
MRSMRS

The Magnetic Reconnection Code: Framework and Application
K. Germaschewski, A. Bhattacharjee (University of Iowa)
T. Linde, R. Rosner, A. Siegel (University of Chicago)
D. Keyes, F. Dobrian (Old Dominion University)

1 Adaptive Mesh Refinement

1.1 Example: 2D ideal MHD (previous work)

Efficiency of AMR

Level # grids # grid points
0 1 70225
1 83 146080
2 103 268666
3 153 545316
4 197 1042132
5 404 1926465
6 600 1967234

Grid points in adaptive simulation: 6976118
Grid points in non-adaptive simulation: 268730449
Ratio 0.02

1.2 Quad/Oct-Tree vs. arbitrary patches

Two approaches:

• Patches of arbitrary size

• Quad- / Oct-tree of refined
grids

Advantages / Disadvantages

+ More effective covering

– Complicated data structures

– Difficult to generate optimal
grids

– Harder load balancing on dis-
tributed memory archs

Methods from image processing used for finding optimal set of rectangular

grids covering the underresolved points

1.3 Tree structured refinement and load balanc-

ing

Shown is a domain 2π × 2π,
base level subdivided into
8× 8 grids with 8× 8 grid points each.

base level, load balanced to 4
processors, using the Hilbert-
Peano space filling curve

one level of refinement, load
balanced to 4 processors, us-
ing the space filling curve

Four levels of refinement Four levels of refinement,
corresponding Hilbert-Peano
curve

1.4 Time substepping

Adaptivity in space only, same timestep on all levels

Hyperbolic problem

∂t(ρu) + u · ∇(ρu) = −∇p

while (time < time_end) {

for (step = 0; step < nr_steps; step++)

for_all_grids(fill_guard_cells);

for_all_grids(do_substep, step);

}

time += dt;

}

Elliptic problem

∂tω + v · ∇ω = ν∇2ω

ω = −∇2φ v = ẑ×∇φ

while (time < time_end) {

for (step = 0; step < nr_steps; step++)

elliptic_solve();

for_all_grids(fill_guard_cells);

for_all_grids(do_substep, step);

}

time += dt;

}

Adaptivity in space and time
(Berger-Oliger time-stepping)

Hyperbolic problem

∂t(ρu) + u · ∇(ρu) = −∇p

main()

{

while (time < time_end) {

singlestep_on_level(0);

time += dt;

}

void singlestep_on_level(int level)

{

level_singlestep();

time += dt;

while (next_level->time < time) {

singlestep_on_level(level + 1);

}

level_update_from(level + 1);

}

Advantages:

•More efficient, small steps on coarse levels are not neces-
sary

• Possible to supply a level-independent CFL number

2 Elliptic solvers

2.1 Additive Schwarz Iteration

Example: ω = −∇2φ, ω = 2 sin(x) cos(x)

Decomposition into 3 × 3 grids,
1 point overlap

ω φ, 0. iteration φ, 1. iteration

φ, 5. iteration φ, 10. iteration φ, 50. iteration

Decomposition into 3 × 3 grids,
4 points overlap

φ, 1. iteration φ, 5. iteration φ, 10. iteration

void level::schwarz_iteration()

{

fill_external_boundary();

range = calc_range();

do {

for_each_grid(poisson_solve);

error = exchange_internal_boundary();

} while (error/range > threshold);

}

Implementation in C / C++

• Problem specific driver using generic library functions,
rather than having a generic driver which uses callbacks:
cleaner, less surprises, more flexible.

• Using a modern, object oriented language facilitates this
approach.

