
Journal of Computational Physics 180, 155–182 (2002)
doi:10.1006/jcph.2002.7085

Using K-Branch Entropy Solutions for
Multivalued Geometric Optics Computations

Laurent Gosse1

Istituto per le Applicazioni del Calcolo (Sezione di Bari), via G. Amendola, 122/I-70126 Bari, Italy
E-mail: l.gosse@area.ba.cnr.it

Received May 5, 2001; revised April 16, 2002

This paper is devoted to a numerical simulation of the classical WKB system
arising in geometric optics expansions. It contains the nonlinear eikonal equation
and a linear conservation law whose coefficient can be discontinuous. We address
the problem of treating it in such a way that superimposed signals can be repro-
duced by means of the kinetic formulation of “multibranch solutions,” originally
due to Brenier and Corrias. Some existence and uniqueness results are given, to-
gether with computational test cases of increasing difficulty displaying up to five
multivaluations. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

We aim at computing efficiently highly oscillating solutions for linear second-order
dispersive PDEs; we focus in the sequel, for instance, on the one-dimensional Schrödinger
equation. More precisely, we seek plane wave solutions of the form � (t, x) = A(t, x) exp(i�
(t, x)/h-), t ≥ 0, satisfying for x ∈ R (see [17a, 24a, 33])

ih- ∂t � + h- 2

2
∂xx � + V (x)� = 0, (1)

where V (x) is some given smooth potential. For this model, one can consider the semi-
classical limit which consists of tuning the signals’ wavelengths according to the Planck
constant h- being sent to zero. Plugging this ansatz inside (1) leads to the following relation
between the wave phase � and its amplitude A:

−A

(
∂t � + (∂x �)2

2
− V (x)

)
+ ih-

2
(2∂t A + A ∂xx � + 2∂x A ∂x �) + h-2

2
∂xx A = 0.
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Nullifying the expressions related to the first two powers of h- gives the well-known WKB
(after Wentzel, Kramers, and Brillouin) system (see, e.g., [34, 46, 51, 53] for more detailed
presentations)

∂t � + (∂x �)2

2
= V (x), ∂t (A2) + ∂x (A2∂x �) = 0. (2)

The phase � evolves according to the so-called eikonal equation, which is nonlinear. In sharp
contrast, the intensity of the plane wave |� |2 = A2 is ruled by a linear conservation law
whose velocity field is given by the x-derivative of �. This expresses intensity preservation
between two integral curves of ∂x � in the states space. The system (2) is weakly coupled,
as the first equation can be solved independently.

A fundamental question raised by (2) concerns the sense in which � and A2 have to
satisfy it. Recently, a precise mathematical theory of viscosity solutions [19, 37] has been
settled in order to state precise uniqueness results for general Hamilton–Jacobi equations.
Unfortunately, this class of weak solutions does not provide a convenient framework in
which to treat geometric optics problems. Indeed, it has been shown in [31] that interpreting
the eikonal equation within such a theory allows concentrations to develop in the intensity
A2 on the shock lines of the phase. This is clearly in contradiction of the a priori estimates
for (1).

In Section 2, we address the problem of proposing a convenient definition for the solutions
of (2). In particular, we want to preserve some kind of superposition principle which should
mimic the one holding for the original linear equation (1). It is precisely this property which
is lacking with viscosity solutions, as it is cancelled by entropy conditions stating (roughly
speaking) that only the quickest signal has to be reproduced beyond the time caustics that
have appeared in the system (2). Thus we recall in Section 2.1 the geometric solutions of
the one-dimensional inviscid Burgers equation

∂t u + u∂x u = 0, (3)

which is deduced from (2)1 by x-differentiation and assuming that V ′ ≡ 0. Following [1],
we rely on the method of characteristics, which are smooth curves t �→ X (t) along which
U (t) = ∂x �(t, X (t)) satisfies the following differential system:

U̇ = V ′, Ẋ = U.

