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Abstract

We propose a new fourth-order non-oscillatory central scheme for computing approximate
solutions of hyperbolic conservation laws. A piecewise cubic polynomial is used for the
spatial reconstruction and for the numerical derivatives we choose genuinely fourth-order
accurate non-oscillatory approximations. The solution is advanced in time using natural
continuous extension of Runge-Kutta methods. Numerical tests on both scalar and gas dy-
namics problems confirm that the new scheme is non-oscillatory and sharper than existing
fourth-order central schemes when solving profiles with discontinuities. Experiments on
nonlinear Burgers’ equation indicate that our scheme is superior to existing fourth-order
central schemes in the sense that the total variation of the computed solutions are closer to
the total variation of the exact solution.
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1 Introduction

A variety of high-resolution Godunov-type methods for computing approximate so-
lutions of hyperbolic conservation laws have been proposed by various researchers.
Godunov-type schemes are based on the reconstruction of a piecewise-polynomial
approximation from cell-averages which is then evolved to the next time level. The
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schemes derived in [3,17,6] are of upwind type and those presented in [19,18] are
central schemes. The time evolution process in upwind schemes requires the com-
putation of approximate fluxes at cell boundaries and therefore involve solutions of
Riemann problems at the discontinuous interfaces.

In recent years, central schemes have gained popularity due to their simplicity as
they do not require specific knowledge of the eigenstructure of a given problem and
do not involve any Riemann solvers. A second-order central scheme was proposed
by Nessyahu and Tadmor [19]. This scheme widely known as the NT scheme is
based on the first-order Lax-Friedrichs scheme [2] and involves the reconstruction
of piecewise-linear MUSCL-type interpolants from piecewise constant data and
uses nonlinear limiters to prevent oscillations. Modifications to the NT scheme
with a smaller amount of numerical viscosity were proposed by Kurganov and
Tadmor [8]. These modifications are second-order central schemes having a semi-
discrete formulation and are based on integration over Riemann fans of variable
sizes and make use of more precise information about the local speeds of propaga-
tion. Extensions to multidimensional problems can be found in [7].

Generalization of the schemes from [8] were proposed by Kurganov, Noelle and
Petrova [9] and these schemes have an upwind nature since they use one-sided
local speeds of propagation. The use of one-sided information to estimate the width
of the Riemann fans makes these central-upwind schemes less dissipative. Third-
order central schemes based on the non-oscillatory third-order reconstruction of Liu
and Osher [16] and on staggered evolution of the reconstructed cell averages was
proposed by Liu and Tadmor [18]. They showed that this third-order extension is
non-oscillatory in the sense that it does not increase the number of initial extrema.

High-order essentially non-oscillatory (ENO) [3] and weighted ENO (WENO) [17,6]
reconstructions derived in the upwind framework were first combined with central
schemes by Bianco, Puppo and Russo [1]. The time integrals in the third and fourth
order central schemes proposed by these authors are evaluated using a quadrature
formula and the approximate fluxes at intermediate time steps computed using nat-
ural continuous extension of Runge-Kutta method. An improved version of the
fourth order scheme of Bianco, Puppo and Russo was presented in [11]. Here a
new central weighted nonoscillatory (CWENO) reconstruction for one-dimensional
problems was introduced. Other central schemes with WENO polynomials are
presented in [12,21] and extensions to multi-dimensional problems can be found
in [14,15].

In this paper we propose a new fourth-order central scheme for hyperbolic con-
servation laws. Following the NT scheme, we derive a scheme which employs
a non-oscillatory reconstruction by combining a higher-order polynomial with a
mechanism to eliminate oscillations. A numerical study of the behaviour of the
total variation is carried out as in [13] and we compare the results for nonlinear
scalar waves. It is shown that the total variation for our scheme is closer to that of
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the exact solution than for the CWENO scheme in case of the nonlinear Burgers’
equation.

This paper is organized as follows. In§2 we give a brief review of Godunov-type
central schemes for one-dimensional hyperbolic conservation laws and in§3 we
describe the reconstruction steps of the new fourth-order non-oscillatory central
method. A linear stability analysis of the new central scheme is carried out in§4
and in§5 we describe the numerical results computed using the newly developed
scheme. We show the non-oscillatory behaviour of the new scheme on scalar equa-
tions along with the total variation for nonlinear Burgers’ equation. Finally we test
our scheme on the Euler equations of gas dynamics including complex problems
with important shocks.