3 Central weighted ENO

Nessyahu and Tadmor (1990), Kurganov and Levy (2000)

3.1 Application: Sedov-type explosion

Nessyaho-Tadmor vs. 3rd order CWENO (J. Dreher)

Why central schemes?
• no (approximate) Riemann solver necessary

• straightforward to generalize to multidimensional systems

• high order

• properties like WENO, monotone, TVD depend on appro-
priate reconstruction

3.2 Conservation laws

∂

∂t
u(x, t) +

∂

∂x
f (u(x, t)) = 0

Extensions to Lax-Friedrichs scheme:

un+1
j =

unj+1 + unj−1

2
− ∆t

2∆x

(
f (unj+1)− f (unj−1)

)
⇐⇒

un+1
j − unj

∆t
+

1

2∆x

(
f (unj+1)− f (unj−1)

)
=

(∆x)2

2∆t

unj+1 − 2unj + unj−1

(∆x)2

(low order, dissipation depends on timestep)

Use cell averages for discretization:

ūnj ≡
1

∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx

=⇒ ūn+1
j = ūnj −

1

∆x

∫ tn+1

tn

[
f (u(xj+1/2, τ ))− f (u(xj−1/2, τ ))

]
dτ

Piecewiese polynomial reconstruction:

u(x, tn) ≈
∑
j

Pj(x)χ[xj−1/2,xj+1/2]

Using a constant reconstruction, we recover the (staggered)
Lax-Friedrichs scheme, using a linear approximation gives the
second order Nessyahu-Tadmor (NT) scheme. Limiting is nec-
essary to prevent oscillations.

3.3 Third order CWENO (central weighted

ENO)

Build reconstruction

Pj(x) = wLPL(x) + wRPR(x) + wcPC(x)

where the weights w favor PC(x) when the field is smooth and
switch to the one-sided linear reconstructions in the presence
of large gradients.

x j j+−2
1x x j+1x j−1 x

2j−−

u

u

j

j+1j−1 u

j−1

j−−

jw j+−

wj+1
w

w
1
2

2
1

w

1

u
j+1

u j

u
j−1

n+1

n+1

n+1

3.4 Transition from full-discrete to semi-

discrete scheme

Consider the limit ∆t −→ 0 to derive the semi-discrete
scheme

d

dt
ūj(t) = lim

∆t−→0

ūn+1
j − ūn

j

∆t
.

which is obtained as

dūj

dt
= − 1

2∆x

[
f(u+

j+1/2(t)) + f(u−j+1/2(t))− f(u+
j−1/2(t)) + f(u−j−1/2(t))

]
+
aj+1/2(t)

2∆x

[
u+

j+1/2(t)− u−j+1/2(t)
]

+
aj−1/2(t)

2∆x

[
u+

j−1/2(t)− u−j−1/2(t)
]

4 Divergence cleaning

Dedner et al (2002)

Initial condition:
∇ ·B = 0

Evolution of magnetic field: (ideal MHD)

∂tB +∇× (B× u) = 0

Analytically, ∇ · (∇ × ·) ≡ 0, but usually not in discretized
numerical form.

Solutions:

• constrained transport methods

• Hodge projection

• truncation-error method

4.1 Hyperbolic divergence cleaning

Replace equation for magnetic field with:

∂tB +∇× (uB−Bu) +∇ψ = 0 (1)

D(ψ) +∇ ·B = 0 (2)

=⇒ ∂t(∇ ·B) +∇2ψ = 0 (3)

where D is a linear differential operator.

Choose D(ψ) ≡ 0 (elliptic correction):

ψ is a Lagrange multiplier. For numerical solution, use two-
step approach: First solve original system, obtaining Bn∗. Dis-
cretizing Eq.(3) in time:

−∇2ψn∗ =
1

∆t
(∇ ·Bn∗ −∇ ·Bn) =

1

∆t
∇ ·Bn∗ (4)

which is solved for ψ and used to complete solving Eq. (1):

Bn+1 = Bn∗ −∆t∇ψn∗ (5)

∂tB +∇× (uB−Bu) +∇ψ = 0 (6)

D(ψ) +∇ ·B = 0 (7)

Choose D(ψ) = 1
c2p
ψ (parabolic correction):

From Eqs. (6), (7) we obtain the heat equation

∂tψ − c2p∇2ψ = 0. (8)

Substituting D(ψ) into Eq. (7) gives ψ which we can plug
into Eq. (6):

∂tB +∇× (uB−Bu) = c2p∇(∇ ·B) (9)

Choose D(ψ) = 1
c2h
∂tψ (hyperbolic correction):

From Eqs. (6), (7) we obtain the wave equation

∂ttψ − c2h∇2ψ = 0. (10)

Local divergence errors are propagated to the boundary with
the finite speed ch > 0.

