i+2}+\varphi_{i+3}\right) .
\end{aligned}
$$

In a similar way,

$$
-\frac{9}{80} \varphi_{-, i+\frac{1}{2}}^{\prime[3]}+\frac{49}{40} \varphi_{0, i+\frac{1}{2}}^{\prime[3]}-\frac{9}{80} \varphi_{+, i+\frac{1}{2}}^{\prime[3]}=\varphi_{i+1 / 2}^{\prime}+O\left(h^{6}\right),
$$

where

$$
\begin{aligned}
\varphi_{-, i+\frac{1}{2}}^{\prime[3]} & =\frac{1}{24 h}\left(\varphi_{i-2}-3 \varphi_{i-1}-21 \varphi_{i}+23 \varphi_{i+1}\right), \\
\varphi_{0, i+\frac{1}{2}}^{\prime[3]} & =\frac{1}{24 h}\left(\varphi_{i-1}-27 \varphi_{i}+27 \varphi_{i+1}-\varphi_{i+2}\right), \\
\varphi_{+, i+\frac{1}{2}}^{\prime[3]} & =\frac{1}{24 h}\left(-23 \varphi_{i}+21 \varphi_{i+1}+3 \varphi_{i+2}-\varphi_{i+3}\right) .
\end{aligned}
$$

The sixth-order WENO estimates for $\varphi_{i+1 / 2}$ and $\varphi_{i+1 / 2}^{\prime}$ are

$$
\begin{aligned}
& \varphi_{i+\frac{1}{2}}^{[6]}=w_{i+\frac{1}{2}}^{-} \varphi_{-, i+\frac{1}{2}}^{[3]}+w_{i+\frac{1}{2}}^{0} \varphi_{0, i+\frac{1}{2}}^{[3]}+w_{i+\frac{1}{2}}^{+} \varphi_{+, i+\frac{1}{2}}^{[3]} \\
& \varphi_{i+\frac{1}{2}}^{\prime[6]}=w_{i+\frac{1}{2}}^{\prime-} \tilde{\varphi}_{-, i+\frac{1}{2}}^{\prime[3]}+w_{i+\frac{1}{2}}^{\prime 0} \tilde{\varphi}_{0, i+\frac{1}{2}}^{\prime[3]}+w_{i+\frac{1}{2}}^{\prime+} \tilde{\varphi}_{+, i+\frac{1}{2}}^{\prime[3]}
\end{aligned}
$$

where the weights for φ are given by (4), with $c_{-}=c_{+}=3 / 16, c_{0}=5 / 8$ and the oscillatory indicators are $S_{i+1 / 2}^{-}=S_{i+1 / 2}[-2,0], S_{i+1 / 2}^{0}=S_{i+1 / 2}[-1,1]$ and $S_{i+1 / 2}^{+}=S_{i+1 / 2}[0,2]$. The negative weights for φ^{\prime} require special treatment (see [22] for details). Following [22] we split the positive and negative
weights in the following way: first, we set $\gamma_{-}^{-}=\gamma_{-}^{+}=9 / 40, \gamma_{-}^{0}=49 / 40$ and $\gamma_{+}^{-}=\gamma_{+}^{+}=9 / 80, \gamma_{+}^{0}=49 / 20$. Then, For $k, l \in\{-, 0,+\}$, set $\sigma_{ \pm}=\sum_{k} \gamma_{ \pm}^{k}$ so that similarly to (4),

$$
\alpha_{ \pm, i+\frac{1}{2}}^{k}=\frac{\gamma_{ \pm}^{k}}{\sigma_{ \pm}\left(\epsilon+S_{i+\frac{1}{2}}^{k}\right)^{p}}
$$

and

$$
w_{i+\frac{1}{2}}^{\prime k}=\sigma_{+} \frac{\alpha_{+, i+\frac{1}{2}}^{k}}{\sum_{l} \alpha_{+, i+\frac{1}{2}}^{l}}-\sigma_{-} \frac{\alpha_{-, i+\frac{1}{2}}^{k}}{\sum_{l} \alpha_{-, i+\frac{1}{2}}^{l}}
$$

Because $\varphi_{i+1 / 2}^{[3]}$ and $\varphi_{i+1 / 2}^{\prime[3]}$ are defined on the same stencils, they use the same smoothness measures $S_{i+1 / 2}$.