2 Central Schemes

We are interested in computing approximate solutions to the hyperbolic conserva-
tion law

ut + f(u)x = 0, u ∈ Rd, d ≥ 1, (1)

subject to the initial conditions,u(x, t = 0) = u0(x).

Consider a uniform spatial grid where the cellIj =
[
xj− 1

2
, xj+ 1

2

]
has a widthh and

let xj =
(
xj− 1

2
+ xj+ 1

2

)
/2 be the mid-cell grid point ofIj. Also let∆t = tn+1− tn

and denote byun
j := u(xj, tn). Let the approximation to the cell averages ofu on

Ij andIj+ 1
2

be given by

ūn
j =

1

h

∫

Ij

u (x, tn) dx, ūn
j+ 1

2
=

1

h

∫

I
j+1

2

u (x, tn) dx.

Assuming that the cell averages
{
ūn

j

}
are known, we look for the cell averages at

the next time steptn+1. Letχj(x) be the characteristic function of the cellIj and let
Rn

j (x) be a cubic polynomial inIj reconstructed from cell averages
{
ūn

j

}
. Define

Pu to be the piecewise cubic polynomial given by

Pu (x, tn) =
∑

j

Rn
j (x) χj(x). (2)

Integrating (1) overIj+ 1
2
× [tn, tn+1], and using a quadrature formula for the time
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integral with (2), we get

ūn+1
j+ 1

2

=
1

h

∫ xj+1

xj

Pu (x, tn) dx

+ λ
m∑

l=0

γl [f (u(xj, tn + βl∆t))− f (u(xj+1, tn + βl∆t))] , (3)

whereλ = ∆t/h, γl andβl are the weights and nodes of the quadrature formula,
andu(xj, tn + βl∆t) are the intermediate values. For our numerical tests, we use
the Simpson’s rule withβ0 = 0, β1 = 1/2, β2 = 1, γ0 = 1/6, γ1 = 2/3 and
γ2 = 1/6.

The staggered cell averagesūn
j+ 1

2

at timetn are given by

ūn
j+ 1

2
=

1

h

∫ xj+1

xj

Pu (x, tn) dx =
1

h




∫ x
j+1

2

xj

Rn
j (x) dx +

∫ xj+1

x
j+1

2

Rn
j+1(x) dx


 . (4)

In the next section, we show how to compute the staggered cell average (4) and the
flux of the quadrature formula in (3).

3 A Fourth-Order Non-Oscillatory Reconstruction

In this section we describe the new reconstruction. We choose the interpolating
polynomialRn

j (x) on Ij to have the form

Rn
j (x) = un

j +u′j

(
x− xj

h

)
+

1

2!
u′′j

(
x− xj

h

)2

+
1

3!
u′′′j

(
x− xj

h

)3

, x ∈ Ij, (5)

whereRn
j (x) obeys the conservation property1

h

∫
Ij

Rn
j (x) dx = ūn

j , that is,un
j must

satisfy

un
j = ūn

j −
1

24
u′′j . (6)

Using (5) and (6), the reconstruction of (4) gives

ūn
j+ 1

2
=

1

2
(ūn

j + ūn
j+1)−

1

8
(u′j+1 − u′j)−

1

384
(u′′′j+1 − u′′′j ). (7)
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We require the numerical derivatives1
h
u′j,

1
h2 u

′′
j and 1

h3 u
′′′
j to be fully non-oscillatory

compared to ENO reconstructions [11]. The derivatives must also satisfy

1

h
u′j =

∂

∂x
u(x = xj, tn) +O(h3), (8)

1

h2
u′′j =

∂2

∂x2
u(x = xj, tn) +O(h2), (9)

1

h3
u′′′j =

∂3

∂x3
u(x = xj, tn) +O(h), (10)

such that they are genuinely fourth-order accurate.

The NT scheme uses a second-order accurate limiter

v′j = MM
(
∆vj− 1

2
, ∆vj+ 1

2

)
, (11)

which is non-oscillatory in the sense that

0 ≤ v′j · sgn(∆vj± 1
2
) ≤ Const. ·

∣∣∣MM
(
∆vj− 1

2
, ∆vj+ 1

2

)∣∣∣ .

