High-Order Central WENO Schemes for 1D Hamilton-Jacobi Equations

Steve Bryson¹ and Doron $Levy^2$

- ¹ Program in Scientific Computing/Computational Mathematics, Stanford University and the NASA Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA 94035-1000; *bryson@nas.nasa.gov*
- ² Department of Mathematics, Stanford University, Stanford, CA 94305-2125; dlevy@math.stanford.edu

1 Introduction

We consider high-order central approximations for solutions of one-dimensional Hamilton-Jacobi (HJ) equations of the form

$$\frac{\partial}{\partial t}\phi(x,t) + H\left(\phi_x, x\right) = 0, \qquad x \in \mathbb{R},\tag{1}$$

subject to the initial data $\phi(x, t=0) = \phi_0(\mathbf{x})$. Solutions for (1) with smooth initial data typically remain continuous but develop discontinuous derivatives in finite time. Such solutions are not unique; the physically relevant solution is known as the *viscosity solution* (see [1, 3, 4, 5, 8, 15] and the references therein).

Various numerical methods were proposed in order to approximate the solutions of (1). Examples for such methods are the high-order Godunov-type schemes that were introduced in [20, 21], and were based on an Essentially Non-Oscillatory (ENO) reconstruction step [7] that was evolved in time with a first-order monotone flux. The least dissipative monotone flux, the Godunov flux, requires solving Riemann problems at cell interfaces. A fifth-order Weighted ENO (WENO) scheme, based on [10, 18], was introduced by Jiang and Peng [9].

Recently, Lin and Tadmor introduced in [16, 17] central schemes for approximating solutions of the HJ equation. These schemes are based on the Nessyahu-Tadmor scheme for approximating solutions of hyperbolic conservation laws [19]. Unlike upwind schemes, central schemes do not require Riemann solvers, which makes them attractive for solving systems of equations and for multi-dimensional problems. A second-order semi-discrete version of these schemes was introduced by Kurganov and Tadmor in [12]. While less dissipative, the semi-discrete scheme requires the estimation of the local speed of propagation, which is computationally intensive in particular in multi-dimensional problems. In a later work [11], the numerical viscosity was further reduced by computing more precise information about local speed of propagation. To address the problem of schemes that are too computationally intensive, we introduced in [2] efficient first- and second-order central schemes for approximating the solutions of multi-dimensional versions of (1).

2 Steve Bryson and Doron Levy

Unlike the previous attempts, our schemes in [2] scale well with increasing dimension.

In this paper we derive fully-discrete Central WENO (CWENO) schemes for approximating solutions of (1), which combine our previous works [2, 13, 14]. We introduce third- and fifth-order accurate schemes, which are the first central schemes for the HJ equations of order higher than two. The core ingredient in the derivation of our schemes is a high-order CWENO reconstructions in space.

Acknowledgment: We would like to thank Volker Elling for helpful discussions.

2 CWENO Schemes for HJ Equations

We are interested in approximating solutions of (1) subject to the initial data $\phi(x,t=0) = \phi_0(x)$. For simplicity we assume a uniform grid grid in space and time with mesh spacings, $h := \Delta x$ and Δt . We denote the grid points by $x_i = i\Delta x$, $t^n = n\Delta t$, and the fixed mesh ratio by $\lambda = \Delta t/\Delta x$. Let φ_i^n denote the approximate value of $\phi(x_i, t^n)$, and $(\varphi_x)_i^n$ denote the approximate value of the derivative $\phi_x(x_i, t^n)$. We define $\Delta^+ \varphi_i^n := \varphi_{i+1}^n - \varphi_i^n$, $\Delta^- \varphi_i^n := \varphi_i^n - \varphi_{i-1}^n$ and $\Delta^0 \varphi_i^n := \varphi_{i+1}^n - \varphi_{i-1}^n$.