Choose D(ψ) = 1
c2h
∂tψ + 1

c2p
ψ (hyperbolic/parabolic cor-

rection):

We obtain the telegraph equation

∂ttψ +
c2h
c2p
∂tψ − c2h∇2ψ = 0. (11)

Local divergence errors are dissipated and propagated away.
The divergence constraint, equation (2) becomes

∂tψ + c2h∇ ·B = −c
2
h

c2p
ψ. (12)

5 2D Hall-MHD reconnection:

the sawtooth instability

(Grasso/Pegoraro/Porcelli/Califano 1999)

5.1 Model equations

∂tF + [φ, F ] = ρ2
s[U, ψ]

∂tU + [φ, U ] = [J, ψ]

F = ψ + d2
eJ

J = −∇2ψ B = B0ẑ +∇ψ × ẑ

U = ∇2φ v = ẑ×∇φ

with [A,B] = ẑ · ∇A×∇B.

Equilibrium

φeq = Ueq = 0

ψeq = Jeq = cos(x) , Feq = (1 + d2
e) cos(x)

5.2 Case ρs = 0

vorticity U
t = 300

magnetic stream-
function ψ
t = 300

F
t = 300

vorticity U
t = 430

magnetic stream-
function ψ
t = 430

F
t = 430

vorticity U
t = 455

magnetic stream-
function ψ
t = 455

F
t = 455

5.3 Case ρs 6= 0

Growth rate vs. de / aspect ratio

Growth rate vs. aspect ratio,
different values of de.

Growth rate vs. de, aspect ra-
tio 0.5 and 0.05.

Time evolution of the island width against time
time axis normalized by linear growth rate

Case ρs = 0.1 = const
de = 0.05, 0.1, 0.15, 0.2, 0.3
(Red, green, blue, . . .)

Case de = 0.025 = const
ρs = 0, 0.0125, 0.025, 0.05
(Red, green, blue, . . .)

6 Implicit solvers

The example of reconnection in two-dimensional incompress-
ible Hall-MHD is used to evaluate the trade-offs between ex-
plicit and implicit time stepping.
Being incompressible, the fast sound waves have already been
filtered out of the problem, so that neither the explicit nor the
implicit scheme need to handle them, for the explicit scheme
this comes at the expense of solving elliptic problems at each
time step. However, the explicit scheme is still limited by
the Courant-Friedrichs-Levy stability criterion, necessitating
small time time steps as spatial resolution increases. These
time steps are smaller than necessary for the desired accuracy,
since the reconnection phenomena take place at a slower time
scale. On the other hand, the explicit time steps are much
cheaper than implicit solves at not too large resolutions, mak-
ing the explicit code the preferred approach. Since the implicit
method is not constrained to time step limitations as solution
increases and can be implemented to scale as (O(n)) for large
problems using Newton-Krylov-Schwarz methods, we expect
a break-even point to exist at which the implicit solver proves
favorable to the explicit time stepping.
The set of equations that are solved by the implicit solver is

−∇2φn+1 − Un+1 = 0

(1− d2
e∇2)ψn+1 − F n+1 = 0

Un+1 − Un

∆t
+ v · ∇Un+1 − 1

d2
e

B · ∇F n+1 − ν∇2Un+1 = 0

F n+1 − F n

∆t
+ v · ∇F n+1 − ρ2

sB · ∇Un+1 − ν∇2F n+1 = 0

where v = ẑ×∇φn+1 , B = ∇ψn+1 × ẑ.
To compare these two fundamentally different algorithms, we
are using the PETSc library, which is being optimized for the
given problem in a collaboration with David Keyes / the TOPS
group.