Here,∆vj+ 1
2

= vj+1 − vj, and the MinMod limiter (MM) is defined by

MM(x1, x2, . . .) =





minp {xp} if xp > 0 ∀p,

maxp {xp} if xp < 0 ∀p,

0 otherwise.

However, the accuracy of (11) drops at the non-sonic critical gridvaluesvj, where
∆vj− 1

2
· ∆vj+ 1

2
< 0 6= f ′(vj). NT scheme adapted the uniform non-oscillatory

(UNO) limiter of Harten and Osher [4]

v′j = MM
(
∆vj− 1

2
+

1

2
MM

(
∆2vj−1, ∆2vj

)
, ∆vj+ 1

2
− 1

2
MM

(
∆2vj, ∆2vj+1

))
,

(12)
where∆2vj = vj+1 − 2vj + vj−1. The limiter (12) adds second-order differences
to the MinMod limiter (11) to achieve high accuracy including at critical points.

In order to get fourth-order accuracy for (8), (9) and (10) we employ the modified
UNO limiter of [20]. Analogous to the numerical derivative (11),u′′′j depends on
its two neighbouring third-order differences

u′′′j = MM
(
∆3ūj− 1

2
, ∆3ūj+ 1

2

)
, (13)

where∆3ūj+ 1
2

= ∆2ūj+1−∆2ūj. Similar to the UNO limiter,u′j of [20] combines
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higher-order terms in smooth regions to attain a high-order accuracy

u′j =MM
(
∆ūj− 1

2
+

1

2
MM

(
∆2ūj−1 + ν1u

′′′
j−1, ∆

2ūj + ν2u
′′′
j

)
, (14)

∆ūj+ 1
2
− 1

2
MM

(
∆2ūj + ν3u

′′′
j , ∆2ūj+1 + ν4u

′′′
j+1

))
.

A Taylor-expansion of (14) reveals that choosingν1 = 7
12

, ν2 = − 5
12

, ν3 =
5
12

, ν4 = − 7
12

gives fourth-order order accurate approximations of the first deriva-
tive. As in the UNO algorithm, the reconstruction presented here has a wider stencil
with respect to piecewise quadratic WENO. This stencil allows the limiter to avoid
discontinuities. However, in case extremas cannot be avoided, the accuracy of the
modified non-linear limiters (13) and (14) decreases until non-oscillatory approxi-
mations are obtained. This mechanism is aimed at removing spurious oscillations
allowed by other reconstructions like ENO and its weighted version.

3.1 The Reconstruction of Point-Values

We approximate the point-valueun
j of (6) from the cell averages{ūn

j }, while si-
multaneously looking for high accuracy and avoiding oscillations. This is achieved
by letting the second-order term of (6) to be

u′′j = MM
(
∆2ūn

j−1 + u′′′j−1, ∆2ūn
j , ∆2ūn

j+1 − u′′′j+1

)
, (15)

where the MM limiter with three arguments can be written in the form

MM(x1, x2, x3) =
1

4
(sign(x1) + sign(x2) + sign(x3) + sign(x1 x2 x3))

×min(|x1|, |x2|, |x3|).

In order to obtain the flux of the quadrature formula in (3), we need different in-
termediate time values which may be obtained from ODE solvers or Taylor series
expansions [18]. However, for both approaches, we need to restart the whole proce-
dure for each intermediate level. Bianco, Puppo and Russo [1] proposed the use of
Natural Continuous Extension (NCE) of Runge-Kutta (RK) schemes [26] in order
to increase the computational efficiency.

For the fourth-order RK-NCE scheme there exist four third-order polynomials

b1(θ) = 2(1− 4b1)θ
3 + 3(3b1 − 1)θ2 + θ,

bi(θ) = 4(3ci − 2)biθ
3 + 3(3− 4ci)biθ

2, i = 2, 3, 4,
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whereci =
∑

j

aij and the coefficientsbi andaij are given by

b =




1/6

1/3

1/3

1/6




, a =




0 0 0 0

1/2 0 0 0

0 1/2 0 0

0 0 1 0




. (16)

To compute the predicted values of the quadrature formulau(xj, t
n + βl∆t) effi-

ciently, we rewrite the fourth-order RK-NCE method as

u(xj, tn + βl∆t) = un
j + λ

4∑

i=1

bi(βl)Ki,j,

Ki,j = −f ′(Y i
j ), (17)

Y i
j = un

j + λ
i−1∑

s=1

aisKs,j,

where the coefficientsaij are given in (16), and the numerical derivative satisfies

1

h
f ′(uj) =

∂

∂x
f(u(x = xj, tn)) +O(h3).

