High-Order Central WENO Schemes for 1D
Hamilton-Jacobi Equations

Steve Bryson! and Doron Levy?

! Program in Scientific Computing/Computational Mathematics, Stanford
University and the NASA Advanced Supercomputing Division, NASA Ames
Research Center, Moffett Field, CA 94035-1000; bryson@nas.nasa.gov

2 Department of Mathematics, Stanford University, Stanford, CA 94305-2125;
dlevy@moath.stanford. edu

1 Introduction

We consider high-order central approximations for solutions of one-dimensional
Hamilton-Jacobi (HJ) equations of the form

% (z,t) + H (¢z,7) =0, z € R, (1)
subject to the initial data ¢(z,t=0) = ¢o(x). Solutions for (1) with smooth
initial data typically remain continuous but develop discontinuous derivatives
in finite time. Such solutions are not unique; the physically relevant solution
is known as the wiscosity solution (see [1, 3, 4, 5, 8, 15] and the references
therein).

Various numerical methods were proposed in order to approximate the so-
lutions of (1). Examples for such methods are the high-order Godunov-type
schemes that were introduced in [20, 21], and were based on an Essentially
Non-Oscillatory (ENO) reconstruction step [7] that was evolved in time with
a first-order monotone flux. The least dissipative monotone flux, the Go-
dunov flux, requires solving Riemann problems at cell interfaces. A fifth-order
Weighted ENO (WENO) scheme, based on [10, 18], was introduced by Jiang
and Peng [9].

Recently, Lin and Tadmor introduced in [16, 17] central schemes for ap-
proximating solutions of the HJ equation. These schemes are based on the
Nessyahu-Tadmor scheme for approximating solutions of hyperbolic conser-
vation laws [19]. Unlike upwind schemes, central schemes do not require Rie-
mann solvers, which makes them attractive for solving systems of equations
and for multi-dimensional problems. A second-order semi-discrete version
of these schemes was introduced by Kurganov and Tadmor in [12]. While
less dissipative, the semi-discrete scheme requires the estimation of the lo-
cal speed of propagation, which is computationally intensive in particular in
multi-dimensional problems. In a later work [11], the numerical viscosity was
further reduced by computing more precise information about local speed of
propagation. To address the problem of schemes that are too computation-
ally intensive, we introduced in [2] efficient first- and second-order central
schemes for approximating the solutions of multi-dimensional versions of (1).
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Unlike the previous attempts, our schemes in [2] scale well with increasing
dimension.

In this paper we derive fully-discrete Central WENO (CWENO) schemes
for approximating solutions of (1), which combine our previous works [2,
13, 14]. We introduce third- and fifth-order accurate schemes, which are the
first central schemes for the HJ equations of order higher than two. The
core ingredient in the derivation of our schemes is a high-order CWENO
reconstructions in space.

Acknowledgment: We would like to thank Volker Elling for helpful discus-
sions.

2 CWENO Schemes for HJ Equations

We are interested in approximating solutions of (1) subject to the initial data
@(x,t =0) = ¢o(x). For simplicity we assume a uniform grid grid in space
and time with mesh spacings, h := Ax and At. We denote the grid points by
x; = iAx, t" = nAt, and the fixed mesh ratio by A = At/Az. Let ¢! denote
the approximate value of ¢ (x;,t"), and (¢,); denote the approximate value of
the derivative ¢, (x;,t"). We define ATl := @l | — i, A™P := @ —
and A% = Ol — P

We assume that the approximate solution at time t", ¢} is given. In
order to approximate the solution at the next time step t"11, ga?'“, we start
by reconstructing a continuous piecewise-polynomial from the data, ¢}, and
sample it at the half-integer points, {;41/2}, in order to obtain the point-
values of the interpolant at these points ¢}, /2 88 well as the derivative,
gog_H/Q. We then evolve 90?+% from time " to time t"*! according to (1),

i+t
Lp(xi+%’tn+1):Qp<xi+%’tn)_/tn H(gpg,:(xi_ir%, ))dt. (2)

This evolution is done at the half-integer grid points where the reconstruc-
tion is smooth (as long as the CFL condition A |H' (¢z)| < 1/2 is satisfied).
Finally, in order to return to the original grid, we project gozfll/Q back onto
the integer grid points {x;} to end up with <p;’+1.