Its Hamiltonian reads H(x, u) = 1
2 u2 − V . One can thus define a “particles density”

f (t, x, u) as follows: differentiation along the trajectories induced by H leads to
Liouville’s equation,

∂t f + ∂uH · ∂x f − ∂xH · ∂u f = 0. (4)

Denoting by � = A2 the intensity, we may therefore consider as realistic solutions for (2)
the ones described by the kinetic problem

∂t f + u∂x f + V ′(x)∂u f = 0. (5)

Unfortunately, this equation’s unknown involves one supplementary variable.
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It is a classical strategy to approximate a kinetic equation by a moment system taking
advantage of a privileged (and simple!) dependence of f upon its velocity variable u. It is
at this level that, in Section 2.2, we introduce the recent formalism proposed in [10]. As
was observed in [8], the geometric solution to

∂t u + u∂x u = 0, u(0, x) = u0 ≥ 0 (6)

is given exactly by the one to the free transport equation,

∂t f + �∂x f = 0, f (0, x, � ) = H (u0(x) − � )H (� ), (7)

where H stands for the Heaviside function. But as soon as u0 is not everywhere increasing,
folds develop in finite time and a correct expression for f becomes

f (t, x, � ) =
K (t)∑
k=1

(−1)k−1 H (uk(t, x) − � ), uk > uk+1,

where K (t) is the number of branches uk present in the solution at time t . One remarkable
observation in [10] is that in the case of K (t) ≤ K , the exact solution of (7) can be recovered
at any time t > 0 from a moment system of K equations involving only the t, x variables.
Relying on an entropy minimization principle, it is possible to close such a system at any
level corresponding to a fixed K ∈ N: in practice, this reduces to finding an expression for
the K + 1th moment knowing the K preceding ones under the constraint of satisfying some
entropy conditions. Solutions to such a hyperbolic system give back the uk(t, x), which are
called K -branch entropy solutions to (6). This is equivalent to the adjunction of a singular
source term in the right-hand side of (7):

∂t f + �∂x f = (−1)K−1∂K
� m̃, f (t, x, � ) =

K∑
k=1

(−1)k−1 H (uk(t, x) − � ). (8)

The nonnegative measure m̃ expresses the fact that a large family of specific convex entropies
is dissipated; it is zero as long as the geometric solution to (3) has not been folding more
than K times. In the case of K = 1, it coincides with the one considered in the kinetic
formulation of [39]: therefore a “1-branch solution” is but the Kruz̆kov entropy solution to
(3) or, equivalently, the viscosity solution to the eikonal equation. From this perspective,
this article generalizes the previous work [31]. A possible interpretation we propose for (2)
in this one-dimensional framework is thus given by the system

∂t �m + ∂x FK ( �m) = 0, ∂t �k + ∂x (uk�k) = 0, k = 1, . . . , K , (9)

where ( �m, �u) ∈ R
K × R

K are, respectively, the K first moments from (8) and their associated
intensities.

In Section 2.3, we state a few theoretical results for the weakly coupled system (9) in case
the branches uk are endowed with some one-sided Lipschitz continuity. In particular, the L p

solutions constructed in [10, 56] do not permit application of the theory of [7] to tackle the K
linear conservation equations. It turns out that the Jacobian F ′

K can always be diagonalized
using the Riemann invariants uk : the system is genuinely nonlinear, rich in the sense of [50],
and decouples (for smooth solutions) into a set of K Burgers equations. For weak solutions
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obtained as limits of Glimm-type approximations, some OSLC estimates are stated in
[15] (see also [41]): any K -branch, entropy solution uk is therefore asked to satisfy (3) in
the smooth case, with Rankine–Hugoniot being supplemented with Oleı̆nik-type estimates
when shocks are present. These constraints are actually the main tools both in proving
uniqueness and stability results and in hinting at satisfying initializations for (9) as K ≥ 2.