We assume that the approximate solution at time t^n , φ_i^n is given. In order to approximate the solution at the next time step t^{n+1} , φ_i^{n+1} , we start by reconstructing a continuous piecewise-polynomial from the data, φ_i^n , and sample it at the half-integer points, $\{x_{i+1/2}\}$, in order to obtain the pointvalues of the interpolant at these points $\varphi_{i+1/2}^n$ as well as the derivative, $\varphi_{i+1/2}'$. We then evolve $\varphi_{i+\frac{1}{2}}^n$ from time t^n to time t^{n+1} according to (1),

$$\varphi\left(x_{i+\frac{1}{2}}, t^{n+1}\right) = \varphi\left(x_{i+\frac{1}{2}}, t^{n}\right) - \int_{t^{n}}^{t^{n+1}} H\left(\varphi_{x}\left(x_{i+\frac{1}{2}}, t\right)\right) dt.$$
(2)

This evolution is done at the half-integer grid points where the reconstruction is smooth (as long as the CFL condition $\lambda |H'(\varphi_x)| \leq 1/2$ is satisfied). Finally, in order to return to the original grid, we project $\varphi_{i+1/2}^{n+1}$ back onto the integer grid points $\{x_i\}$ to end up with φ_i^{n+1} .

Since the evolution step (2) is done at points where the solution is smooth, we can approximate the time integral at the RHS of (2) using a sufficiently accurate quadrature rule. For example, for a third- and fourth-order method, this integral can be replaced by a Simpson's quadrature,

$$\int_{t^n}^{t^{n+1}} H\left(\varphi_x\left(x_{i+\frac{1}{2}},t\right)\right) dt \approx \frac{\Delta t}{6} \left[H\left(\varphi_x\left(x_{i+\frac{1}{2}},t^n\right)\right) +4H\left(\varphi_x\left(x_{i+\frac{1}{2}},t^{n+\frac{1}{2}}\right)\right) +H\left(\varphi_x\left(x_{i+\frac{1}{2}},t^{n+1}\right)\right)\right].$$
(3)

The intermediate values of the derivative in time, $\varphi_x(x_{i+1/2}, t^{n+1/2})$, and $\varphi_x(x_{i+1/2}, t^{n+1})$, which are required in the quadrature (3), can be predicted using a Taylor expansion or with a Runge-Kutta (RK) method. For details we refer the reader to [13, 19] and the references therein.

The remaining ingredient is the piecewise-polynomial reconstruction in space. A careful study of the above procedure reveals that there are actually three different quantities that should be recovered in every time step. First, given φ_i at time t^n we need to reconstruct the point-values at the half-integer grid points, $\varphi_{i+1/2}$, at the same time t^n . This is the first term on the RHS of (2). The second term on the RHS of (2) requires evaluating the Hamiltonian H at the derivative $\varphi'_{i+1/2}$. Hence, the second quantity we should recover is $\varphi'_{i+1/2}$ from φ_i . Finally, the predictor step that provides the values at the quadrature nodes in (3), require us to estimate $\varphi'_{i+1/2}$ from $\varphi_{i+1/2}$ at every step of the RK method. In the next two sections we will focus on the reconstruction of these three quantities, first for a third-order method and then for a fifth-order method.

The projection from $\varphi_{i+1/2}^{n+1}$ onto the original grid points to get φ_i^{n+1} is accomplished using the same reconstruction used to approximate $\varphi_{i+1/2}^n$ from φ_i^n .

2.1 A Third-Order Scheme

Following the above procedure, a third-order scheme can be generated by combining a third-order accurate ODE solver in time with a sufficiently high-order reconstruction in space. Here we present fourth-order CWENO reconstructions of the point values of $\varphi_{i+1/2}$ and its derivative $\varphi'_{i+1/2}$.

The reconstruction of $\varphi_{i+1/2}$ from φ_i .

In order to obtain a fourth-order reconstruction of $\varphi_{i+1/2}$ we will write a convex combination of two quadratic polynomials, $\varphi_{-}^{[2]}$ constructed on a stencil which is left-biased with respect to $x_{i+1/2}$, and the right-biased $\varphi_{+}^{[2]}$,

$$\varphi_{-}^{[2]}(x) = \varphi_{i} + \frac{1}{h} \left(\Delta^{+} \varphi_{i} \right) (x - x_{i}) + \frac{1}{2h^{2}} \left(\Delta^{+} \Delta^{-} \varphi_{i} \right) (x - x_{i}) (x - x_{i+1}) + O\left(h^{3}\right),$$

$$\varphi_{+}^{[2]}(x) = \varphi_{i} + \frac{1}{h} \left(\Delta^{+} \varphi_{i} \right) (x - x_{i}) + \frac{1}{2h^{2}} \left(\Delta^{+} \Delta^{+} \varphi_{i} \right) (x - x_{i}) (x - x_{i+1}) + O\left(h^{3}\right).$$