Since the evolution step (2) is done at points where the solution is smooth,
we can approximate the time integral at the RHS of (2) using a sufficiently
accurate quadrature rule. For example, for a third- and fourth-order method,
this integral can be replaced by a Simpson’s quadrature,

gl

/ 1 (o0 (riyy.t) )t~ 2 [H (0 (21417 ‘)

+4H (apm (:CH%,t”*%)) +H (%’ (xi+%’tn+1))} '



CWENO Schemes for HJ Equations 3

The intermediate values of the derivative in time, ¢, (xiﬂ /g,t"H/ 2), and
D (xH_l/Q, t"“), which are required in the quadrature (3), can be predicted
using a Taylor expansion or with a Runge-Kutta (RK) method. For details
we refer the reader to [13, 19] and the references therein.

The remaining ingredient is the piecewise-polynomial reconstruction in
space. A careful study of the above procedure reveals that there are actually
three different quantities that should be recovered in every time step. First,
given ; at time " we need to reconstruct the point-values at the half-integer
grid points, ¢;41/2, at the same time ¢". This is the first term on the RHS of
(2). The second term on the RHS of (2) requires evaluating the Hamiltonian
H at the derivative ¢/ 4120 Hence, the second quantity we should recover
is ¢! +1/2 from ;. Finally, the predictor step that provides the values at
the quadrature nodes in (3), require us to estimate gag_H/Q from ;12 at
every step of the RK method. In the next two sections we will focus on the
reconstruction of these three quantities, first for a third-order method and
then for a fifth-order method.

The projection from @™t

i+1/
accomplished using the same reconstruction used to approximate ¢}’ | /2 from

o5

, onto the original grid points to get go?“ is

2.1 A Third-Order Scheme

Following the above procedure, a third-order scheme can be generated by
combining a third-order accurate ODE solver in time with a sufficiently
high-order reconstruction in space. Here we present fourth-order CWENO
reconstructions of the point values of ¢;, /5 and its derivative ¢; /2

The reconstruction of ;1,2 from ;.

In order to obtain a fourth-order reconstruction of ¢; /2 we will write a con-
2]

constructed on a stencil

which is left-biased with respect to ;1/2, and the right-biased go[f],

vex combination of two quadratic polynomials, ¢

P (@) = i+ 3 (AT) (0= 00) + 3y (AYAT ) (2= 00) (2 = 2101) + O (49),

o (2) = @i + % (A @) (@ — i) + # (A A* @) (& — ) (& — 2i01) + O ().

An evaluation of these approximations at {x,, 1 } reads

2 1 2 1
80[7] (ﬂm%) = g(_¢i71+690i+390i+1)7 <P[+] (%Jr%) = §(3<Pi+680i+1—%+2)~
A straightforward computation shows that

L 2 L 12
59— (xH%) + 5%+ ($i+%) =Pirl T o (h4) :
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The fourth-order WENO estimate of ¢; /5 is therefore given by the convex
combination

49 (101) = 7,398 () #2468 ().
where the weights satisfy w;r1/2 + w:fH/Q =1, wiﬂ/z > 0, Vi. In smooth

regions we would like to satisfy w; =~ wl & % to attain an O (h4) €error,

3
while when the stencil {z;_1,2;, 11, Titr2} supporting @, (mﬂ_%) contains
a discontinuity, the weight of the more oscillatory polynomial should vanish.
Following [10, 18], we meet these requirements by setting

i+t C
b= by = ()
(6+Si+%>

where k,1 € {+,—} (k and [ will range over a larger space of symbols when
we use more interpolants). The constants ¢* = 1/2 and are independent of
the grid-point. We choose € as 1075 to prevents the denominator in (4) from
vanishing, and set p = 2 (see [10]). The smoothness measures S; should be
large when ¢ is nearly singular. Following the standard practice with WENO-
type schemes [10], we take SijE to be the sum of the L2-norms of the first and
second derivatives on the stencil supporting go[ﬁ]. If we approximate the first
derivative at @12 by + AT ;11 /2, the second derivative by 7 AT A7, 1/,
and define the smoothness measure

s 2 s 2
1 1 _
Sivylrsl=h) (EA+90i+j+é> +h) <ﬁA+A %‘+j+é> » (9
j=r j=r+1
then for the fourth-order interpolation of ¢, (xz +%) we have 57, =
Si+1/2 [—1, 0] and S;:—l/Q = Si+1/2 [O, 1]

The reconstruction of <p;+1/2 from ¢;.