Section 3 is devoted to numerical implications for this kinetic approach. An essential
difficulty in using the results of [10] in practical computations was initializing correctly
f in (8). On the one hand, at time t = 0, the physical conditions give only a value corre-
sponding to the first branch of phase, as only this one appears; on the other hand, system
(9) can be sensitive to the choice of the two or three other ones it can handle [47]. Observing
that K -branch solutions can be split into several solutions of Burgers equations relying on
the finite superposition principle written in [48] sheds some light on this issue; of course,
the initial monovalued intensity has to be also treated accordingly. This idea appears also
in [4] for deriving a different numerical strategy. Other troubles come from the fact that for
K > 2, the expression of FK becomes so intricate it is only implicitly defined by means of
the roots of some polynomial equations, so one has to give up using common Riemann-
based numerical schemes: one alternative can be to use high-order central schemes [43].
The linear conservation laws are handled by means of the numerical algorithms introduced
in [29]. Four test cases are presented in Sections 3 and 4: a smooth caustic (fold), two cusps
of increasing difficulty, and one involving singularities’ interactions [17, 32]. Finally, we
present in Section 4 the full computation of a convex lens taken from [21, 23, 24, 47, 48]
and a short but classical nonhomogeneous test case is carried out in the Appendix.

We close this introduction by mentioning that other numerical approaches have been
developed to treat efficiently the geometric optics system (2), mostly relying on the theory
of viscosity solutions: we refer the reader to, e.g., [3–5, 23, 24, 35, 49, 52]. We mention
also [21, 34, 47, 48, 51], where a kinetic approach involving a different closure assumption
has been developed.

A recent survey of kinetic formulations is given in [54].

2. GEOMETRIC SOLUTIONS AND KINETIC FORMULATION

2.1. Blowup Loci for the Burgers Equation

In this section, following [1, 17], we are concerned with classical solutions to (6) in
the neighborhood of some given point x̄ ∈ R. We shall always assume that ∂x u0(x̄) < 0.
Defining the straight characteristic lines X = x0 + t · u0(x0) parametrized by (t, x0), one
sees that u remains constant along them. Moreover, ∂x u taken along t �→ X (t, x0) evolves
according to the Riccati equation q̇ + q2 = 0 and blows up for t = −(∂x u0(x0))−1. The
blowup locus is

� = {(t, x) ∈ R
+
∗ × R; x = x0 + t · u0(x0) and t = −(∂x u0(x0))−1}. (10)

Two generic cases occur in one space dimension.

(i) ∂xx u0(x0) �= 0: � is a smooth curve and the characteristics are tangent to it. By
definition (10), the variation of (t, x) ∈ � is ( ∂x

∂x0
, ∂t

∂x0
) = ∂xx u0(x0)

(∂x u0(x0))2 (u0(x0), 1).

(ii) ∂xx u0(x0) = 0, ∂xxx u0(x0) > 0: � has a singularity pointing downward and there
holds, ( ∂2x

∂(x0)2 ,
∂2t

∂(x0)2 ) = ∂xxx u0(x0)
(∂x u0(x0))2 (u0(x0), 1).
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Therefore, � is a local characteristics envelope: blowup occurs where two initially close
characteristics touch each other. Case(i) is commonly referred to as a fold caustic and case
(ii) a cusp caustic.

Let us consider the map (see also Section 2 in [17] and Section 5 in [32]:

(t, x0) �→ �(t, x0) = (t,�(t, x0)), �(t, x0) = x0 + t · u0(x0), v(t, x0) = u0(x0). (11)

The characteristics method reduces to

u(�(t, x0)) = v(t, x0) = u0(x0), � = �({(t, x0); ∂x0�(t, x0) = 0}).

THEOREM 2.1 (Blowup Solutions [1]). Suppose there exists a connected open set
D ∈ R

+
∗ × R and 
 ∈ C0(D̄) such that

�(
(t, x)) = (t, x), det(�′(
(t, x))) �= 0 in D.

Then u(t, x) = v(
(t, x)) is a C2 solution of (6) in D called a “blowup solution.”