An evaluation of these approximations at $\{x_{i+\frac{1}{2}}\}$ reads

$$\varphi_{-}^{[2]}\left(x_{i+\frac{1}{2}}\right) = \frac{1}{8}(-\varphi_{i-1} + 6\varphi_i + 3\varphi_{i+1}), \quad \varphi_{+}^{[2]}\left(x_{i+\frac{1}{2}}\right) = \frac{1}{8}(3\varphi_i + 6\varphi_{i+1} - \varphi_{i+2}).$$

A straightforward computation shows that

$$\frac{1}{2}\varphi_{-}^{[2]}(x_{i+\frac{1}{2}}) + \frac{1}{2}\varphi_{+}^{[2]}(x_{i+\frac{1}{2}}) = \varphi_{i+\frac{1}{2}} + O\left(h^4\right).$$

4 Steve Bryson and Doron Levy

The fourth-order WENO estimate of $\varphi_{i+1/2}$ is therefore given by the convex combination

$$\varphi_w^{[4]}\left(x_{i+\frac{1}{2}}\right) = w_{i+\frac{1}{2}}^{-}\varphi_{-}^{[2]}\left(x_{i+\frac{1}{2}}\right) + w_{i+\frac{1}{2}}^{+}\varphi_{+}^{[2]}\left(x_{i+\frac{1}{2}}\right),$$

where the weights satisfy $w_{i+1/2}^- + w_{i+1/2}^+ = 1$, $w_{i+1/2}^\pm \ge 0$, $\forall i$. In smooth regions we would like to satisfy $w_i^- \approx w_i^+ \approx \frac{1}{2}$ to attain an $O(h^4)$ error, while when the stencil $\{x_{i-1}, x_i, x_{i+1}, x_{i+2}\}$ supporting $\varphi_w\left(x_{i+\frac{1}{2}}\right)$ contains a discontinuity, the weight of the more oscillatory polynomial should vanish. Following [10, 18], we meet these requirements by setting

$$w_{i+\frac{1}{2}}^{k} = \frac{\alpha_{i+\frac{1}{2}}^{k}}{\sum_{l} \alpha_{i+\frac{1}{2}}^{l}}, \qquad \alpha_{i+\frac{1}{2}}^{k} = \frac{c^{k}}{\left(\epsilon + S_{i+\frac{1}{2}}^{k}\right)^{p}}$$
(4)

where $k, l \in \{+, -\}$ (k and l will range over a larger space of symbols when we use more interpolants). The constants $c^{\pm} = 1/2$ and are independent of the grid-point. We choose ϵ as 10^{-6} to prevents the denominator in (4) from vanishing, and set p = 2 (see [10]). The smoothness measures S_i^{\pm} should be large when φ is nearly singular. Following the standard practice with WENOtype schemes [10], we take S_i^{\pm} to be the sum of the L^2 -norms of the first and second derivatives on the stencil supporting $\varphi_{\pm}^{[2]}$. If we approximate the first derivative at $x_{i+1/2}$ by $\frac{1}{h}\Delta^+\varphi_{i+1/2}$, the second derivative by $\frac{1}{h^2}\Delta^+\Delta^-\varphi_{i+1/2}$, and define the smoothness measure

$$S_{i+\frac{1}{2}}[r,s] = h \sum_{j=r}^{s} \left(\frac{1}{h} \Delta^{+} \varphi_{i+j+\frac{1}{2}}\right)^{2} + h \sum_{j=r+1}^{s} \left(\frac{1}{h^{2}} \Delta^{+} \Delta^{-} \varphi_{i+j+\frac{1}{2}}\right)^{2}, \quad (5)$$

then for the fourth-order interpolation of $\varphi_w\left(x_{i+\frac{1}{2}}\right)$ we have $S_{i+1/2}^- = S_{i+1/2}\left[-1,0\right]$ and $S_{i+1/2}^+ = S_{i+1/2}\left[0,1\right]$.

The reconstruction of $\varphi'_{i+1/2}$ from φ_i .

