
CENTRAL SCHEMES FOR MULTIDIMENSIONAL
HAMILTON–JACOBI EQUATIONS∗

STEVE BRYSON† AND DORON LEVY‡

SIAM J. SCI. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 25, No. 3, pp. 767–791

Abstract. We present new, efficient central schemes for multidimensional Hamilton–Jacobi
equations. These nonoscillatory, nonstaggered schemes are first- and second-order accurate and are
designed to scale well with an increasing dimension. Efficiency is obtained by carefully choosing
the location of the evolution points and by using a one-dimensional projection step. First- and
second-order accuracy is verified for a variety of multidimensional, convex, and nonconvex problems.
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1. Introduction. In this work we consider numerical approximations for solu-
tions of multidimensional Hamilton–Jacobi (HJ) equations of the form

∂φ(�x, t)

∂t
+H(�x, φ,∇φ) = 0, �x ∈ R

n,(1.1)

subject to the initial data φ(�x, t=0) = φ0(�x).
Hamilton–Jacobi equations are of special interest in a variety of applications,

e.g., optimal control theory, image processing, geometric optics, differential games,
and the calculus of variations. When the Hamiltonian does not depend on φ, so-
lutions for (1.1) with smooth initial data will typically remain continuous but will
develop discontinuous derivatives in finite time. Such solutions are not unique, and
therefore a mechanism is required for singling out a “physically relevant solution,”
the viscosity solution. For convex Hamiltonians the viscosity solution coincides with
the limit solution obtained by the vanishing viscosity method [11]. Extensions to
general Hamiltonians were introduced by Crandall and Lions in [7] and have been
systematically studied thereafter in a series of works [3, 5, 6, 26, 27].

Hamilton–Jacobi equations are closely related to hyperbolic conservation laws.
Yet while the literature on numerical methods for conservation laws is flourishing, very
little attention is given to numerical methods for HJ equations. This is surprising,
given their increasing role in different applications. Crandall and Lions introduced in
[8] first-order numerical approximations to the viscosity solution of a simplified version
of (1.1), with a Hamiltonian that depends only on the derivative of φ. Extensions to
more general Hamiltonians are due to Souganidis [37]. Discontinuous Galerkin (DG)
methods for HJ equations were introduced in [10, 23]. Multidimensional DG schemes
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are based on transforming a scalar equation into a weakly hyperbolic system which is
over- or underdetermined; hence an additional least-squares step is required to single
out a solution. High-order Godunov-type methods were introduced in [33, 34] (see also
[35]). and were based on an essentially nonoscillatory (ENO) reconstruction step that
was evolved in time with a first-order monotone flux. Schemes on unstructured grids
were derived in [1] and [39] based on [14]. The least dissipative flux, the Godunov
flux, requires solving Riemann problems at cell interfaces. Central schemes avoid
these difficulties by evolving the solution in smooth regions, i.e., by averaging over
discontinuities. Such schemes have been widely studied for conservation laws, the
prototype being the first-order Lax–Friedrichs (LxF) scheme [9]. A one-dimensional
second-order extension is due to Nessyahu and Tadmor [32]. Central schemes do not
require Riemann solvers, which makes them suitable for solving systems of equations
and for multidimensional problems. Extensions to two space dimensions were done
in [2, 15]; high-order central schemes were developed in [4, 24, 25, 29]; semidiscrete
schemes that reduced the numerical dissipation and eliminated the staggering were
developed in [17, 18, 20].

Godunov-type central schemes have recently been extended to the HJ equations
in [31], which applied the first- and second-order staggered central schemes of [15, 32]
to HJ equations in one and two space dimensions. L1 convergence of order one for
this scheme was proved in [30]. In [19], a second-order semidiscrete scheme was
presented, following the techniques for hyperbolic conservation laws [17, 20]. While
less dissipative, this scheme requires the estimation of the local speed of propagation,
which is computationally intensive, in particular in multidimensional problems. In a
later work [18] the numerical viscosity was further reduced by computing more precise
information about local speeds of propagation.

In this paper we derive nonstaggered fully discrete central schemes for approxi-
mating solutions of (1.1). These methods combine the ideas of [19, 31] with several
additional ingredients. Our scheme is presented as an n-dimensional algorithm which
is designed with special consideration to performance and scaling to higher dimen-
sions. We develop both first- and second-order accurate schemes. These schemes are
based on a projection step similar to that in [12], which is one-dimensional regardless
of the dimension of the problem. The methods described in this paper can also be
thought of as the first step toward higher-order schemes, which is the subject of a
forthcoming paper.

This paper is organized as follows. In section 2 we develop our first- and second-
order scheme in one dimension. Section 3 is the heart of the paper, where we generalize
these schemes to n dimensions, first introducing a multi-index notation, then deriving
the location of the evolution points, and finally presenting the algorithm. Section 4
presents various examples demonstrating the first- and second-order convergence of
these schemes.

2. The one-dimensional scheme. Consider the one-dimensional HJ equation

φt +H (φx) = 0(2.1)

subject to the initial data φ(x, t=0) = φ0(x). In order to approximate solutions of
(2.1) we introduce a grid in space and time with mesh spacings ∆x and ∆t, respec-
tively. We denote the grid points by xi = i∆x and tm = m∆t and the fixed mesh ratio
by λ = ∆t/∆x. Let ϕm

i denote the approximate value of φ (xi, t
m), and (ϕx)

m
i denote

the approximate value of the derivative φx (xi, t
m). We define (∆ϕ)

m
i+ 1

2
:= ϕm

i+1−ϕm
i .
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Given ϕm
i , an approximate solution at time tm, the approximate solution at the

next time step tm+1, ϕm+1
i , is obtained as follows:

1. Reconstruct a continuous piecewise-polynomial from the data, ϕm
i , and sam-

ple it at the half-integer points, {xi+1/2}, to obtain the values of ϕm
i+ 1

2

and

its derivative, (ϕx)
m
i . The order of the polynomial is related to the overall

order of accuracy of the method.
2. Evolve ϕm

i+ 1
2

by solving (2.1) from time tm to time tm+1, obtaining ϕm+1
i+ 1

2

.