In the “fold case,” there are two possible choices, say 
±, and both are tangent to � .
Inside the cusp, there are three possibilities for 
k=1,2,3. We shall speak accordingly about
fold solutions or cusp solutions when dealing with the concrete examples of Sections 3
and 4. There exists also a very simple situation which could be called the point solution:
suppose u0(x) = ax + b, (a, b) ∈ R

−
∗ × R. Then the blowup locus � reduces to the unique

point (x = −b/a, t = −1/a), which is a prototype for a “hot focus point” in the sense of
[51]. We do not develop further this case.

2.2. K -Branch Entropy Solutions to the Burgers Equation

In this section, we recall the construction of nonnegative “multibranch solutions” to (6)
through a kinetic formulation: for detailed proofs of all the stated results, we refer the reader
to [10] (see also [11, 39, 40]).

Let K ∈ N. We denote

�K := {� ∈ C0(R); ∂K
� �(� ) ≥ 0 (D′)

}
and

FL>0 := { f ∈ L∞, 0 ≤ f ≤ 1 a.e. with Supp� ( f ) ⊂ [0, L]}.

Each f ∈FL induces a moments vector �m( f ) ∈ R
K whose components read

mk( f ) =
∫

R
+

� k−1 f (� ) · d�, k = 1, . . . , K . (12)

It is therefore possible to define the set of “realizable moments”

ML
K = { �m ∈ R

K ; ∃ f ∈FL such that �m = �m( f )},
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onto which one treats the following minimization problem:

J�
K ( �m) = inf

f ∈FL

{∫
R

+
�(� ) f (� ) · d� where �m( f ) = �m ∈ ML

K and � ∈ �K

}
.

That is to say, one optimizes simultaneously the values of all possible �-moments among
densities f ∈ FL once having fixed their K first moments (12) inside ML

K . It is shown in
[10] that for any �m ∈ ML

K , there exists a unique solution to this problem which is called the
K -branch Maxwellian (see [56] for a precise definition). Moreover, it is independent of the
choice of � ∈ �K and reads

MK , �m(u1, . . . , uK , � ) =
K∑

k=1

(−1)k−1 H (uk − � ), uk > uk+1 ≥ 0, (13)

with H standing for the Heaviside function. Thus we can write the expression of the
realizable moments: they are solutions of a nonlinear Vandermonde algebraic system. We
can consider the map �m, [0, L]K → ML

K ,

mi (u1, . . . , uK ) := 1

i

K∑
k=1

(−1)k−1(uk)i , i = 1, . . . , K , (14)

and �m realizes a one-to-one C∞ mapping of the uk’s as long as uk > uk+1 for all j under
consideration. This leads to the following definition.

DEFINITION 2.1 (K -Multivalued Solutions [10]). We call a K-multivalued solution
any measurable function {0, 1} � f(t, x, � ) on R

+ × R × R
+ satisfying in the sense of

distributions the kinetic equation

∂t f + �∂x f = (−1)K−1∂K
� m̃, f (t, x, � ) = MK , �m( f ), (15)

where m̃ is some nonnegative Radon measure on R
+ × R × R

+.

Existence results for these K -multivalued solutions are provided in [10] by means of
BGK approximations and also in [56], which relies on a more singular transport-collapse
procedure [8]. Uniqueness for these very weak solutions has been recently proved only for
special K ’s [55, 57] without using any BV theory.

THEOREM 2.2 (Existence of K-Multivalued Solutions [10]). For all f0(x, � ) =
MK , �m( f0), f0 ∈ FL ∩ L1(R × [0, L]), there exist ( f 	)	→0 ∈ FL and nonnegative bounded
Radon measures (m̃	)	→0 on R

+ × R × [0, L] such that

f ∈(t = 0, ·, ·) = f0, ∂t f 	 + �∂x f 	 = 1

	

(
MK , �m( f 	 ) − f 	

) def=(−1)K−1∂K
� (m̃	);

along a subsequence if necessary, f 	 ⇀ f ∈ L∞(R+; L1 ∩ L∞(R × [0, L])) in L∞ weak-
and m̃	 ⇀ m̃ weakly. Moreover f is Maxwellian; that is, f = MK , �m( f ).