We approximatef ′j in a similar way to (14) by combining high-order differences
in smooth regions to obtain the desired order of accuracy and still remain non-
oscillatory. The first derivative of the fluxes is given by

f ′j = MM
(
∆fj− 1

2
+

1

2
MM

(
∆2fj−1 +

2

3
f ′′′j−1, ∆

2fj − 1

3
f ′′′j

)
, (18)

∆fj+ 1
2
− 1

2
MM

(
∆2fj +

1

3
f ′′′j , ∆2f − 2

3
f ′′′j+1

))
,

where
f ′′′j = MM

(
∆3fj− 1

2
, ∆3fj+ 1

2

)
.

Our scheme is summarized in the following algorithm:
step 1:Compute the numerical derivativesu′j, u′′j andu′′′j given by (14), (15) and
(13).
step 2:Compute the point valuesun

j using (6). Use these results to find the numer-
ical derivativef ′(un

j ) with (18).
step 3:Compute the predicted valuesu(xj, tn + βl∆t) from the RK scheme (17)
with NCE. Compute the first derivative of the fluxf ′(Y i

j ) with (18), notably for
β1 = 1/2 andβ2 = 1 (Simpson’s quadrature rule).
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step 4:Compute the staggered cell-averages at timetn+1 according to (3),

ūn+1
j+ 1

2

=
1

2
(ūn

j + ūn
j+1)− (gj+1 − gj) , (19)

where the modified numerical fluxgj is obtained by rearranging (7) into (3) and
using Simpson’s quadrature formula and is given by

gj =
1

384

(
48u′j + u′′′j

)
+

λ

6

(
f(un

j ) + 4f(u
n+1/2
j ) + f(un+1

j )
)
. (20)

We remark that the scheme can be made non-staggered following [5].

4 Stability Analysis

In this section, we carry out a linear stability analysis, similar to that carried out
in [1], of the new central staggered scheme (19) and (20), called CNO4, in order to
obtain its critical Courant number by applying it to the linear advection equation

ut + ux = 0.

We assume that on smooth profiles the approximations by the MinMod limiter al-
low stencils on a maximum of cells, that is, the accuracy does not degenerate. Since
the approximations can be done on a variety of stencils, we proceed with an analy-
sis on a fixed stencil. Then we express CNO4 in terms of cell-averages only, which
is given byūn

j = ρneı j ξ whereı2 = −1. On making the substitutions in CNO4 for
linear advection equation, we obtain

ūn+1
j+ 1

2

= ρλ(ξ)e
ı ξ/2ūn

j , ξ ∈ [0, 2π].

Let λ∗ be the maximum value ofλ for which the amplification factor satisfies

max
0≤ξ≤2π

|ρλ(ξ)| ≤ 1. (21)

A scheme is said to be stable ifλ∗ > 0. In Table 1 we give the different fixed
stencils used and their corresponding stability region obtained from (21).

Table 1
Stability analysis of stencils for CNO4

u′′′j u′′j Stencil ofu′j andf ′j Stability Region

∆3ūj− 1
2

∆2ūj−1 + ∆3ūj− 3
2

j − 3, j − 2, j − 1, j unstable

∆3ūj− 1
2

∆2ūj j − 2, j − 1, j, j + 1 λ∗ = 0.3408

∆3ūj+ 1
2

∆2ūj j − 1, j, j + 1, j + 2 λ∗ = 0.4350

∆3ūj+ 1
2

∆2ūj+1 −∆3ūj+ 3
2

j, j + 1, j + 2, j + 3 unstable
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We observe that the far left and far right stencils are unstable, but they are the least
to occur in CNO4. We choose the critical Courant number asλmax = 0.3408 which
satisfies the two central stable stencils. We note that CNO4 allows a larger Courant
number than CWENO [11],λmax = 2/7, though the latter is computed on a smaller
stencil.