To obtain a fourth-order estimate of the derivative ¢’ (41 /2) from ¢(;), we
start from the cubic interpolants

o (@) = pi + % (A% i) (@ — i) + 2—,112 (AT A=) (& — 2:) (& — wit1)
g (ATAY A7) (@ — ) (&~ ) (&~ 210) + O ()
P (@) = i + % (At (@ — 2) + 2—}112 (A* A% ) (2 — 1) (@ — 7i1)
+# (A* AT A gy) (& —a3) (= zia) (@ — i32) + O (h7).

Differentiating 4,05[3] at Ty 1
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1
Y irs = oy, (P2 = 3vio1 = 2190 + 230i4)

3
50/4[“]#% =~ %n (=230 +21piq1 + 30iya — Viys)-
Again,
L ) /3] 4
2 1+1+ ¢+z+—_wz+1+0(h)

and a fourth-order WENO reconstruction of ¢’ (xz +%) is

4 3
90;[+]1/2 =W, 190[ ]+1 —|—w “p:[r]wrz

where the weights are of the form (4) with ¢* = 1/2 and Sit1)2
Si+1/2 [ 2 0] and S1,+1/2 Si+1/2 [O, 2]

The reconstruction of <pz.+1/2 from ¢;4q/2.
Repeating the above procedure, this time with three quadratic interpolants

95[_2]( T) = Piy1 +h(A Vi1 )(m—x”%)
w9<4+4 einy) (£ 2y) (e - 2i0g) +O (),

@ (@) = w” o (A it} ) (x_%é)

P (@) = i1 + - (A’Lsm_

+W (A+A+<Pi+%> (x_xiJr (m—xiJr%)—l-O(h?’)v

Nf=
N—
—~

&

|

8 ;
-
¥
(SIS

results with

1 2 2 2 L 4
6P—i+1 T 3%041 T §Pirt = Pirg T O (1),
where
1 A 5 o L
Pliey = gpPimg Mo T30i) Py = (P — i),

~/[2] _ 1
<P+,i+% = 2h( 3<Pz+1 +4<Pz+3 ‘Pi+%)-

The fourth-order WENO estimate of ¢ +1/2 is

=4 /2] /2] /2]
Pit1/2 = wz+1s(J Jitg +wl+15001+1 +wz+1¢+ i+

where the weights w are of the form (4) with ¢~ = ¢t = 1/6,c" = 2/3, and
the oscillatory indicators S5;,, , = Sit1/2[—2, 1], Sivi/e = Sit1/2 [-1,0],
and S7,+1/2 = 1-‘4—1/2 [O, 1]
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2.2 A Fifth-Order Scheme

Once again, similarly to the third-order scheme, we need to reconstruct the
point-values of ¢ and ¢’. We start with the reconstruction of ;12 and
@, +1/2 from ;. We write sixth-order interpolants as a convex combination

of cubic interpolants, 30[3] (z) and 30[3] () introduced above and

oy (x) = @i‘F%(AJWPi)( v) + 55 (A A1) (0~ 23) (@ — 7041)

2h?
+W (ATA™AYY) (2 — 23) (2 — @in1) (& — zig2) + O (hY).
In this case
3 3] 5 3] 3 3] - 6
167 —its T g%0i+s T 1gP+irs = Pirt T O (h%),
where
" = i(sﬁ 2 —bwi—1 + 150 + 5pit1)
—its 16" i- i i+1),
o8 = o+ 99+ 90141 — pira)
0,i+% 16 1= i i+ i+2 )5

3
QOE,.],H-% = E(EW% + 15¢it1 — 5piy2 + Pit3).

In a similar way,

o A9 9 6
8()('0 S+ 4_0500,i+1 - %SDJF i1 = <P2+1/2+O(h ),

where
1
3
<Pl_[7]i+% = 24h(<Pz 2 = 3pi—1 — 21pi + 23pi41),
S 200 + 27011 — pite)
Po,itl = oqp \Pim1 T 2lpi Pitl — Pit2)
/(3]

The sixth-order WENO estimates for ¢;, /5 and <pl+1/2 are
Eﬂl = werl(p[ ] i+3 +wl+1w£)3]z+1 +wz+1<'0[+]z+1’