In the special cases of K = 1 and 2, these statements coincide with the ones written in
[8, 39, 40]. Indeed, such a “2-branch kinetic formulation” is equivalent to the weak entropy
solutions of the isentropic Euler system for gas dynamics with the adiabatic exponent � = 3;
see [56, 57] for further analysis of this model.
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The same way as in [39, 40], we get equivalence between this kinetic formulation and
the hyperbolic system ruling the time evolution of the realizable moments.

THEOREM 2.3 (Brenier and Corrias [10]). A measurable function f (t, x, � ) ∈ FL>0

solution of (15) is a K-multivalued solution if and only if the following entropy inequalities
hold in D′:

∀� ∈ �K , ∂t

∫
R

+
�(� ) f (t, x, � ) · d� + ∂x

∫
R

+
��(� ) f (t, x, � ) · d� ≤ 0. (16)

Moreover, �m( f )(t, x) is a weak entropy solution of the K × K hyperbolic system:

∂t mk + ∂x mk+1 = 0, mK+1(t, x) = J(� K )
K ( �m) =

∫
R

+
� KMK , �m(� ) · d� ;

(17)
∂t J�

K ( �m) + ∂x Z�
K ( �m) ≤ 0 with �m �→ J�

K ( �m) convex.

The entropy flux is given by Z�
K ( �m) = ∫

R
+ ��(� )MK , �m(� ) · d� .

For any function � ∈ �K , J�
K ( �m), Z�

K ( �m) provide a Lax entropy/entropy flux pair. The fact
that �m �→ J�

K ( �m) is convex can be shown in the following way: let us take some 
 ∈ [0, 1].
We consider two moment vectors �m �= �m ′ in ML

K and form

f (� ) = 
MK , �m + (1 − 
)MK , �m ′ ,

∫
R

+
� k−1 f (� ) · d� = (
 �m + (1 − 
) �m ′)k .

By the very definition of the minimizer J�
K , one gets for any � ∈ �K

J�
K (
 �m + (1 − 
) �m ′) ≤

∫
R

+
�(� ) f (� ) · d� ≤ 
J�

K ( �m) + (1 − 
)J�
K ( �m ′).

System (17) is genuinely nonlinear and rich in the sense of [50] since it diagonalizes in
Riemann coordinates. For smooth solutions, the uk’s appearing in (13) are strong Riemann
invariants for (17) and each one satisfies (3). System (17) is strictly hyperbolic if and only if
they are all distinct; in this last case, uk > uk+1 and the map �m (14) realize a diffeomorphism;
see also Theorem 12.1.1 in [50].

DEFINITION 2.2 (K -Branch Entropy Solutions). A K -branch entropy solution to (6)
is any set �u of K nonnegative measurable functions uk(t, x) in L∞(R+ × R) such that
uk > uk+1 and for which (16) holds.

The relevance of this notion partly comes from the next result.

THEOREM 2.4 (Finite Superposition Principle [48]). Suppose uk(t, x), k = 1, . . . , K is
a set of weak entropy solutions to

∂t uk + ∂x

(
u2

k

2

)
= 0, uk(0, x) = u0

k > u0
k+1 ≥ 0,

with each one being continuous and of locally bounded variation in x ∈ R. Then �u :=
(uk)k=1,...,K is a K-branch entropy solution to (6).
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For K > 1, K -branch entropy solutions generalize Kružkov’s notion of bounded entropy
solution to (6); namely Definition 2.2 asks �m to dissipate the whole family of convex en-
tropies in the form J�

K ( �m) with � ∈ �K . The link with the geometric framework recalled
in the preceding section lies in the fact that if K ∈ N is big enough, uk(t, x) and a blowup
solution v(
k(t, x)) should coincide for a given k ≤ K on some common domain of defi-
nition where both satisfy the free transport equation (7); see also Theorem 3.5 in [10] and
Section 4 in [51].