This evolution is done at the half-integer grid points, where the reconstruction
is smooth, so long as the CFL condition λ |H ′ (ϕx)| ≤ 1/2 is satisfied.

3. Project ϕm+1
i+ 1

2

back onto the integer grid points {xi} to get ϕm+1
i .

2.1. A first-order method. The derivation of the first-order method starts by
reconstructing a piecewise-linear interpolant of the form

ϕ (x, tm) :=
∑
i

[
ϕm
i +

(∆ϕ)
m
i+ 1

2

∆x
(x− xi)

]
χi+ 1

2
(x),(2.2)

where χi+ 1
2
(x) is the characteristic function of the interval [xi, xi+1). The values of

the interpolant (2.2) and its derivative at the half-integer grid points, xi± 1
2
, are

ϕm
i± 1

2
= ϕm

i ± 1

2
(∆ϕ)

m
i± 1

2
, (ϕx)

m
i± 1

2
=

(∆ϕ)
m
i± 1

2

∆x
.

Integrating (2.1) in time from tm to tm+1 at xi± 1
2
and approximating the time integral

with a first-order quadrature gives

ϕm+1
i± 1

2

= ϕm
i± 1

2
−∆tH

(
(ϕx)

m
i± 1

2

)
= ϕm

i ± 1

2
(∆ϕ)

m
i± 1

2
−∆tH

(
(ϕx)

m
i± 1

2

)
.

Finally, we project the evolved solution back onto the original grid points. For a
first-order method it is sufficient to average ϕm+1

i±1/2,

(2.3)

ϕm+1
i =

ϕm+1
i+ 1

2

+ ϕm+1
i− 1

2

2

= ϕm
i +

1

4

(
(∆ϕ)

m
i+ 1

2
− (∆ϕ)

m
i− 1

2

)
− ∆t

2

[
H

(
(∆ϕ)

m
i+ 1

2

∆x

)
+H

(
(∆ϕ)

m
i− 1

2

∆x

)]
.

The intermediate values ϕm+1
i±1/2 are the same as those computed in the first-order

method in [32], so in one dimension we only add the projection step. This eliminates
the grid staggering in [32] with little computational cost since no additional flux
evaluations are required.

2.2. A second-order method. The second-order scheme is based on a piecewise-
quadratic interpolant of the form

(2.4)

ϕ (x, tm) :=
∑
i

[
ϕm
i +

(∆ϕ)
m
i+ 1

2

∆x
(x− xi) + 1

2

D (∆ϕ)
m
i+ 1

2

(∆x)
2 (x− xi) (x− xi+1)

]
χi+ 1

2
.
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Here, D is a limiter whose goal is to prevent oscillations while maintaining the order
of accuracy of the method. There are various possibilities for choosing such limiters
(see [38]). One such example is the Min-Mod limiter,

Dfi := MM

[
θ(fi+1 − fi), 1

2
(fi+1 − fi−1), θ(fi+1 − fi)

]
, 1 ≤ θ ≤ 2,

where the Min-Mod function is defined as

MM(x1, x2, . . .) :=




minj {xj} if all xj > 0,
maxj {xj} if all xj < 0,
0 otherwise.

Since the solution of the HJ equations (2.1) generally has a discontinuous first deriva-
tive, we follow [19] by limiting the second derivative. Limiting the discrete second
derivatives was first introduced in [34] as part of the ENO limiter. With the Min-Mod
limiter, the second derivative is approximated by D(∆ϕ)m

i+ 1
2

/(∆x)2, where

D (∆ϕ)
m
i+ 1

2
= MM

[
θ
(
(∆ϕ)

m
i+ 3

2
− (∆ϕ)

m
i+ 1

2

)
,
1

2

(
(∆ϕ)

m
i+ 3

2
− (∆ϕ)

m
i− 1

2

)
,

θ
(
(∆ϕ)

m
i+ 1

2
− (∆ϕ)

m
i− 1

2

)]
.

Sampling (2.4) and its derivative at the half-integer grid points gives

ϕm
i± 1

2
= ϕm

i ± 1

2
(∆ϕ)

m
i± 1

2
− 1

8
D (∆ϕ)

m
i± 1

2
, (ϕx)

m
i± 1

2
=

(∆ϕ)
m
i± 1

2

∆x
.

We integrate (2.1) from time tm to time tm+1 and approximate the time integral
with a second-order midpoint quadrature∫ tm+1

tm
H
(
ϕx

(
xi± 1

2
, t
))
dt ≈ ∆tH

(
(ϕx)

m+ 1
2

i± 1
2

)
.

The required midvalues, ϕx(xi± 1
2
, tm+ 1

2 ), can be predicted using a Taylor expansion,

ϕx

(
xi± 1

2
, tm+ 1

2

)
= ϕx

(
xi± 1

2
, tm
)
+

1

2
∆tϕtx

(
xi± 1

2
, tm
)
+O

(
(∆t)

2
)

= ϕx

(
xi± 1

2
, tm
)
− 1

2
∆tH ′

(
ϕx

(
xi± 1

2
, tm
))
ϕxx

(
xi± 1

2
, tm
)
+O

(
(∆t)

2
)

≈
(∆ϕ)

m
i± 1

2

∆x
− 1

2
λH ′

(
(∆ϕ)

m
i± 1

2

∆x

) D (∆ϕ)
m
i± 1

2

∆x
,

which leads to

ϕm+1
i± 1

2

= ϕm
i± 1

2
−∆tH

(
(∆ϕ)

m
i± 1

2

∆x
− 1

2
λH ′

(
(∆ϕ)

m
i± 1

2

∆x

) D (∆ϕ)
m
i± 1

2

∆x

)
.(2.5)

Finally, we project (2.5) back onto the integer grid points using a quadratic interpolant

ϕm+1
i = ϕm+1

i− 1
2

+
(∆ϕ)

m+1
i

∆x

(
xi − xi− 1

2

)
+

1

2

D (∆ϕ)
m+1
i

(∆x)
2

(
xi − xi− 1

2

)(
xi − xi+ 1

2

)

= ϕm+1
i− 1

2

+
1

2
(∆ϕ)

m+1
i − 1

8
D (∆ϕ)

m+1
i ,
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where (∆ϕ)
m+1
i = ϕm+1

i+ 1
2

− ϕm+1
i− 1

2

and

D (∆ϕ)
m+1
i = MM

[
θ
(
(∆ϕ)

m+1
i+1 − (∆ϕ)

m+1
i

)
,
1

2

(
(∆ϕ)

m+1
i+1 − (∆ϕ)

m+1
i−1

)
,

θ
(
(∆ϕ)

m+1
i − (∆ϕ)

m+1
i−1

)]
.