SDZ[E] = wz+ 1 951[?:]# + wz+ : s00[ z]+ L+ w/+ 1 95:?]” L

where the weights for ¢ are given by ( ), with e = ¢y = 3/16,¢9 = 5/8 and
the oscillatory indicators are S;; » = Siy1/2 [-2,0], Sz+1/2 = Sit1/2[-1,1]

and S 12 = = Si+1/210,2]. The negative weights for ¢’ require special treat-
ment (see [22] for details). Following [22] we split the positive and negative
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Weights in the following way: first, we set v~ =y = 9/40, 4% = 49/40 and
vy =7f =9/80, 7% =49/20. Then, For k,l € { 0,—|—}, set oy =, 7k so
that similarly to (4),

k
oF . T+
+i+3 T & P
fo (e + Si+%)

and y .
R s B
ity +f ek o NV A
: > O ird 2 O itd
(3] /[3] :
Because Pit1/2 and Pit1/9 ATC defined on the same stencils, they use the

same smoothness measures S;y1/2-

All that is left is the reconstruction of ¢/ +1/2 from ;1 1/2. In this case
a sixth-order approximation to ¢ +1/2 requires a weighted sum of four cubic
interpolants. This reconstruction is similar to the previous ones. We skip the
details and summarize the result:

/(6 ~ 3 . 1[3
SDZ[Jr]é :wz+150[ ]erl +wz+190:)[] 1 +w0+190£)[+]z+1 +wz+190:[r]z+

where
95/7[3:]#% - 6h( 20; 5 +9¢p; 3 —18¢p; 1 +11p; 1),
~gi}’i+% - %M*% — 0oy + 3011 +2053),
%[i] i+3 61h( 2pi-3 = 3%iry +00irg — Pirg),
554[:]%2 61h( W1+ 18008 — 99,45 + 20, 7).
Here, e = ¢ = 1/20, co— = co+ = 9/20, Sz+1/2 iv1y2 (=3, -1, 87 ) =

SH_l/Q[ 2 0] Sz+1/2 SH_l/Q[ 1 1] and S+1/2 Si+1/2 [0,2]

3 Numerical Examples

In all our numerical simulations, the ODE solvers we use are the non-linear
fourth-order Strong-Stability Preserving Runge-Kutta (SSP-RK) methods of
[6].

We start by testing the accuracy of our new CWENO methods when
approximating the solution of the linear advection equation, ¢; + ¢, = 0.
The initial data is taken as ¢ (z,0) = sin® (7x), the mesh ratio A = 0.9 and
the time T' = 4. The results obtained with the fifth-order method of §2.2 are
shown in Table 1.
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Table 1. Error and convergence rate for linear advection with initial condition
¢ (x,0) = sin? (rx)

N  L; error Ly order

50 5.03 x 1072 —~

100 8.36 x 107  9.23
200 2.56 x 1075 5.03
400 8.24 x 1078 4.96
800 2.99 x 1072 4.78

Next, we test the CWENO methods with two nonlinear Hamiltonians:
a convex Hamiltonian ¢; + 3§ (¢, + 1)2 = 0 and a non-convex Hamilto-
nian @; — cos (¢, + 1) = 0. The interval is [0, 2], the boundary conditions
are periodic and the initial conditions for both Hamiltonians are taken as
¢ (z,0) = —cos (mz). The exact solution to both problems is smooth until
t ~ 1/m?, after which a singularity forms. A second singularity forms in the
non-convex H example at ¢t ~ 1.29/72.

The results of the accuracy test with the fifth-order method are shown in
Table 2, and the solution at time T' = 1.5/7 is plotted in Figure 1. Following
[9] the errors in Table 2 after the formation of the singularity are computed
at a distance of 0.1 away from any singularities.

Table 2. L; Error and convergence rate estimates for convex and non-convex
Hamiltonians. top: T = 0.5/7%, bottom: T = 1.5/7%. A = 0.3

N convex convex INON-convex Nnon-convex
Ly error  Lj order Ly error L, order

50 6.35 x 107° —  417x107° -

100 1.62 x 10~7  5.30 1.49 x 1076 4.81
200 5.72 x 107°  4.82 4.19x 1078 5.15
400 2.73 x 1071° 439 1.34 x 1078 4.97
800 1.45 x 107 4.23 420 x 1078 4.99

N convex convex NON-convex NoN-convex
L1 error L7 order L error L1 order
50 2.12 x 1074 - 2.56 x 107° -

100 1.03 x 107°  4.37  7.80 x 1077 5.03
200 9.68 x 107%  6.73 1.70 x 1078 5.52
400 6.20 x 107 7.29 5.02 x 1071 5.08
800 1.90 x 10~'*  5.03 1.71 x 10~ 4.88
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1.5

Fig. 1. left: Convex Hamiltonian right: non-convex Hamiltonian at T' = >z com-
pared with the exact solution, N = 100.
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