5 Numerical Experiments

5.1 Scalar Test Problems

We describe the results of numerical experiments using some scalar test problems
with periodic boundary conditions over the domain[−1, 1]. We test the total varia-
tion (TV), where TV(u) =

∑
j |uj+1−uj| of the numerical experiments. A scheme

is called TV bounded (TVB) if TV(un) ≤ K for all n and whereK is a fixed
positive constant.

Problem 5.1: We begin with the linear advection equationut + ux = 0, over the
long time intervalT = 10, with the smooth initial conditionu(x, 0) = sin(πx).
We solve the problem withλ = 0.9λmax. The L1 andL∞ errors and orders of
convergence are shown in Table 2. We see the CNO4 converges to fourth accuracy
in L1 as the computational grid is refined. Serna and Marquina [22] reported that
non-smooth limiters lack regularity and make the schemes less accurate, that is,
they do not achieve the maximum expected order of accuracy. Comparing the mag-
nitude of errors produced by CNO4 and CWENO [11] for this test problem shows
that CWENO performs better and attains full fourth-order accuracy when solving
problems without discontinuities.

Table 2
Errors and orders of convergence for the linear advection problem 5.1

N L1 error L1 order L∞ error L∞ order

40 0.1371(-2) – 0.1986(-2) –

80 0.9730(-4) 3.8161 0.2239(-3) 3.1490

160 0.6912(-5) 3.8152 0.2512(-4) 3.1562

320 0.4695(-6) 3.8801 0.2792(-5) 3.1696

640 0.3135(-7) 3.9043 0.3088(-6) 3.1764

Problem 5.2: We consider the linear advection equationut +ux = 0, over the time
intervalT = 4, with the initial condition given by the square waveu(x, 0) = 1 for
|x| < 1/3 andu(x, 0) = 0 elsewhere. In Table 3 we give the errors by CNO4 and
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CWENO usingλ = 0.9λmax. We note that CNO4 yields better accuracy inL1 than
CWENO, though the errors become almost the same as the grid is refined.

Table 3
Errors for approximation of Problem 5.2 atT = 4

CWENO CNO4

N L1 error L∞ error L1 error L∞ error

25 0.2060 0.4185 0.1903 0.3870

50 0.1192 0.4072 0.1102 0.4068

100 0.6765(-1) 0.4224 0.6477(-1) 0.4246

200 0.3823(-1) 0.4360 0.3801(-1) 0.4395

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

(a)

−0.5 −0.45 −0.4 −0.35 −0.3

0

0.1

0.2

0.3

(b) Zoomed region-left foot

−0.1 0 0.1 0.2

0.999

1

1.001

(c) Zoomed region-wave top

Fig. 1. Problem 5.2 by CNO4 “×” and CWENO “·” with N = 100 atT = 4.
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In Fig 1 we display the different approximations on 100 cells. We observe that
CNO4 gives an overall better approximation than CWENO and is sharper at the
foot of the wave. CNO4 is non-oscillatory contrary to CWENO which generates
oscillations at top of the wave.

Problem 5.3: Consider the inviscid Burgers’ equationut + (0.5 u2)x = 0, with the
initial conditionu(x, 0) = 1 + 0.5 sin(πx) andλ = 2

3
λmax.

Table 4
Errors and orders of convergence for problem 5.3

N L1 error L1 order L∞ error L∞ order

Burgers’ equation before the shock,T = 0.12

40 0.1928(-4) – 0.4114(-4) –

80 0.1193(-5) 4.0153 0.3981(-5) 3.3693

160 0.8135(-7) 3.8738 0.3931(-6) 3.3401

320 0.5398(-8) 3.9137 0.4356(-7) 3.1739

Burgers’ equation after the shock,T = 1.5

40 0.6776(-2) – 0.6023(-1) –

80 0.3211(-2) 1.0773 0.6179(-1) -0.0368

160 0.1588(-2) 1.0158 0.6150(-1) 0.0067

320 0.7833(-3) 1.0197 0.6048(-1) 0.0242

−1 −0.5 0 0.5 1
0.5

1

1.5

(a) Burger’s equation

0.2 0.3 0.4 0.5

1.32

1.36

1.4

1.44

(b) Zoomed region

Fig. 2. Problem 5.3 withN = 40 andT = 1.5 by CNO4 “×” and CWENO “·”.