To obtain a fourth-order estimate of the derivative $\varphi'(x_{i+1/2})$ from $\varphi(x_i)$, we start from the cubic interpolants

$$\begin{split} \varphi_{-}^{[3]}(x) &= \varphi_{i} + \frac{1}{h} \left(\Delta^{+} \varphi_{i} \right) (x - x_{i}) + \frac{1}{2h^{2}} \left(\Delta^{+} \Delta^{-} \varphi_{i} \right) (x - x_{i}) (x - x_{i+1}) \\ &+ \frac{1}{6h^{3}} \left(\Delta^{-} \Delta^{+} \Delta^{-} \varphi_{i} \right) (x - x_{i}) (x - x_{i+1}) (x - x_{i-1}) + O \left(h^{4} \right), \\ \varphi_{+}^{[3]}(x) &= \varphi_{i} + \frac{1}{h} \left(\Delta^{+} \varphi_{i} \right) (x - x_{i}) + \frac{1}{2h^{2}} \left(\Delta^{+} \Delta^{+} \varphi_{i} \right) (x - x_{i}) (x - x_{i+1}) \\ &+ \frac{1}{6h^{3}} \left(\Delta^{+} \Delta^{+} \Delta^{+} \varphi_{i} \right) (x - x_{i}) (x - x_{i+1}) (x - x_{i+2}) + O \left(h^{4} \right). \end{split}$$

Differentiating $\varphi_{\pm}^{[3]}$ at $x_{i+\frac{1}{2}}$

CWENO Schemes for HJ Equations

$$\varphi_{-,i+\frac{1}{2}}^{\prime[3]} = \frac{1}{24h} \left(\varphi_{i-2} - 3\varphi_{i-1} - 21\varphi_i + 23\varphi_{i+1}\right),$$

$$\varphi_{+,i+\frac{1}{2}}^{\prime[3]} = \frac{1}{24h} \left(-23\varphi_i + 21\varphi_{i+1} + 3\varphi_{i+2} - \varphi_{i+3}\right)$$

Again,

$$\frac{1}{2}\varphi_{-,i+\frac{1}{2}}^{\prime[3]} + \frac{1}{2}\varphi_{+,i+\frac{1}{2}}^{\prime[3]} = \varphi_{i+\frac{1}{2}}^{\prime} + O\left(h^{4}\right),$$

and a fourth-order WENO reconstruction of $\varphi'\left(x_{i+\frac{1}{2}}\right)$ is

$$\varphi_{i+1/2}^{\prime [4]} = w_{i+\frac{1}{2}}^{-} \varphi_{-,i+\frac{1}{2}}^{\prime [3]} + w_{i+\frac{1}{2}}^{+} \varphi_{+,i+\frac{1}{2}}^{\prime [3]}$$

where the weights are of the form (4) with $c^{\pm} = 1/2$ and $S_{i+1/2}^{-} = S_{i+1/2} [-2,0]$ and $S_{i+1/2}^{+} = S_{i+1/2} [0,2]$.

The reconstruction of $\varphi'_{i+1/2}$ from $\varphi_{i+1/2}$. Repeating the above procedure, this time with three quadratic interpolants

$$\begin{split} \tilde{\varphi}_{-}^{[2]}\left(x\right) &= \varphi_{i+\frac{1}{2}} + \frac{1}{h} \left(\Delta^{-} \varphi_{i+\frac{1}{2}}\right) \left(x - x_{i+\frac{1}{2}}\right) \\ &+ \frac{1}{2h^{2}} \left(\Delta^{+} \Delta^{-} \varphi_{i+\frac{1}{2}}\right) \left(x - x_{i+\frac{1}{2}}\right) \left(x - x_{i+\frac{3}{2}}\right) + O\left(h^{3}\right), \\ \tilde{\varphi}_{0}^{[2]}\left(x\right) &= \varphi_{i+\frac{1}{2}} + \frac{1}{2h} \left(\Delta^{0} \varphi_{i+\frac{1}{2}}\right) \left(x - x_{i+\frac{1}{2}}\right) \\ &+ \frac{1}{2h^{2}} \left(\Delta^{+} \Delta^{-} \varphi_{i+\frac{1}{2}}\right) \left(x - x_{i-\frac{1}{2}}\right) \left(x - x_{i+\frac{3}{2}}\right) + O\left(h^{3}\right), \\ \tilde{\varphi}_{+}^{[2]}\left(x\right) &= \varphi_{i+\frac{1}{2}} + \frac{1}{h} \left(\Delta^{+} \varphi_{i+\frac{1}{2}}\right) \left(x - x_{i+\frac{1}{2}}\right) \\ &+ \frac{1}{2h^{2}} \left(\Delta^{+} \Delta^{+} \varphi_{i+\frac{1}{2}}\right) \left(x - x_{i+\frac{1}{2}}\right) \left(x - x_{i+\frac{3}{2}}\right) + O\left(h^{3}\right), \end{split}$$

