The Magnetic Reconnection Code: Framework and Application

K. Germaschewski, A. Bhattacharjee (University of lowa)
T. Linde, R. Rosner, A. Siegel (University of Chicago)
D. Keyes, F. Dobrian (Old Dominion University)
1 Adaptive Mesh Refinement

Adaptive Mesh Refinement
$\begin{array}{ll}1.3 & \begin{array}{l}\text { Tree } \\ \text { ing }\end{array} \\ & \end{array}$
 ing the space filling curve

Four levels of refinement,
corresponding Hilbert-Peano

Decomposition into 3×3 grids,

mplementation in C / C++

Nome
coll

Advantages:

- More efficient, small steps on coarse levels are not neces-
- Possi
- Possible to supply a level-independent CFL number

2 Elliptic solvers
2.1 Additive Schwarz Iteration

Example: $\omega=-\nabla^{2} \phi, \omega=2 \sin (x) \cos (x)$
Decomposition into 3×3 grids,
1.4 Time substepping

Central weighted ENO
Nessyahu and Tadmor (1990), Kurganov and Levy (2000)
3.1 Application: Sedov-type explosion

Why central schemes? -no (approximate) Riemann solver necessary - straightforward to generalize to multidimensional systems - properties like WENO, monotone, TVD depend on appropriate reconstruction
3.2 Conservation laws
$\frac{\partial}{\partial u}(x, t)+\frac{\partial}{\partial_{t}} f(u(x, t))=0$
Extensions to Lax-Friedrichs scheme:
$u_{j}^{n+1}=\frac{u_{j+1}^{n}+u_{j=1}^{n}}{2}-\frac{\Delta t}{2 \Delta x}\left(f\left(u_{j+1}^{n}\right)-f\left(u_{j-1}^{n}\right)\right)$
$\Leftrightarrow \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t} \frac{1}{2 \Delta x}\left(f\left(u_{j+1}^{n}\right)-f\left(u_{j-1}^{n}\right)\right)=\frac{\left(\Delta x x^{2}\right.}{2 \Delta t} \frac{u^{n} u_{1+1}^{n}-2 u_{0}^{p}+u_{j-1}^{n}}{(\Delta x)^{2}}$
(Iow order, dissipation depends on timestep)

Use cell averages for discretization:

$\Rightarrow \bar{u}_{j}^{n+1}=u_{j}^{n}-\frac{1}{\Delta x} \int_{t r}^{m+1}\left[f\left(u\left(x_{j+1} / 2, \tau\right)\right)-f\left(u\left(x_{j}-1 / 2 \tau\right)\right)\right] d \tau$
$-\nabla^{2} \psi^{n *}=\frac{1}{\Delta t}\left(\nabla \cdot \mathrm{~B}^{n *}-\nabla \cdot \mathrm{B}^{n}\right)=\frac{1}{\Delta t} \nabla \cdot \mathrm{~B}^{n *} \quad$ (4)

4 Divergence cleaning

Initial condition

$\nabla \cdot B=0$
Evolution of magnetic field: (ideal MHD)

Analytically, $\nabla \cdot(\nabla \times \cdot) \equiv 0$, but usually not in discretized
numerical form.
Solutions:

- constrained transport methods
- Hodge projection
- truncation-error method
4.1 Hyperbolic divergence cleaning

Replace equation for magnetic field with
$\begin{aligned} \partial_{t} \mathbf{B}+\nabla \times(\mathbf{u B}-\mathrm{Bu})+\nabla \psi & =0 \\ \mathcal{D}(\psi)+\nabla \cdot \mathbf{B} & =0\end{aligned}$
$\Rightarrow \quad \quad, \nabla \cdot \mathbf{B})+\nabla^{2}, \boldsymbol{B}=0$
where \mathcal{D} is a linear differential operator
Choose $\mathcal{D}(\psi) \equiv 0$ (elliptic correction):
ψ is a Largange multiplier. For numerical solution, use two-
step approach: First solve original system, obtaining $\mathbf{B}^{n *}$. Dis cretizing Eq. (3) in time:

Consider the limit $\Delta t \longrightarrow 0$ to derive the semi-discrete
scheme

which is obtained as

Dedner et al (2002)
netic field. (ideal MHD)
$\vec{u}_{j}^{n} \equiv \frac{1}{\Delta x} \int_{t, t+1 / 2}^{u\left(x, t^{t}\right) d x}$
$\partial_{\mathbf{t}} \mathbf{B}+\nabla \times(\mathbf{B} \times \mathbf{u})=$

5.2 Case $\rho_{s}=0$

Growth rate vs. $d_{e} /$ aspect ratio

Time evolution of the island width against time
time axis normalized by linear growth rate

Case $\rho_{s}=0.1=$ const
$\begin{array}{ll}\text { Case } \rho_{s}=0.1=\text { const } \\ d_{e}=0.05,0.1,0.15, ~ 0.2, ~ 0.3 ~ & \text { Case } d_{e}=0.025=\text { const } \\ \rho_{s}=0,0.0125,0.025,0.05\end{array}$ $a_{e}=0.050,1,0.15,0.2,0.3$
(Red, green, blue, \ldots) $\quad \begin{aligned} & \rho_{s}=0,0,0.0125,0.025, \\ & \text { (Red, green, blue, } \ldots \text {) }\end{aligned}$
6 Implicit solvers
The example of reconnection in two-dimensional incompress-
ible Hall-MHD is used to evaluate the trade-offs between exible Hall-MHD is used to evaluate the trade-offs between ex-
plicititnd implicit time stepping.
Being
Being incompressible, the fast sound waves have arready been
filtered out of the porblem, so that neither the explicit tor the
implicit scheme need to hande implicit scheme ned to handle them, for the explicit scheme
this comes at the expense of solving elliptic problems at each
time stes time step. However. the explicits scheme is still limited by
the Courant-Friedrichs-Leyy stability criterion, neeessitating
 small time time steps as spatial resolution increases. These
time steps are smaller than necessary for the desired accuracy,
since the ereonnection phenomena take pace at a a slower time
scale. on the other hand, the explicit time steps are much scale. on the other hand, the expicict time steps are much
cheaper than inplicit solves at not too arge erosutions, mak-
ing the explicit code the prefered approach. Since the implicit ing the explicit code the prefereded approach. S. Since thi inplicit.
method is not constrained to time step limitations as solution increases and can be implemented do scale as $O(O$ n)) for large
problems using Newto-Krylo-Schwarz methods, we expect problems using Newton-Kylov-Schwarz methods, we expect
a break-even point to exist at which the implicit solver roves a break-even point to exist at which the implicit solver proves
favorable to the explicit time stepping. The set of equations that are solved by

where $\mathbf{v}=\hat{\mathbf{z}} \times \nabla \phi^{n+1}, \quad \mathrm{~B}=\nabla \psi^{n+1} \times \hat{\mathbf{z}}$.
To compare these two fundamentally different algorithms, we
are using the PETSc library, which is being optimized for the are using the PETSc library, which is being optimized for the
given problem in a collaboration with David Keyes / the ToPS $\xrightarrow{\text { given }}$ group.