Remark. We would like to note that even in the one-dimensional scheme, there
are several differences between our method and the second-order scheme in [31]. A
second-order interpolant is used to reproject the evolved fields back onto the original
grid points, resulting in a nonstaggered grid compared with the staggered scheme
in [31]. Also, we follow [19] by applying the nonlinear slope limiters to the second
derivative.

3. Generalization to n dimensions. We are concerned with approximating
solutions of the n-dimensional HJ equation of the form

φt +H(∇φ) = 0, �x ∈ R
n,(3.1)

subject to the initial data φ(�x, t) = φ0(�x).
In section 3.1 we introduce a multi-index notation, which allows a presentation

that nicely parallels the one-dimensional case. We then compute the optimal location
of the evolution points. Sections 3.2 and 3.3 develop the first- and second-order n-
dimensional schemes. The first-order method in section 3.2 below applies as is to the
case where the Hamiltonian H depends also on �x and φ. We extend the second-order
method of section 3.3 to this more general case in a remark.

3.1. Preliminaries.

A multi-index notation. We define the multi-index α = (α1, α2, . . . , αn) and

denote by xα the point xα = (x
(1)
α1 , x

(2)
α2 , . . . , x

(n)
αn ) ∈ R

n. Here x(k) denotes the kth

coordinate of x so x
(k)
αk = αk∆x

(k). For example, in the conventional three-dimensional
notation with indices i, j, and k and components (x, y, z), α = (i, j, k) and xα =
(xi, yj , zk).

For a given α we define the special multi-indices α±ek := (α1, . . . , αk±1, . . . , αn),

which denote an increment in the k direction. Then ϕm
α = ϕ(x

(1)
α1 , x

(2)
α2 , . . . , x

(n)
αn ; t

m)

and ϕm
α±ek

= ϕ(x
(1)
α1 , . . . , x

(k)
αk ±∆x(k), . . . , x

(n)
αn ; t

m). Finally, we denote the evolution
points with the multi-indices ± := (α1 ± a, α2 ± a, . . . , αn ± a), for some constant a,

so that ϕm
± = ϕ(x

(1)
α1 ± a∆x(1), x

(2)
α2 ± a∆x(2), . . . , x

(n)
αn ± a∆x(n); tm).

The location of the evolution points. We would like to determine the location
of the evolution points that provides the largest stable time step. This optimal location
will be as far as possible from the singularities in the solution, which occur at the
boundaries of the volume defined by the grid cell faces. For simplicity we assume a
grid point at the origin, x = (0, 0, . . . , 0), and scale the coordinates such that for all
k,∆x(k) = 1. The two evolution points will then be located at x± = (±a,±a, . . . ,±a)
for a constant a that is yet to be determined.

Consider the evolution point x+, which is at a distance
√
na from the origin.

The value of ϕ at this point will be based on a polynomial that is constructed in-
side the (hyper-) volume bounded by the coordinate planes and the (hyper-) plane∑n

i=1 x
(i) = 1. There will be discontinuities in the first derivative of the piecewise-

polynomial interpolant ϕ(x, tm) along the sides of this hypervolume. Since we evolve
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Fig. 1. The location of the evolution points x± and xp in two dimensions.

the solution in smooth regions, an optimal choice of the evolution points is at an
equidistant location from these boundaries. The diagonal line (s, s, . . . , s) (for some
parameter s) intersects the (hyper-)plane

∑n
i=1 x

(i) = 1 at s = 1
n , or at the point

xp =
(

1
n ,

1
n , . . . ,

1
n

)
, which is at a distance 1/

√
n from the origin (see Figure 1).

The optimal choice is to require that the evolution points be equidistant from
the coordinate planes and the intersection point xp. The distance from x+ to all the
coordinate planes is a. The distance from x+ to xp is 1/

√
n − a√n; therefore the

requirement that x+ be equidistant from the coordinate planes and xp is

a =
1

n+
√
n
.

The evolution points in [31] were chosen as a = 1/4, which places them equidistant
between the origin and the intersection point xp. In n dimensions this choice gener-
alizes to a = (2n)−1. In our case, when n = 2, a = (2+

√
2)−1 ≈ 0.29, which is about

15% larger than the choice a = 1/4. When n = 3, a = (3 +
√
3)−1 ≈ 0.21, which is

about 30% larger than the choice a = 1/6. Thus the optimal choice of a will allow
larger mesh ratios, leading to larger time steps and less dissipation.

3.2. A first-order method. For simplicity we assume that the spacing is iden-
tical in every direction, i.e., ∆x(k) = ∆x for all k. Generalization of the methods
below to the case where ∆x(k) �= ∆x(j) for k �= j is not difficult: generalization of the
approximation formulas below is straightforward and the optimal evolution points are
found via a scaling argument. We define the forward- and backward-differences in the
kth component as ∆+

k ϕ
m
α := ϕm

α+ek
− ϕm

α and ∆−
k ϕ

m
α := ϕm

α − ϕm
α−ek

, respectively.
At each grid point xα we reconstruct two linear interpolants that are valid in the two
hyperquadrants that contain the points x± = xα ± (a, . . . , a)∆x,

ϕ± (x, tm) := ϕm
α +

n∑
k=1

∆±
k ϕ

m
α

∆x

(
x(k) − x(k)

αk

)
.(3.2)

In order to compute the solution at the next time step at xα, we first compute the
solution at time tm+1 at the evolution points x± and then average these two values.
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The value of the linear interpolant (3.2) at x± is

ϕ(x±, tm) = ϕm
α ± a

n∑
k=1

∆±
k ϕ

m
α ,

and its derivative is

(∇ϕ)m± :=

(
∆±

1 ϕ
m
α

∆x
, . . . ,

∆±
nϕ

m
α

∆x

)
.