All that is left is the reconstruction of $\varphi_{i+1 / 2}^{\prime}$ from $\varphi_{i+1 / 2}$. In this case a sixth-order approximation to $\varphi_{i+1 / 2}^{\prime}$ requires a weighted sum of four cubic interpolants. This reconstruction is similar to the previous ones. We skip the details and summarize the result:

$$
\tilde{\varphi}_{i+\frac{1}{2}}^{\prime[6]}=w_{i+\frac{1}{2}}^{-} \tilde{\varphi}_{-, i+\frac{1}{2}}^{\prime[3]}+w_{i+\frac{1}{2}}^{0-} \tilde{\varphi}_{0-, i+\frac{1}{2}}^{\prime[3]}+w_{i+\frac{1}{2}}^{0+} \tilde{\varphi}_{0+, i+\frac{1}{2}}^{\prime[3]}+w_{i+\frac{1}{2}}^{+} \tilde{\varphi}_{+, i+\frac{1}{2}}^{\prime[3]}
$$

where

$$
\begin{aligned}
\tilde{\varphi}_{-, i+\frac{1}{2}}^{\prime[3]} & =\frac{1}{6 h}\left(-2 \varphi_{i-\frac{5}{2}}+9 \varphi_{i-\frac{3}{2}}-18 \varphi_{i-\frac{1}{2}}+11 \varphi_{i+\frac{1}{2}}\right), \\
\tilde{\varphi}_{0-, i+\frac{1}{2}}^{\prime[3]} & =\frac{1}{6 h}\left(\varphi_{i-\frac{3}{2}}-6 \varphi_{i-\frac{1}{2}}+3 \varphi_{i+\frac{1}{2}}+2 \varphi_{i+\frac{3}{2}}\right), \\
\tilde{\varphi}_{0+, i+\frac{1}{2}}^{\prime[3]} & =\frac{1}{6 h}\left(-2 \varphi_{i-\frac{1}{2}}-3 \varphi_{i+\frac{1}{2}}+6 \varphi_{i+\frac{3}{2}}-\varphi_{i+\frac{5}{2}}\right), \\
\tilde{\varphi}_{+, i+\frac{1}{2}}^{\prime[3]} & =\frac{1}{6 h}\left(-11 \varphi_{i+\frac{1}{2}}+18 \varphi_{i+\frac{3}{2}}-9 \varphi_{i+\frac{5}{2}}+2 \varphi_{i+\frac{7}{2}}\right) .
\end{aligned}
$$

Here, $c_{-}=c_{+}=1 / 20, c_{0}-=c_{0}+=9 / 20, S_{i+1 / 2}^{-}=S_{i+1 / 2}[-3,-1], S_{i+1 / 2}^{0-}=$ $S_{i+1 / 2}[-2,0], S_{i+1 / 2}^{0+}=S_{i+1 / 2}[-1,1]$ and $S_{i+1 / 2}^{+}=S_{i+1 / 2}[0,2]$.

3 Numerical Examples

In all our numerical simulations, the ODE solvers we use are the non-linear fourth-order Strong-Stability Preserving Runge-Kutta (SSP-RK) methods of [6].

We start by testing the accuracy of our new CWENO methods when approximating the solution of the linear advection equation, $\varphi_{t}+\varphi_{x}=0$. The initial data is taken as $\varphi(x, 0)=\sin ^{4}(\pi x)$, the mesh ratio $\lambda=0.9$ and the time $T=4$. The results obtained with the fifth-order method of $\S 2.2$ are shown in Table 1.

Table 1. Error and convergence rate for linear advection with initial condition $\varphi(x, 0)=\sin ^{4}(\pi x)$

N	L_{1} error	L_{1} order
50	5.03×10^{-2}	-
100	8.36×10^{-5}	9.23
200	2.56×10^{-6}	5.03
400	8.24×10^{-8}	4.96
800	2.99×10^{-9}	4.78

Next, we test the CWENO methods with two nonlinear Hamiltonians: a convex Hamiltonian $\varphi_{t}+\frac{1}{2}\left(\varphi_{x}+1\right)^{2}=0$ and a non-convex Hamiltonian $\varphi_{t}-\cos \left(\varphi_{x}+1\right)=0$. The interval is $[0,2]$, the boundary conditions are periodic and the initial conditions for both Hamiltonians are taken as $\varphi(x, 0)=-\cos (\pi x)$. The exact solution to both problems is smooth until $t \approx 1 / \pi^{2}$, after which a singularity forms. A second singularity forms in the non-convex H example at $t \approx 1.29 / \pi^{2}$.