In Table 4, we give the results by CNO4 before and after a shock formation atT =
0.12 andT = 1.5. Similar to the linear problem 5.1, theL1 order of convergence
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before the shock is nearly 4, whereas theL∞ order of convergence is nearer to 3.
Computing the numerical results (not shown here) reveals that the approximations
by CWENO attains full fourth-order convergence atT = 0.12. However CNO4
gives errors of smaller magnitude than CWENO after the shock formation.

0 0.5 1 1.5

1.6

1.7

1.8

1.9

2

(a)N = 40

0 0.5 1 1.5
1.6

1.7

1.8

1.9

2

(b) N = 80

0 0.5 1 1.5

1.7

1.8

1.9

2

(c) N = 160

0 0.5 1 1.5
1.7

1.8

1.9

2

(d) N = 320

Fig. 3. TV of approximations for Problem 5.3 (—: Exact, - -: CNO4,· · · : CWENO).

The approximations atT = 1.5 on 40 cells are illustrated in Fig 2. We observe
that CNO4 is sharper than CWENO when resolving the shock. In Fig 3, we show
the TV atT = 1.5 for different number of cells with CNO4 and CWENO. Both
numerical results converge to the exact one, but we can see that the computed TV
from CNO4 are nearer to the TV of the exact solution.

Problem 5.4: We solve the inviscid Burgers’ equationut + (0.5 u2)x = 0, with the
initial conditionu(x, 0) = 1 for |x| < 1/3 andu(x, 0) = 0 elsewhere. In Fig 4,
we show the TV up to timeT = 0.64, for different number of cells with CNO4 and
CWENO withλ = 2

3
λmax. For this problem, the TV of the exact solution remains

2.
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0 0.2 0.4 0.6

1.997

1.998

1.999

2

2.001

2.002

(a)N = 40

0 0.2 0.4 0.6

2

2.001

2.002

(b) N = 80

0 0.2 0.4 0.6

2

2.001

2.002

(c) N = 160

0 0.2 0.4 0.6

2

2.001

2.002

(d) N = 320

Fig. 4. TV of approximations for Problem 5.4 (—: Exact, - -: CNO4,· · · : CWENO).

Table 5
Errors for Burger’s problem 5.4 atT = 0.64

CWENO CNO4

N L1 error L∞ error L1 error L∞ error

40 0.6380(-1) 0.5659 0.5857(-1) 0.5608

80 0.2694(-1) 0.3340 0.2407(-1) 0.3273

160 0.1428(-1) 0.4423 0.1267(-1) 0.4399

320 0.6437(-2) 0.3167 0.5983(-2) 0.3217

For N = 40, the TV by both CNO4 and CWENO oscillates. ForN = 80, 160
and320, we note that CNO4 gives a TV bounded by a maximum in the form of
a peak reached after the first few steps and is then damped. The maximum bound
is obtained earlier in time as the grid is refined, and then the TV comes close to
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the exact one. However, the peak does not seem to depend on the cell width. We
also observe that CWENO overestimates the total variations more than CNO4 as
the problem is advanced in time.
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1

(b) Zoomed region

Fig. 5. Problem 5.4 withN = 80 by CNO4 “×” and CWENO “·”.

In Table 5 we give the corresponding errors for the respective number of cells and
we note that CNO4 yields better accuracy than CWENO inL1. We end this prob-
lem with the solution on 80 cells in Fig 5. CNO4 is sharper than CWENO on the
expansion wave and the shock.

5.2 Systems of Conservation Laws

We extend our scheme to solve hyperbolic systems of conservation laws

Ut + F (U)x = 0,

where the JacobianA(U) of the fluxF (U) has distinct real eigenvalues. We solve
the Euler equations of gas dynamics for a polytropic (calorically ideal) gas:

∂

∂t




ρ

ρq

E




+
∂

∂x




ρq

ρq2 + p

q(E + p)




= 0, p = (γ − 1)(E − 1

2
ρq2). (22)

Hereρ, q, p andE are respectively the density, velocity, pressure and total energy
of the conserved fluid, and the ratio of the specific heatsγ = 1.4.