Hence, the values at the evolution points x± at the next time step, tm+1, are given
by

ϕ(x±, tm+1) = ϕ(x±, tm)−
∫ tm+1

tm
H (∇ϕ (x±, tm)) dt ≈ ϕ(x±, tm)−∆tH

(
(∇ϕ)m±

)

= ϕm
α ± a

n∑
k=1

∆±
k ϕ

m
α −∆tH

(
∆±

1 ϕ
m
α

∆x
, . . . ,

∆±
nϕ

m
α

∆x

)
.

The value at tm+1 at xα is finally obtained by averaging ϕm+1
± := ϕ

(
x±, tm+1

)
(com-

pare with (2.3)),

ϕm+1
α =

1

2

(
ϕm+1

+ + ϕm+1
−

)
(3.3)

= ϕm
α +

a

4

(
n∑

k=1

∆+
k ϕ

m
α −

n∑
k=1

∆−
k ϕ

m
α

)

−∆t

2

(
H

(
∆+

1 ϕ
m
α

∆x
, . . . ,

∆+
nϕ

m
α

∆x

)
+H

(
∆−

1 ϕ
m
α

∆x
, . . . ,

∆−
nϕ

m
α

∆x

))
.

3.3. A second-order method. For simplicity we assume again that the mesh
spacing is identical in every spatial direction, i.e., ∆x(k) = ∆x for all k. Similarly
to the one-dimensional case in section 2.2, the n-dimensional second-order method
is based on a piecewise-quadratic polynomial. For every grid node we reconstruct
two n-dimensional quadratic interpolants: ϕ+ (x, tm) for the hyperquadrant along
the positive diagonal, and ϕ− (x, tm) along the negative diagonal (see Figure 1),

ϕ± (x, tm) := ϕm
α +

n∑
k=1

∆±
k ϕ

m
0

∆x

(
x(k) − x(k)

α

)
(3.4)

+
1

2

n∑
k=1

Dk∆
±
k ϕ

m
α

(∆x)
2

(
x(k) − x(k)

α

)(
x(k) − x(k)

α±ek

)

+
1

2

n∑
j=1

n∑
k=1
k �=j

Dj∆
±
k ϕ

m
α

(∆x)
2

(
x(j) − x(j)

α

)(
x(k) − x(k)

α

)
.

The Min-Mod limiter in the jth direction acting on ∆±
k ϕ

m
α is

Dj∆
±
k ϕ

m
α = MM

[
θ
(
∆±

k ϕ
m
α+ej −∆±

k ϕ
m
α

)
,

1

2

(
∆±

k ϕ
m
α+ej −∆±

k ϕ
m
α−ej

)
, θ
(
∆±

k ϕ
m
α −∆±

k ϕ
m
α−ej

)]

so that Dj∆
±
k ϕ

m
α / (∆x)

2
approximates the second derivative ∂2ϕ (xα, t

m) /∂x(j)∂x(k).
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Now x
(k)
± − x(k)

α = ±a∆x, x(k)
+ − x(k)

α+ek
= (a− 1)∆x, and x

(k)
− − x(k)

α−ek
=

− (a− 1)∆x, so evaluating (3.4) at x±,

ϕm
± := ϕ± (x±, tm)

= ϕm
α ± a

n∑
k=1

∆±
k ϕ

m
α +

a (a− 1)

2

n∑
k=1

Dk∆
±
k ϕ

m
α +

a2

2

n∑
j=1

n∑
k=1
k �=j

Dj∆
±
k ϕ

m
α .

The approximation to the first derivative of (3.4) in the pth direction is given by

∂ϕ± (x, tm)

∂x(p)
≈ ∆±

p ϕ
m
α

∆x
+

Dp∆
±
p ϕ

m
α

2 (∆x)
2

[(
x

(p)
± − x(p)

α

)
+
(
x

(p)
± − x(p)

α±ep

)]

+
1

2 (∆x)
2

n∑
k=1
k �=p

[Dp∆
±
k ϕ

m
α +Dk∆

±
p ϕ

m
α

] (
x

(k)
± − x(k)

α

)
,

which when evaluated at x± is(
∂ϕ

∂x(p)

)m

±
:=
∂ϕ± (x, tm)

∂x(p)

∣∣∣∣
x±

=
∆±

p ϕ
m
α

∆x
± 2a− 1

2

Dp∆
±
p ϕ

m
α

∆x
± a

2

n∑
k=1
k �=p

Dp∆
±
k ϕ

m
α +Dk∆

±
p ϕ

m
α

∆x
.

The approximation to the second derivative is given by(
∂2ϕ±

∂x(q)∂x(p)

)m

=
Dp∆

±
q ϕ

m
α +Dq∆

±
p ϕ

m
α

2 (∆x)
2 .

The solution at the next time step at the evolution points ϕm+1
± is obtained by

evolving the reconstruction (3.4) according to (3.1). The integral of the Hamiltonian

is approximated by a second-order midpoint quadrature,
∫ tm+1

tm
H (∇ϕ (xi±, t)) dt ≈

∆tH((∇ϕ)m+ 1
2± ), which at the evolution points gives

ϕm+1
± = ϕm

± −∆tH
(
(∇ϕ)m+ 1

2±
)
.(3.5)

Here

(∇ϕ)m± :=

((
∂ϕ

∂x(1)

)m

±
, . . . ,

(
∂ϕ

∂x(n)

)m

±

)

denotes the approximation to the gradient at x±. The midvalues in time can be
estimated via the Taylor expansion using (3.1),

(3.6)

∂ϕ

∂x(p)

(
x±, tm+ 1

2

)
=

∂ϕ

∂x(p)
(x±, tm) +

∆t

2

∂2ϕ

∂x(p)∂t
(x±, tm) +O

(
∆t2

)

=
∂ϕ

∂x(p)
(x±, tm)− ∆t

2

n∑
k=1

∂

∂ ∂ϕ
∂x(k)

H (∇ϕ (x±, tm))
∂2ϕ

∂x(p)∂x(k)
(x±, tm) +O

(
∆t2

)
.
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+

Fig. 2. The location of the points x+, x−, x(−1)+, and x(+1)− used in the projection step along
with the distances D0, D+, and D− in the two-dimensional case.