results with

$$\frac{1}{6}\tilde{\varphi}_{-,i+\frac{1}{2}}^{\prime[2]} + \frac{2}{3}\tilde{\varphi}_{0,i+\frac{1}{2}}^{\prime[2]} + \frac{1}{6}\tilde{\varphi}_{+,i+\frac{1}{2}}^{\prime[2]} = \varphi_{i+\frac{1}{2}}^{\prime} + O\left(h^{4}\right),$$

where

$$\begin{split} \tilde{\varphi}_{-,i+\frac{1}{2}}^{\prime [2]} &= \frac{1}{2h} (\varphi_{i-\frac{3}{2}} - 4\varphi_{i-\frac{1}{2}} + 3\varphi_{i+\frac{1}{2}}), \quad \tilde{\varphi}_{0,i+\frac{1}{2}}^{\prime [2]} = \frac{1}{2h} (\varphi_{i+\frac{3}{2}} - \varphi_{i-\frac{1}{2}}), \\ \tilde{\varphi}_{+,i+\frac{1}{2}}^{\prime [2]} &= \frac{1}{2h} (-3\varphi_{i+\frac{1}{2}} + 4\varphi_{i+\frac{3}{2}} - \varphi_{i+\frac{5}{2}}). \end{split}$$

The fourth-order WENO estimate of $\varphi_{i+1/2}'$ is

$$\tilde{\varphi}_{i+1/2}^{\prime [4]} = w_{i+\frac{1}{2}}^{-} \tilde{\varphi}_{-,i+\frac{1}{2}}^{\prime [2]} + w_{i+\frac{1}{2}}^{0} \tilde{\varphi}_{0,i+\frac{1}{2}}^{\prime [2]} + w_{i+\frac{1}{2}}^{+} \tilde{\varphi}_{+,i+\frac{1}{2}}^{\prime [2]}$$

where the weights w are of the form (4) with $c^{-} = c^{+} = 1/6, c^{0} = 2/3$, and the oscillatory indicators $S_{i+1/2}^{-} = S_{i+1/2}^{-} [-2, -1], S_{i+1/2}^{-} = S_{i+1/2}^{-} [-1, 0],$ and $S_{i+1/2}^+ = S_{i+1/2} [0, 1].$

5

6 Steve Bryson and Doron Levy

2.2 A Fifth-Order Scheme

Once again, similarly to the third-order scheme, we need to reconstruct the point-values of φ and φ' . We start with the reconstruction of $\varphi_{i+1/2}$ and $\varphi'_{i+1/2}$ from φ_i . We write sixth-order interpolants as a convex combination of cubic interpolants, $\varphi_{-}^{[3]}(x)$ and $\varphi_{+}^{[3]}(x)$ introduced above and

$$\varphi_0^{[3]}(x) = \varphi_i + \frac{1}{h} \left(\Delta^+ \varphi_i \right) (x - x_i) + \frac{1}{2h^2} \left(\Delta^+ \Delta^- \varphi_i \right) (x - x_i) (x - x_{i+1}) + \frac{1}{6h^3} \left(\Delta^+ \Delta^- \Delta^+ \varphi_i \right) (x - x_i) (x - x_{i+1}) (x - x_{i+2}) + O\left(h^4\right).$$

In this case

$$\frac{3}{16}\varphi_{-,i+\frac{1}{2}}^{[3]} + \frac{5}{8}\varphi_{0,i+\frac{1}{2}}^{[3]} + \frac{3}{16}\varphi_{+,i+\frac{1}{2}}^{[3]} = \varphi_{i+\frac{1}{2}} + O\left(h^6\right),$$

where

$$\begin{split} \varphi_{-,i+\frac{1}{2}}^{[3]} &= \frac{1}{16}(\varphi_{i-2} - 5\varphi_{i-1} + 15\varphi_i + 5\varphi_{i+1}), \\ \varphi_{0,i+\frac{1}{2}}^{[3]} &= \frac{1}{16}(-\varphi_{i-1} + 9\varphi_i + 9\varphi_{i+1} - \varphi_{i+2}), \\ \varphi_{+,i+\frac{1}{2}}^{[3]} &= \frac{1}{16}(5\varphi_i + 15\varphi_{i+1} - 5\varphi_{i+2} + \varphi_{i+3}). \end{split}$$