2.3. Some Stability Results “à la Oleı̆nik”

We now give a correct mathematical sense to the “coupled system,” describing time
evolution for both the K moments �m and the associated intensity vector �� := (�k)k=1,...,K

(see (9)),

∂t �m + ∂x FK ( �m) = 0, ∂t �� + ∂x (�u · ��) = 0, (18)

for any K ∈ N. The intensities �k are solutions to linear conservation laws with possibly
discontinuous coefficients: in order to apply the results from [7] (see also [45]), we need both
a uniform L∞ bound and some one-sided Lipschitz estimate of each uk(t, ·). Unfortunately,
this kinetic formulation does not provide so much space regularity for K -branch entropy
solutions, [10, 56].

An alternative for constructing stronger solutions �m to (17) is the Glimm scheme [25].
However, we face a rather unusual obstacle in this as it is not clear that the flux functions
�m �→ FK ( �m) are smooth enough for K > 2. Let us illustrate this point. According to (13),
we get for K = 2

m1 = u1 = u2, m2 = 1

2
((u1)2 − (u2)2).

To close the “2-moment system,” we must express the third moment m3 by means of m1,
m2. Following [10, 40], we notice that as soon as m1 > 0,

u1 = m2

m1
+ m1

2
, u2 = m2

m1
− m1

2
,

which implies that

m3 = 1

3
((u1)3 − (u2)3) = (m2)2

m1
+ (m1)3

12
.

What saves the day is noticing that in this case, u1, u2 are solutions of an invertible linear
algebraic system since

m2

m1
= 1

2
(u1 + u2), m1 = u1 − u2.

Clearly, such a feature is already lost for K = 3. Indeed in [48], Runborg conjectures that
deducing �u from �m amounts to solving in general two polynomical equations of degree K

2
(for K even) or K±1

2 (for K odd). The dependence of these roots (when they exist) upon
the coefficients which are rational functions of the mk’s has no reason to be smooth in large



K -BRANCH ENTROPY SOLUTIONS 163

domains of R
K . Another observation is that the first K − 1 components of Fk( �m) are the

K − 1 last ones of �m, but

∇�mJ(� K )
K ( �m) = ∂ �m

(
K∑

k=1

(−1)k−1
∫

R
+

� K H (uk − � ) · d� )

)

= K ((u1)K−1, . . . , (uK )K−1)∂ �m �u,

Where ∂ �m �u is the inverse of the Vandermonde matrix (14), which is known to be badly
conditioned if K is big. So, following [15, 25], we make a hypothesis:

(♣)FK is defined and C2 is inside an open ball � ⊂ ML
K for some L > 0. Inside this

ball, the map �m (14) is a diffeomorphism, and system (17) is strictly hyperbolic, genuinely
nonlinear, and rich in all its characteristic fields.

In other words, (♣) asks the eventual weak solutions to (17) to remain inside a set of
realizable moments ML

K in which uk > uk+1 for k < K and K > 1. Indeed, if K = 2,
keeping u1 > u2 ≥ 0 is equivalent to m2 > (m1)2

2 , m1 > 0, and this can be violated in a
Riemann problem with a large enough initial jump since it corresponds, for instance, to the
vacuum appearence in the isentropic Euler equations.

Remark. This problem is identified in [38] as the “loss of realizability of predicted
moments.” It appears also in [6] as both the assumption (2.9) and the convexity assumption
(CH2) which asks �m to be a diffeomorphism. See also the assumptions of the main results
in [20].

Under hypothesis (♣), (17) generates a standard Riemann semigroup S on a closed
domain Dd ⊂ L1 ∩ BV (R; R

k) enjoying the following properties [13]:

(i) For all �m0, �m ′
0 in Dd and t > s ≥ 0

‖St �m − Ss �m ′‖L1(R) ≤ R(|t − s| + ‖ �m ′
0 − �m ′

0‖L1(R)), R ∈ R
+.

(ii) Every trajectory t �→ �m(t, ·) = St �m0 is a weak entropy solution in the sense of Lax
to (17), called standard Riemann solution (SRS).