Hence,

(
∂ϕ

∂x(p)

)m+ 1
2

±
:=

∆±
p ϕ

m
α

∆x
± 2a− 1

2

Dp∆
±
p ϕ

m
α

∆x
± a

2

n∑
k=1
k �=p

Dp∆
±
k ϕ

m
α +Dk∆

±
p ϕ

m
0α

∆x

− ∆t

2

n∑
k=1

∂

∂ ∂ϕ
∂xk

H
(
(∇ϕ)m±

) Dp∆
±
k ϕ

m
α +Dk∆

±
p ϕ

m
α

2 (∆x)
2 .

All that remains is to project (3.5) back onto the original grid points, xα. This
projection is one-dimensional regardless of n. We use the four evolution points x+,

x−, x(−1)+ := (x
(1)
α −∆x(1)+a∆x(1), x

(2)
α −∆x(2)+a∆x(2), . . . , x

(n)
α −∆x(n)+a∆x(n))

and x(+1)− := (x
(1)
α +∆x(1)−a∆x(1), x

(2)
α +∆x(2)−a∆x(2), . . . , x

(n)
α +∆x(n)−a∆x(n))

(see Figure 2). The distances between the evolution points are D0 := |x+ − x−| =
2a

√
n∆x, D+ := |x(+1)− − x+| = (1− 2a)

√
n∆x, and D− := |x(−1)+ − x−| = D+.

We then define the approximations to the first derivative along the diagonal,

(dϕ)
m+1
0

D0
:=
ϕm+1

+ − ϕm+1
−

D0
,

(dϕ)
m+1
+

D+
:=
ϕm+1

(+1)− − ϕm+1
+

D+
,

(dϕ)
m+1
−

D−
:=
ϕm+1
− − ϕm+1

(−1)+

D−
.

The approximation to the second derivative is the limited differenceD (dϕ)
m+1
0 /D2,
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where D2 = 1
2 (D0 +D+) and

D (dϕ)
m+1
0 = MM

[
θ

(
(dϕ)

m+1
+

D+
− (dϕ)

m+1
0

D0

)
,
1

2

(
(dϕ)

m+1
+

D+
− (dϕ)

m+1
−

D−

)
,(3.7)

θ

(
(dϕ)

m+1
0

D0
− (dϕ)

m+1
−

D−

)]
.

The approximated value at the next time step tm+1 at the grid point xα is therefore
given by

ϕm+1
α = ϕm+1

− +
(dϕ)

m+1
0

D0
(xα − x−) + D (dϕ)

m+1
0

2D2
(xα − x−) (xα − x+)

= ϕm+1
− +

ϕm+1
+ − ϕm+1

−
D0

D0

2
− D (dϕ)

m+1
0

2D2

D2
0

4

=
1

2

(
ϕm+1

+ + ϕm+1
−

)− D2
0

8D2
D (dϕ)

m+1
0 ,

where ϕm+1
± is given by (3.5) and D (dϕ)

m+1
0 is given by (3.7).

Remarks.
1. If the Hamiltonian H depends also on �x and φ, then (3.5) becomes

ϕm+1
± = ϕm

± −∆tH
(
�x, ϕ

m+ 1
2± , (∇ϕ)m+ 1

2±
)
,

where

ϕ
m+ 1

2± = ϕm
± − ∆t

2
H
(
�x, ϕm

± , (∇ϕ)m±
)
,

and the Taylor expansion (3.6) contains the additional term

−∆t

2

[
∂

∂x(p)
H (�x, ϕ,∇ϕ) + ∂

∂ϕ
H (�x, ϕ,∇ϕ) ∂ϕ

∂x(p)

]∣∣∣∣
(x±,tm)

.

In this case we expect the numerical solution to be a good approximation as
long as the analytical solution is continuous.

2. We would like to stress that the fully discrete scheme in [19], derived as an
intermediate step in developing the semidiscrete scheme, was only first-order
in time. Moreover, in two dimensions our scheme is based on only two flux
evaluations per grid node compared with four flux evaluations in [18, 19]. Our
scheme also does not require any estimation of the local speed of propagation
at every grid point (as required in [18, 19]). The result is that our scheme
is much more computationally efficient at the cost of being more dissipative.
One consequence of this dissipation is that the solution of the trivial problem
H = 0 does not remain constant, unlike in the semidiscrete formulation.

3. We wish to emphasize the advantages of the schemes presented in this pa-
per. By avoiding staggered grids, our scheme is simple, scales well to high
dimensions, and is computationally efficient. We show in the examples below
that our second-order scheme is somewhat more accurate than that in [31].
Finally, as in all central schemes, our methods do not require the solution of
any Riemann problems, so our methods can be used as black-box solvers.
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We would like to summarize the second-order n-dimensional algorithm for a gen-
eral Hamiltonian H(�x, φ,∇φ).

Algorithm 3.1. Let the distance of the evolution points from the origin be
a = 1

n+
√
n
.

1. For each grid node xα and each k compute ∆+
k ϕ

m
α = ϕm

α+ek
−ϕm

α and ∆−
k ϕ

m
α =

ϕm
α − ϕm

α−ek
.

2. For each grid node xα and for each j and k compute

Dj∆
±
k ϕ

m
α = MM

[
θ
(
∆±

k ϕ
m
α+ej −∆±

k ϕ
m
α

)
,
1

2

(
∆±

k ϕ
m
α+ej −∆±

k ϕ
m
α−ej

)
,

θ
(
∆±

k ϕ
m
α −∆±

k ϕ
m
α−ej

)]
.