In a similar way,

$$-\frac{9}{80}\varphi_{-,i+\frac{1}{2}}^{\prime[3]} + \frac{49}{40}\varphi_{0,i+\frac{1}{2}}^{\prime[3]} - \frac{9}{80}\varphi_{+,i+\frac{1}{2}}^{\prime[3]} = \varphi_{i+1/2}^{\prime} + O\left(h^{6}\right),$$

where

$$\varphi_{-,i+\frac{1}{2}}^{\prime[3]} = \frac{1}{24h} (\varphi_{i-2} - 3\varphi_{i-1} - 21\varphi_i + 23\varphi_{i+1}),$$

$$\varphi_{0,i+\frac{1}{2}}^{\prime[3]} = \frac{1}{24h} (\varphi_{i-1} - 27\varphi_i + 27\varphi_{i+1} - \varphi_{i+2}),$$

$$\varphi_{+,i+\frac{1}{2}}^{\prime[3]} = \frac{1}{24h} (-23\varphi_i + 21\varphi_{i+1} + 3\varphi_{i+2} - \varphi_{i+3}).$$

The sixth-order WENO estimates for $\varphi_{i+1/2}$ and $\varphi_{i+1/2}'$ are

$$\begin{split} \varphi_{i+\frac{1}{2}}^{[6]} &= w_{i+\frac{1}{2}}^{-} \varphi_{-,i+\frac{1}{2}}^{[3]} + w_{i+\frac{1}{2}}^{0} \varphi_{0,i+\frac{1}{2}}^{[3]} + w_{i+\frac{1}{2}}^{+} \varphi_{+,i+\frac{1}{2}}^{[3]}, \\ \varphi_{i+\frac{1}{2}}^{'[6]} &= w_{i+\frac{1}{2}}^{'-} \tilde{\varphi}_{-,i+\frac{1}{2}}^{'[3]} + w_{i+\frac{1}{2}}^{'0} \tilde{\varphi}_{0,i+\frac{1}{2}}^{'[3]} + w_{i+\frac{1}{2}}^{'+} \tilde{\varphi}_{+,i+\frac{1}{2}}^{'[3]}, \end{split}$$

where the weights for φ are given by (4), with $c_{-} = c_{+} = 3/16$, $c_{0} = 5/8$ and the oscillatory indicators are $S_{i+1/2}^{-} = S_{i+1/2}[-2,0]$, $S_{i+1/2}^{0} = S_{i+1/2}[-1,1]$ and $S_{i+1/2}^{+} = S_{i+1/2}[0,2]$. The negative weights for φ' require special treatment (see [22] for details). Following [22] we split the positive and negative weights in the following way: first, we set $\gamma_{-}^{-} = \gamma_{-}^{+} = 9/40$, $\gamma_{-}^{0} = 49/40$ and $\gamma_{+}^{-} = \gamma_{+}^{+} = 9/80$, $\gamma_{+}^{0} = 49/20$. Then, For $k, l \in \{-, 0, +\}$, set $\sigma_{\pm} = \sum_{k} \gamma_{\pm}^{k}$ so that similarly to (4),

$$\alpha_{\pm,i+\frac{1}{2}}^{k} = \frac{\gamma_{\pm}^{k}}{\sigma_{\pm} \left(\epsilon + S_{i+\frac{1}{2}}^{k}\right)^{p}}$$

and

$$w_{i+\frac{1}{2}}^{\prime k} = \sigma_{+} \frac{\alpha_{+,i+\frac{1}{2}}^{k}}{\sum_{l} \alpha_{+,i+\frac{1}{2}}^{l}} - \sigma_{-} \frac{\alpha_{-,i+\frac{1}{2}}^{k}}{\sum_{l} \alpha_{-,i+\frac{1}{2}}^{l}}.$$

Because $\varphi_{i+1/2}^{[3]}$ and $\varphi_{i+1/2}^{\prime [3]}$ are defined on the same stencils, they use the same smoothness measures $S_{i+1/2}$.