The results of the accuracy test with the fifth-order method are shown in Table 2, and the solution at time $T=1.5 / \pi$ is plotted in Figure 1. Following [9] the errors in Table 2 after the formation of the singularity are computed at a distance of 0.1 away from any singularities.

Table 2. L_{1} Error and convergence rate estimates for convex and non-convex Hamiltonians. top: $T=0.5 / \pi^{2}$, bottom: $T=1.5 / \pi^{2}$. $\lambda=0.3$

N	convex	convex				
	L_{1} erron-convex	L_{1} order	L_{1} error	L_{1} order		
50	6.35×10^{-6}	-	4.17×10^{-5}	-		
100	1.62×10^{-7}	5.30	1.49×10^{-6}	4.81		
200	5.72×10^{-9}	4.82	4.19×10^{-8}	5.15		
400	2.73×10^{-10}	4.39	1.34×10^{-8}	4.97		
800	1.45×10^{-11}	4.23	4.20×10^{-8}	4.99		
N	convex	convex		non-convex		non-convex
	L_{1} error	L_{1} order	L_{1} error	L_{1} order		
50	2.12×10^{-4}	-	2.56×10^{-5}	-		
100	1.03×10^{-5}	4.37	7.80×10^{-7}	5.03		
200	9.68×10^{-8}	6.73	1.70×10^{-8}	5.52		
400	6.20×10^{-10}	7.29	5.02×10^{-10}	5.08		
800	1.90×10^{-11}	5.03	1.71×10^{-11}	4.88		

Fig. 1. left: Convex Hamiltonian right: non-convex Hamiltonian at $T=\frac{1.5}{\pi^{2}}$ compared with the exact solution, $N=100$.

References

1. Barles G., Solution de viscosité des équations de Hamilton-Jacobi, SpringerVerlag, Berlin, 1994.
2. Bryson S., Levy D., Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations, NASA Technical Report NAS-01-012, 2001, submitted.
3. Crandall M.G., Evans L.C., Lions P.-L., Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282, (1984), pp.487-502.
4. Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, (1992), pp.1-67.
5. Crandall M.G., Lions P.-L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), pp.1-42.
6. Gottlieb S., Shu C.-W., Tadmor E., Strong stability-preserving high order time discretization methods, SIAM Review, 43, (2001), pp.89-112.
7. Harten A., Engquist B., Osher S., Chakravarthy S., Uniformly High Order Accurate Essentially Non-oscillatory Schemes III, JCP, 71, (1987), pp.231-303.
8. Kruzkov S.N., The Cauchy problem in the large for nonlinear equations and for certain quasilinear systems of the first order with several variables, Soviet Math. Dokl., 5, (1964), pp.493-496.
9. Jiang G.-S., Peng D., Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comp., 21, (2000), pp.2126-2143.
10. Jiang G.-S., Shu C.-W., Efficient Implementation of Weighted ENO Schemes, JCP, 126, (1996), pp.202-228.
11. Kurganov A., Noelle S., Petrova G., Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comp., to appear.
12. Kurganov A., Tadmor E., New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations, JCP, 160, (2000), pp.720-724.
13. Levy D., Puppo G., Russo G., Central WENO schemes for hyperbolic systems of conservation laws, Math. Model. and Numer. Anal., 33, no. 3 (1999), pp.547571.
14. Levy D., Puppo G., Russo G., Compact central WENO schemes for multidimensional conservation laws, SIAM J. Sci. Comp., 22, (2000), pp.656-672.
15. Lions P.L., Generalized solutions of Hamilton-Jacobi equations, Pitman, London, 1982.
16. Lin C.-T., Tadmor E., L^{1}-stability and error estimates for approximate Hamilton-Jacobi solutions, Numer. Math., 87, (2001), pp.701-735.
17. Lin C.-T., Tadmor E., High-resolution non-oscillatory central schemes for approximate Hamilton-Jacobi equations, SIAM J. Sci. Comp., 21, no. 6, (2000), pp.2163-2186.
18. Liu X.-D., Osher S., Chan T., Weighted Essentially Non-oscillatory Schemes, JCP, 115, (1994), pp.200-212.
19. Nessyahu H., Tadmor E., Non-oscillatory central differencing for hyperbolic conservation laws, JCP, 87, no. 2 (1990), pp.408-463.
20. Osher S., Sethian J., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, JCP, 79, (1988), pp.12-49.
21. Osher S., Shu C.-W., High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal., 28, (1991), pp.907-922.
22. Shi J., Hu C., Shu C.-W., A technique of treating negative weights in WENO schemes, JCP, to appear.