3. For each grid node xα compute

ϕm
± = ϕm

α ± a
n∑

k=1

∆±
k ϕ

m
α +

a (a− 1)

2

n∑
k=1

Dk∆
±
k ϕ

m
α +

a2

2

n∑
j=1

n∑
k=1
k �=j

Dj∆
±
k ϕ

m
α ,

and for each p compute(
∂ϕ

∂x(p)

)m

±
=

∆±
p ϕ

m
α

∆x
± 2a− 1

2

Dp∆
±
p ϕ

m
α

∆x
± a

2

n∑
k=1
k �=p

Dp∆
±
k ϕ

m
α +Dk∆

±
p ϕ

m
α

∆x
,

(
∂ϕ

∂x(p)

)m+ 1
2

±
=

(
∂ϕ

∂x(p)

)m

±
− ∆t

2

[
∂

∂x(p)
H
(
�x, ϕm

± , (∇ϕ)m±
)

+
∂

∂ϕ
H
(
�x, ϕm

± , (∇ϕ)m±
)( ∂ϕ

∂x(p)

)m

±

+

n∑
k=1

∂

∂ ∂ϕ
∂xk

H
(
�x, ϕm

± , (∇ϕ)m±
) [Dp∆

±
k ϕ

m
α +Dk∆

±
p ϕ

m
α

2 (∆x)
2

]]
,

ϕm+1
α± = ϕm

± −∆tH
(
(∇ϕ)m+ 1

2±
)
,

where

H
(
(∇ϕ)m±

)
= H

((
∂ϕ

∂x(1)

)m

±
, . . . ,

(
∂ϕ

∂x(n)

)m

±

)
.

4. Let D0 = 2a
√
n∆x, D+ = D− = (1− 2a)

√
n∆x. For each xα compute

(dϕ)
m+1
0

D0
=
ϕm+1
α+ − ϕm+1

α−
D0

,

(dϕ)
m+1
+

D+
=
ϕm+1

(α+1)− − ϕm+1
α+

D+
,

(dϕ)
m+1
−

D−
=
ϕm+1
α− − ϕm+1

(α−1)+

D−
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(where α± 1 is the multi-index (α1 ± 1, . . . , αn ± 1)),

D (dϕ)
m+1
0 = MM

[
θ

(
(dϕ)

m+1
+

D+
− (dϕ)

m+1
0

D0

)
,
1

2

(
(dϕ)

m+1
+

D+
− (dϕ)

m+1
−

D−

)
,

θ

(
(dϕ)

m+1
0

D0
− (dϕ)

m+1
−

D−

)]
.

5. For each xα compute

ϕm+1
α =

1

2

(
ϕm+1
α+ + ϕm+1

α−
)− D2

0

8D2
D (dϕ)

m+1
0 .

4. Numerical examples. We demonstrate the schemes developed in sections 2
and 3 with several examples. Some of these examples are standard test cases that can
be found, e.g., in [19, 31, 34].

Example 1: A convex Hamiltonian. We start by testing the performance
of our schemes on a convex Hamiltonian. We approximate solutions of the one-
dimensional equation

φt +
1

2
(φx + 1)

2
= 0(4.1)

subject to the initial data φ(x, 0) = − cos(πx) and to periodic boundary conditions
on [0, 2]. The change of variables, u (x, t) = φx (x, t)+1, transforms the equation into
the Burgers equation, ut+

1
2

(
u2
)
x
= 0, which can be solved via the method of charac-

teristics [34]. As is well known, the Burgers equation generally develops discontinuous
solutions even with smooth initial data, and hence we expect the solutions of (4.1)
to have discontinuous derivatives. In our case, the solution develops a singularity at
time t = π−2.

The results of our simulations are shown in Figures 3 and 4. The order of accuracy
of these methods is determined from the relative L1-error (see [30]) defined as the L1-
norm of the error divided by the L1-norm of the exact solution. The results before
the singularity, at T = 0.8/π2, are given in Table 1, and after the singularity, at
T = 1.5/π2, in Table 2.

In two dimensions we solve a similar problem,

φt +
1

2
(φx + φy + 1)

2
= 0,(4.2)

which can be reduced to a one-dimensional problem via the coordinate transformation
( ξη ) = 1

2 (
1
1

1
−1 )(

x
y ). The results of the second-order calculations for the initial data

φ (x, y, 0) = − cos (π(x+ y)/2) = − cos (πξ) are shown in Figures 5–6. The conver-
gence rates for the first- and second-order two-dimensional schemes before and after
the development of the singularity are shown in Tables 3–4.

Table 5 compares the accuracy of our second-order scheme with the second-order
scheme of Lin and Tadmor [31] for problem (4.2) in one and two dimensions for
various N . For each algorithm, value of N , and dimension, the CFL number is chosen
to minimize the relative error. We see that our second-order scheme gives errors in
the range of half that of Lin and Tadmor.
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Fig. 3. Example 1. The one-dimensional convex Hamiltonian (4.1). The solution is computed at
T = 0.8/π2 before the formation of singularities. N = 40. Shown are the first-order approximation,
the second-order approximation, and the exact solution.
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Fig. 4. Example 1. The one-dimensional convex Hamiltonian (4.1). The solution is computed at
T = 1.5/π2 after the formation of singularities. N = 40. Shown are the first-order approximation,
the second-order approximation, and the exact solution.
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Table 1
Relative L1-errors for the one-dimensional convex HJ problem (4.1) before the singularity for-

mation. T = 0.8/π2.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

100 3.58×10−2 – 1.38×10−3 –

200 1.72×10−2 1.06 3.33×10−4 2.05

400 8.50×10−3 1.02 8.20×10−5 2.02

800 4.22×10−3 1.01 2.02×10−5 2.02

Table 2
Relative L1-errors for the one-dimensional convex HJ problem (4.1) after the formation of the

singularity. T = 1.5/π2.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

100 5.49×10−2 – 1.74×10−3 –

200 2.62×10−2 1.07 3.91×10−4 2.15

400 1.28×10−2 1.03 1.26×10−4 1.63

800 6.38×10−3 1.00 5.05×10−5 1.32
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Fig. 5. Example 1. The two-dimensional convex Hamiltonian (4.2). The solution is computed
at T = 0.8/π2 before the formation of singularities. N = 40× 40.
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Fig. 6. Example 1. The two-dimensional convex Hamiltonian (4.2). The solution is computed
at T = 1.5/π2 after the formation of singularities. N = 40× 40.