All that is left is the reconstruction of $\varphi'_{i+1/2}$ from $\varphi_{i+1/2}$. In this case a sixth-order approximation to $\varphi'_{i+1/2}$ requires a weighted sum of four cubic interpolants. This reconstruction is similar to the previous ones. We skip the details and summarize the result:

$$\tilde{\varphi}_{i+\frac{1}{2}}^{\prime [6]} = w_{i+\frac{1}{2}}^{-} \tilde{\varphi}_{-,i+\frac{1}{2}}^{\prime [3]} + w_{i+\frac{1}{2}}^{0-} \tilde{\varphi}_{0-,i+\frac{1}{2}}^{\prime [3]} + w_{i+\frac{1}{2}}^{0+} \tilde{\varphi}_{0+,i+\frac{1}{2}}^{\prime [3]} + w_{i+\frac{1}{2}}^{+} \tilde{\varphi}_{+,i+\frac{1}{2}}^{\prime [3]},$$

where

$$\begin{split} \tilde{\varphi}_{-,i+\frac{1}{2}}^{\prime [3]} &= \frac{1}{6h} (-2\varphi_{i-\frac{5}{2}} + 9\varphi_{i-\frac{3}{2}} - 18\varphi_{i-\frac{1}{2}} + 11\varphi_{i+\frac{1}{2}}), \\ \tilde{\varphi}_{0-,i+\frac{1}{2}}^{\prime [3]} &= \frac{1}{6h} (\varphi_{i-\frac{3}{2}} - 6\varphi_{i-\frac{1}{2}} + 3\varphi_{i+\frac{1}{2}} + 2\varphi_{i+\frac{3}{2}}), \\ \tilde{\varphi}_{0+,i+\frac{1}{2}}^{\prime [3]} &= \frac{1}{6h} (-2\varphi_{i-\frac{1}{2}} - 3\varphi_{i+\frac{1}{2}} + 6\varphi_{i+\frac{3}{2}} - \varphi_{i+\frac{5}{2}}), \\ \tilde{\varphi}_{+,i+\frac{1}{2}}^{\prime [3]} &= \frac{1}{6h} (-11\varphi_{i+\frac{1}{2}} + 18\varphi_{i+\frac{3}{2}} - 9\varphi_{i+\frac{5}{2}} + 2\varphi_{i+\frac{7}{2}}). \end{split}$$

Here, $c_{-} = c_{+} = 1/20, c_{0} - = c_{0} + = 9/20, S_{i+1/2}^{-} = S_{i+1/2} [-3, -1], S_{i+1/2}^{0-} = S_{i+1/2} [-2, 0], S_{i+1/2}^{0+} = S_{i+1/2} [-1, 1] \text{ and } S_{i+1/2}^{+} = S_{i+1/2} [0, 2].$

3 Numerical Examples

In all our numerical simulations, the ODE solvers we use are the non-linear fourth-order Strong-Stability Preserving Runge-Kutta (SSP-RK) methods of [6].

We start by testing the accuracy of our new CWENO methods when approximating the solution of the linear advection equation, $\varphi_t + \varphi_x = 0$. The initial data is taken as $\varphi(x, 0) = \sin^4(\pi x)$, the mesh ratio $\lambda = 0.9$ and the time T = 4. The results obtained with the fifth-order method of §2.2 are shown in Table 1.

Table 1. Error and convergence rate for linear advection with initial condition $\varphi(x, 0) = \sin^4(\pi x)$

Ν	L_1	error	L_1 order
50	5.03	$\times \; 10^{-2}$	_
100	8.36	$\times \; 10^{-5}$	9.23
200	2.56	$\times 10^{-6}$	5.03
400	8.24	$\times 10^{-8}$	4.96
800	2.99	$\times 10^{-9}$	4.78

Next, we test the CWENO methods with two nonlinear Hamiltonians: a convex Hamiltonian $\varphi_t + \frac{1}{2}(\varphi_x + 1)^2 = 0$ and a non-convex Hamiltonian $\varphi_t - \cos(\varphi_x + 1) = 0$. The interval is [0, 2], the boundary conditions are periodic and the initial conditions for both Hamiltonians are taken as $\varphi(x, 0) = -\cos(\pi x)$. The exact solution to both problems is smooth until $t \approx 1/\pi^2$, after which a singularity forms. A second singularity forms in the non-convex H example at $t \approx 1.29/\pi^2$.

The results of the accuracy test with the fifth-order method are shown in Table 2, and the solution at time $T = 1.5/\pi$ is plotted in Figure 1. Following [9] the errors in Table 2 after the formation of the singularity are computed at a distance of 0.1 away from any singularities.