(iii) Any weak solution obtained as a limit of Glimm or wavefront tracking approxima-
tions is a standard Riemann solution.

The positively invariant domain has the usual form

Dd = clL1{ �m ∈ L1(R; R
K ) piecewise constant; V ( �m) + C0‖�u0 − ū‖L∞ Q( �m) ≤ d};

for some constants C0, d strictly positive. The functionals V and Q are the classical linear
and quadratic ones used to control the variations of the Glimm approximations. �u0 stands
for the initial values from which �m0 is deduced and ū ∈ (R+)K is a trivial constant K -branch
entropy solution such that m̄ (with obvious notation) belongs to the domain of definition
assumed in (♣).

We notice that when they exist, standard Riemann solutions admit the kinetic formulation
(15) since the Lax shock conditions imply the entropy inequalities in (16). Still, we can
speak also in this context about K -branch entropy solutions.

Taking into account the richness in all the characteristic fields of (17), we can rewrite
the decay estimates for the positive waves from [15, 16, 41] in a simpler form, as the left
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eigenvectors �k of F
′
K are the gradients of the (strong) Riemann invariants uk . Therefore,

the signed measures read simply

�k = �T
k · ∂x �m = ∂x uk, k = 1, . . . , K .

And we get that in the sense of measures on R and for some � > 0,

∂x uk(t, ·) ≤ 1

�t
+ O(1)Q( �m0) M(R), (19)

for any standard Riemann solution obtained as a limit of Glimm or wavefront tracking
approximations [14, 41]. This is enough to state a uniqueness result.

THEOREM 2.5. Let K ∈ N and assume there exists ū ∈ R
K a constant K-branch entropy

solution to (6) in the neighborood of which the hypotheses (♣) are satisfied. Suppose
moreover that the initial data are chosen such that it holds that

∂x u0
k ≤ C < +∞ M(R), k = 1, . . . , K . (20)

Then, for d > 0 small enough and any ( �m0, ��0) ∈ Dd × M(R; R
K ), there exists a unique

pair ( �m, ��)(t, ·) ∈ Dd × M(R; R
K ) of SRS/duality solutions to (18), t > 0.

Proof. Let us first assume that the Glimm Scheme for (17) remains inside an open
domain around m̄ where (♣) holds true. Then the decay of the Glimm functional implies
the existence of a uniform constant C ∈ R

+ such that for any t > 0,

T Vx ( �m(t, ·)) ≤ C · T Vx ( �m0), ‖ �m(t, ·) − m̄‖L∞ ≤ C · ‖ �m0 − m̄‖L∞ ,

which are bounded as �m0 ∈ Dd ⊂ L∞(R; R
K ). One can therefore always adjust d > 0 to

keep �m inside a small ball where (♣) holds and ensures the existence of a unique standard
Riemann semigroup for which the estimates (19) are valid. Thus we get existence and
uniqueness of the duality solutions �� by applying Theorem 4.2.5 in [7], thanks to the
smoothness and the invertibility of the map �m (14). �

COROLLARY 2.1. Let K = 2; there exists d > 0 such that the same conclusion holds for
any pair ( �m0, ��0) ∈ Dd × M(R; R

2) satisfying (20).

Proof. In this special case, J (� K )
K ( �m) is known explicitly and C∞ is known for m2 >

(m1)2

2 , m1 > 0. Thus ū can be any constant 2-branch entropy solution in the sense of
Definition 2.2 and it is enough to ask for T Vx (�u0)‖�u0 − ū‖L∞ small thanks to the rich-
ness of system (17) and the regularity of the map (14). �

Remark. Theorem 2 in [15] implies that the estimates (19) are sufficient for any weak
solution to (17) to coincide with a trajectory of the semigroup S and therefore to define the
intensities �� in a unique way in the sense of duality [7, 31]. Remark 4.2.6 in [7] ensures
that ��0 ≥ 0 implies ��(t, .) ≥ 0 for all t > 0.