Table 3
Relative L1-errors for the two-dimensional convex HJ problem (4.2) before the singularity for-

mation. T = 0.8/π2.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

100 1.38×10−2 – 6.27×10−4 –

200 6.55×10−3 1.07 1.41×10−4 2.15

400 3.18×10−3 1.04 3.32×10−5 2.09

800 1.58×10−3 1.01 9.89×10−6 1.75

Table 4
Relative L1-errors for the two-dimensional convex HJ problem (4.2) after the singularity for-

mation. T = 1.5/π2.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

100 2.02×10−2 – 2.63×10−3 –

200 9.82×10−3 1.04 6.11×10−4 2.01

400 4.89×10−3 1.01 1.84×10−4 1.73

800 2.44×10−3 1.00 6.22×10−5 1.57
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Table 5
A comparison of the relative L1-errors for Algorithm 3.1 (e3.1) and the second-order algorithm

of Lin and Tadmor (LT) [31] (eLT ). Two-dimensional convex HJ problem (4.2) before the singularity
formation T = 0.5/π2.

One-dimensional Two-dimensional

N Algorithm 3.1 2nd-order LT e3.1/eLT Algorithm 3.1 2nd-order LT e3.1/eLT

100 2.43×10−4 4.20× 10−4 0.58 2.81×10−4 6.38× 10−4 0.44

200 6.60×10−5 1.07× 10−4 0.62 6.99×10−5 1.64× 10−4 0.43

400 1.83×10−5 3.60× 10−5 0.51 1.92×10−5 4.20× 10−5 0.46

800 4.80×10−6 1.13× 10−5 0.42 5.20×10−6 1.22× 10−5 0.42

Table 6
Relative L1-errors for the three-dimensional convex HJ problem (4.3) before the singularity

formation. T = 0.08.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

50 4.27×10−2 – 4.66×10−3 –

100 2.06×10−2 1.05 1.11×10−3 2.07

200 1.29×10−2 0.68 2.98 ×10−4 1.89

Table 7
Relative L1-errors for the three-dimensional convex HJ problem (4.3) after the singularity for-

mation. T = 0.152.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

50 6.51×10−2 – 5.43×10−3 –

100 3.06×10−2 1.09 1.23×10−3 2.13

200 1.57×10−2 0.96 3.98 ×10−4 1.63

We proceed with a three-dimensional generalization of (4.2),

φt +
1

2
(φx + φy + φz + 1)

2
= 0,(4.3)

subject to the initial data φ (x, y, 0) = − cos (π(x+ y + z)/3). The convergence re-
sults for the first- and second-order three-dimensional schemes before and after the
singularity formation are given in Tables 6–7.

Example 2: A nonconvex Hamiltonian. In this example we deal with non-
convex HJ equations. In one dimension we solve

φt − cos (φx + 1) = 0(4.4)

subject to the initial data φ (x, 0) = − cos (πx) and periodic boundary conditions
on [0, 2]. In this case, (4.4) has a smooth solution for t � 1.049/π2, after which a
singularity forms. A second singularity forms at t ≈ 1.29/π2. The results are shown
in Figures 7–8. The convergence results before and after the singularity formation are
given in Tables 8–9.
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Fig. 7. Example 2. The one-dimensional nonconvex Hamiltonian (4.4). The solution is com-
puted at T = 0.8/π2 before the formation of singularities. N = 40. Shown are the first-order
approximation, the second-order approximation, and the exact solution.
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Fig. 8. Example 2. The one-dimensional nonconvex Hamiltonian (4.4). The solution is com-
puted at T = 1.5/π2 after the formation of singularities. N = 40. Shown are the first-order
approximation, the second-order approximation, and the exact solution.
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Table 8
Relative L1-errors for the one-dimensional nonconvex HJ problem (4.4) before the singularity

formation. T = 0.8/π2.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

100 4.08×10−2 – 1.84×10−3 –

200 1.97×10−2 1.05 4.59×10−4 2.00

400 9.73×10−3 1.02 1.15×10−4 1.99

800 4.84×10−3 1.01 2.87×10−5 2.01

Table 9
Relative L1-errors for the one-dimensional nonconvex HJ problem (4.4) after the singularity

formation. T = 1.5/π2.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

100 7.10×10−2 – 3.09×10−3 –

200 3.38×10−2 1.07 8.48×10−4 2.00

400 1.63×10−2 1.05 2.07×10−4 2.08

800 8.00×10−3 1.03 5.62×10−5 2.04

In two dimensions we solve

φt − cos (φx + φy + 1) = 0(4.5)

subject to the initial data φ (x, y, 0) = − cos (π(x+ y)/2) and periodic boundary con-
ditions. The results are shown in Figures 9–10. The convergence results for the first-
and second-order two-dimensional schemes before and after the singularity formation
are given in Tables 10–11 and confirm the expected order of accuracy of our methods.

The extension of (4.5) to three dimensions reads

φt − cos (φx + φy + φz + 1) = 0.(4.6)

The initial data are taken as φ (x, y, 0) = − cos (π(x+ y + z)/3). The convergence
rates for the first- and second-order three-dimensional schemes are given in Tables
12–13.