Table 2. L_1 Error and convergence rate estimates for convex and non-convex Hamiltonians. top: $T = 0.5/\pi^2$, bottom: $T = 1.5/\pi^2$. $\lambda = 0.3$

Ν	$\begin{array}{c} \text{convex} \\ L_1 \text{ error} \end{array}$	$\begin{array}{c} \text{convex} \\ L_1 \text{ order} \end{array}$	non-convex L_1 error	non-convex L_1 order
50 100 200 400 800	$\begin{array}{c} 6.35\times 10^{-6}\\ 1.62\times 10^{-7}\\ 5.72\times 10^{-9}\\ 2.73\times 10^{-10}\\ 1.45\times 10^{-11} \end{array}$	$- \\ 5.30 \\ 4.82 \\ 4.39 \\ 4.23$	$\begin{array}{l} 4.17\times10^{-5}\\ 1.49\times10^{-6}\\ 4.19\times10^{-8}\\ 1.34\times10^{-8}\\ 4.20\times10^{-8} \end{array}$	$ \begin{array}{c} - \\ 4.81 \\ 5.15 \\ 4.97 \\ 4.99 \\ \end{array} $
Ν	$\begin{array}{c} \text{convex} \\ L_1 \text{ error} \end{array}$	$\begin{array}{c} \text{convex} \\ L_1 \text{ order} \end{array}$	non-convex L_1 error	non-convex L_1 order

Fig. 1. left: Convex Hamiltonian right: non-convex Hamiltonian at $T = \frac{1.5}{\pi^2}$ compared with the exact solution, N = 100.

References

- Barles G., Solution de viscosité des équations de Hamilton-Jacobi, Springer-Verlag, Berlin, 1994.
- Bryson S., Levy D., Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations, NASA Technical Report NAS-01-012, 2001, submitted.
- Crandall M.G., Evans L.C., Lions P.-L., Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282, (1984), pp.487–502.
- Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, (1992), pp.1–67.
- Crandall M.G., Lions P.-L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), pp.1–42.
- Gottlieb S., Shu C.-W., Tadmor E., Strong stability-preserving high order time discretization methods, SIAM Review, 43, (2001), pp.89–112.
- Harten A., Engquist B., Osher S., Chakravarthy S., Uniformly High Order Accurate Essentially Non-oscillatory Schemes III, JCP, 71, (1987), pp.231–303.
- Kruzkov S.N., The Cauchy problem in the large for nonlinear equations and for certain quasilinear systems of the first order with several variables, Soviet Math. Dokl., 5, (1964), pp.493–496.
- Jiang G.-S., Peng D., Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comp., 21, (2000), pp.2126–2143.
- Jiang G.-S., Shu C.-W., Efficient Implementation of Weighted ENO Schemes, JCP, 126, (1996), pp.202–228.
- 11. Kurganov A., Noelle S., Petrova G., Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comp., to appear.
- Kurganov A., Tadmor E., New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations, JCP, 160, (2000), pp.720–724.
- Levy D., Puppo G., Russo G., Central WENO schemes for hyperbolic systems of conservation laws, Math. Model. and Numer. Anal., 33, no. 3 (1999), pp.547– 571.
- Levy D., Puppo G., Russo G., Compact central WENO schemes for multidimensional conservation laws, SIAM J. Sci. Comp., 22, (2000), pp.656–672.
- Lions P.L., Generalized solutions of Hamilton-Jacobi equations, Pitman, London, 1982.

- 10 Steve Bryson and Doron Levy
- Lin C.-T., Tadmor E., L¹-stability and error estimates for approximate Hamilton-Jacobi solutions, Numer. Math., 87, (2001), pp.701–735.
- Lin C.-T., Tadmor E., High-resolution non-oscillatory central schemes for approximate Hamilton-Jacobi equations, SIAM J. Sci. Comp., 21, no. 6, (2000), pp.2163–2186.
- Liu X.-D., Osher S., Chan T., Weighted Essentially Non-oscillatory Schemes, JCP, 115, (1994), pp.200–212.
- Nessyahu H., Tadmor E., Non-oscillatory central differencing for hyperbolic conservation laws, JCP, 87, no. 2 (1990), pp.408–463.
- Osher S., Sethian J., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, JCP, 79, (1988), pp.12–49.
- Osher S., Shu C.-W., High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal., 28, (1991), pp.907–922.
- 22. Shi J., Hu C., Shu C.-W., A technique of treating negative weights in WENO schemes, JCP, to appear.