There are two methods to extend the numerical schemes considered, namely by
doing a componentwise extension or using characteristic decomposition. In the
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present work, we adopt the componentwise extension which is less costly. Most
central schemes (e.g. [1,11]) fix the CFL number differently for each gas dynamics
problem solved. However, this practice requires a knowledge of the problem. Here,
we adopt a general strategy to advance in time by using an adaptive evaluation of
the time step,

∆t =
0.9 λmax h

maxj(cj + |qj|) ,
where cj and qj are the local sound speed and velocity respectively. This time
step evaluation technique can accommodate for problems where the characteris-
tic speeds change wildly in time [11].
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Fig. 6. Sod Problem withN = 100 by CNO4 “x” and CWENO“.”.

Sod’s Problem [24]: We solve (22) up toT = 0.16 with the initial condition

U(x, 0) =





(1, 0, 2.5)T , 0 ≤ x < 0.5,

(0.125, 0, 0.25)T , 0.5 ≤ x ≤ 1.
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We observe in Fig 6 that CNO4 is sharper and less oscillatory than CWENO in
particular for the density profile of this Riemann problem.
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Fig. 7. Lax Problem withN = 100 by CNO4 “×” and CWENO “·”.
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Lax’s Problem [10]: We solve (22) using the initial condition

U(x, 0) =





(0.445, 0.31061, 8.92840289)T , 0 ≤ x < 0.5,

(0.5, 0, 1.4275)T , 0.5 ≤ x ≤ 1.

For this more severe shock tube problem, the different approximations at timeT =
0.16 are ilustrated in Fig 7. Similar to the Sod’s problem, CNO4 is sharper than
CWENO and CWENO generates oscillations near discontinuities. In the density
profile shown in Fig 7 (b), CWENO produces overshoots which are decreased in
the approximations by CNO4.

Shock-Entropy Test [23]: We consider here a moving Mach 3 shock interacting
with sine waves in density.
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Fig. 8. Density profile of the Shock-Entropy Test by CNO4 “×” and CWENO “·”.
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The initial data is given by

U(x, 0) =





(3.85714, 10.1418096304, 39.16655928489427)T , −5 ≤ x < −4,

(1 + 0.2 sin(5x), 0, 2.5)T , −4 ≤ x ≤ −5.

We test here the performance of the schemes in smooth regions and the ability
to capture shocks with relatively spaced cells,h = 0.05. We give the numerical
approximations of the density profile in Fig. 8 atT = 1.8 along with the “exact”
solution computed by CWENO withN = 2000. We observe in the zoomed regions
that CNO4 is sharper than CWENO and that the latter is damped in Fig 8 (c).

Woodward and Colella Bang [25]: Next we consider a shock interaction problem
with reflective boundary conditions given by the initial data

U(x, 0) =





(1, 0, 2500)T , 0 ≤ x < 0.1,

(1, 0, 0.025)T , 0.1 ≤ x < 0.9,

(1, 0, 250)T , 0.9 ≤ x ≤ 1.

We display the numerical results of the density profile of this complex problem in
Fig 9. The results are withN = 800 at timeT = 0.038, and we get the “exact”
solution from CWENO on 4000 cells. We observe that CNO4 captures the shocks
interaction, and in the zoomed region we see that CNO4 is sharper and behaves
better with respect to oscillations compared to CWENO on 800 cells.
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Fig. 9. Density profile of Woodward and Colella Bang withN = 800 (—: Exact, - -: CNO4,
· · · : CWENO).
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6 Conclusion

We have introduced a new fourth-order non-oscillatory central scheme. A piecewise
cubic polynomial is used for the reconstruction which uses genuinely fourth-order
accurate approximation for the first, second and third order spatial derivatives to
avoid spurious oscillations. Numerical experiments on scalar problems show that
the scheme resolves discontinuities sharply while maintaining a non-oscillatory
profile. In comparison to the CWENO method, the total variation of the numeri-
cal solution computed by our scheme for Burger’s equation is closer to the total
variation of the exact solution. We have also shown that the total variation of the
numerical solution by the fourth-order non-oscillatory central scheme is bounded
for the test cases considered. The fourth-order non-oscillatory central scheme was
then extended to solve hyperbolic systems of conservation laws using an adaptive
evaluation of the time step. We observed that for Euler equations of gas dynamics,
the proposed scheme is robust and performs better. The new fourth-order scheme
is less damped in smooth regions and captures shocks while avoiding oscillations.
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