Example 3: A fully two-dimensional example. The above standard exam-
ples are one-dimensional along the diagonal in two and three dimensions. To check
the performance of our methods on fully two-dimensional problems, we solve

φt + φxφy = 0(4.7)

on [−π, π] × [−π, π] subject to the initial data φ (x, y, 0) = sin (x) + cos (y) with
periodic boundary conditions. The exact solution for this problem is given implicitly
by φ (x, y, t) = − cos (q) sin (r) + sin (q) + cos (r), where x = q − t sin (r) and y = r +
t cos (q). This solution is smooth for t < 1, continuous for all t, and has discontinuous
derivatives for t ≥ 1. The results are shown in Figure 11. The convergence results for
the first- and second-order two-dimensional schemes before the singularity formation
are given in Table 14 and confirm the expected order of accuracy of our methods.
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Fig. 9. Example 2. The two-dimensional nonconvex Hamiltonian (4.5). The solution is com-
puted at T = 0.8/π2 before the formation of singularities. N = 40× 40.
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Fig. 10. Example 2. The two-dimensional nonconvex Hamiltonian (4.5). The solution is com-
puted at T = 1.5/π2 after the formation of singularities. N = 40× 40.
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Table 10
Relative L1-errors for the two-dimensional nonconvex HJ problem (4.5) before the singularity

formation. T = 0.8/π2.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

100 2.01×10−2 – 1.06×10−3 –

200 9.63×10−3 1.06 2.54×10−4 2.06

400 4.71×10−3 1.03 6.15×10−5 2.05

800 2.34×10−3 1.01 1.52×10−5 2.01

Table 11
Relative L1-errors for the two-dimensional nonconvex HJ problem (4.5) after the singularity

formation. T = 1.5/π2.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

100 3.40 ×10−2 – 2.18×10−3 –

200 1.63 ×10−2 1.06 6.02×10−4 1.86

400 7.87 ×10−3 1.05 1.47×10−4 2.03

800 3.85 ×10−3 1.03 4.18×10−5 1.82

Table 12
Relative L1-errors for the three-dimensional nonconvex HJ problem (4.6) before the singularity

formation. T = 0.08.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

50 3.65×10−2 – 4.21×10−3 –

100 1.86×10−2 0.97 1.08×10−3 1.97

200 8.37×10−3 1.15 2.56×10−4 2.07

Table 13
Relative L1-errors for the three-dimensional nonconvex HJ problem (4.6) after the singularity

formation. T = 0.152.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

50 6.58×10−2 – 7.99×10−3 –

100 3.26×10−2 1.01 2.23×10−3 1.84

200 1.46×10−2 1.16 5.65×10−4 1.98

Example 4: A linear advection equation. In this example (in [13] with a
misprint and corrected in [39]) we solve the one-dimensional linear advection equa-
tion; i.e., the Hamiltonian is taken as H (φx) = φx. We assume periodic boundary
conditions on [−1, 1], and take the initial data as φ (x, 0) = g (x− 0.5) on [−1, 1],
where

g (x) = −
(√

3

2
+

9

2
+

2π

3

)
(x+ 1) + h(x),
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Fig. 11. Example 3. The fully two-dimensional Hamiltonian (4.7). The solution is computed
at T = 1.3 after the formation of singularities. N = 50× 50.

Table 14
Relative L1-errors for the two-dimensional HJ problem (4.7) before singularity formation. T =

0.5.

First-order method Second-order method

N Relative L1-error L1-order Relative L1-error L1-order

100 3.58 ×10−3 – 3.80×10−4 –

200 1.75 ×10−3 1.03 9.18×10−5 2.05

400 8.69 ×10−4 1.01 2.29×10−5 2.00

800 4.33 ×10−4 1.00 6.03×10−6 1.92

h(x) =




2 cos
(

3π
2 x

2
)−√

3, −1 < x < − 1
3 ,

3
2 + 3 cos (2πx) , − 1

3 < x < 0,

15
2 − 3 cos (2πx) , 0 < x < 1

3 ,

1
3 (28 + 4π + cos (3πx)) + 6πx (x− 1) , 1

3 < x < 1.

The results of the second-order method are shown in Figure 12. The dissipation effects
are visible in the round-off of the corners.

Example 5: Two-dimensional eikonal equation in geometric optics. We
demonstrate the results obtained with the two-dimensional scheme on the nonconvex
problem {

φt +
√
φ2
x + φ2

y + 1 = 0,

φ (x, y, 0) = 1
4 (cos (2πx)− 1) (cos (2πy)− 1)− 1.

(4.8)



788 STEVE BRYSON AND DORON LEVY

-1 -0.5 0 0.5 1
-6

-5

-4

-3

-2

-1

0
t=2

-1 -0.5 0 0.5 1
-6

-5

-4

-3

-2

-1

0
t=4

-1 -0.5 0 0.5 1
-6

-5

-4

-3

-2

-1

0
t=8

-1 -0.5 0 0.5 1
-6

-5

-4

-3

-2

-1

0
t=16

Fig. 12. Example 4. A one-dimensional linear advection problem. N = 200. Solid line:
approximation; dashed line: exact solution.
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Fig. 13. Example 5. The two-dimensional eikonal equation (4.8). N = 40×40. Left: the initial
data. Right: the solution at T = 0.6.



CENTRAL SCHEMES FOR HJ EQUATIONS 789

-4

-2

0

2

4

-4
-3

-2
-1

0
1

2
3

4

-0.5

0

0.5

1

1.5

2

2.5

Fig. 14. Example 6. The two-dimensional optimal control problem (4.9). T = 1. N = 40× 40.

This model arises in geometric optics [16]. The results of our second-order method at
time T = 0.6 are shown in Figure 13, where we see the sharp corners that develop in
this problem, in agreement with the results in [31].

Example 6: Optimal control. We solve a two-dimensional problem with a
more general Hamiltonian of the formH(x, y,∇φ). This is an optimal control problem
related to cost determination [34]:{

φt − sin (y)φx + sin (x)φy + |φy| − 1
2 sin

2 (y)− 1 + cos (x) = 0,
φ (x, y, 0) = 0.

(4.9)

This example develops a complex singularity structure. The result of our second-order
scheme is in qualitative agreement with [31], as can be seen in Figure 14.
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