The uniqueness result of [15] in this last case is stronger than the one of [57], as it contains
Lipschitz estimates, but its range of application is narrower since it is concerned with the
“small solutions” of Dd . As noted in [57], the system (17) does not belong to the Temple
class. Anyway, OSLC regularity is necessary for [7, 45] and this implies BVloc smoothness
in space for the K -branch entropy solutions.
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In the case of K = 1, we recover part of the theory developed in [31] doing a by-product of
the Oleı̆nik estimates [44] (or semiconcavity stability [19, 37]) with the results of [7]. Since
no wave interactions occur and F1 is a C∞(R) strictly convex map, we have uniqueness and
stability for very general initial data and also a broad class of numerical approximations.

Numerical experience suggests that for reasonable ū’s, convenient smoothness domains
for F3 do exist. Spurious complex roots appear generally together with wild oscillations
before the general breakdown of the scheme when too-big CFL numbers are prescribed.

3. NUMERICAL STUDY OF HOMOGENEOUS PROBLEMS

3.1. General Numerical Discretizations

Starting from here, we introduce a uniform Cartesian grid defined by the positive param-
eters �x and �t standing, respectively, for the mesh size and the time step. We denote,
for ( j, n) ∈ Z × N, x j = j�x, x j+1/2 = ( j + 1/2)�x, tn = n�t , and a generic computa-
tional cell

T n
j = [tn, tn+1[×[x j− 1

2
, x j+ 1

2

[
.

As usual, the parameter  refers to �t/�x . In the present paper, we do not try to give
rigorous convergence results for such sophisticated models describing multiphase phenom-
ena. We rather suggest some possible numerical approaches in order to simulate efficiently
the K -branch entropy solutions studied in the preceding section. For an easy introduction
to the numerics of one-phase problems, we refer the reader to [30]. Concerning the precise
form of the flux functions FK , 2 ≤ K ≤ 4, the reader can consult the appendices in [47, 48].

First, we give some notation: for a given K > 1, the grid functions �mn
j , ��n

j stand for some
numerical approximations of �m(tn, x j ) and ��(tn, x j ) on each T n

j . Then, following [31], we
introduce the basic Lax–Friedrichs (LxF) scheme which reads

�mn+1
j = 1

2

( �mn
j+1 + �mn

j−1

)− 

2

(
FK
( �mn

j+1

)− FK
( �mn

j−1

))
, K ∈ N. (21)

However, in supersonic regimes, we shall also consider the Godunov scheme, which, for
this special case, reduces to the simple upwind scheme. Assuming the uk’s are all positive,
as in the preceding section, it reads

�mn+1
j = �mn

j − 
(

FK
( �mn

j

)− FK
( �mn

j−1

))
(22)

and contains already far less numerical viscosity than the LxF one (21). More-accurate
approximations can come out of a second-order scheme like the Nessyahu–Tadmor (NT)
one [43]. It can be written in a predictor–corrector form as follows:

�mn+ 1
2

j = �mn
j − 

2
(F ′

K )n
j ,

(23)

�mn+1
j = 1

2

( �mn
j+1 + �mn

j−1

)+ 1

4

(
( �m ′)n

j+1 + ( �m ′)n
j−1

)− 

2

(
FK

(
�mn+ 1

2
j+1

)
− FK

(
�mn+ 1

2
j−1

))
.

The numerical derivatives are evaluated componentwise as in [47] using a slightly modified
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MinMod limiter,

( �m ′)n
j = MM

(
2
( �mn

j+1 − �mn
j

)
,

1

2

( �mn
j+1 − �mn

j−1

)
, 2
( �mn

j − �mn
j−1

))
.

with

MM(x, y, z) =




min(x, y, z) if x, y, z > 0,

max(x, y, z) if x, y, z < 0,

0 otherwise.

Whenever possible, it is of interest to compute the multivalued phase � in order to
complete the reconstruction of the WKB ansatz. This can be done by numerical integration
if the physical problem generates the same number of multivaluations as the chosen K -
moment system can handle. In this case, one has to follow each K -branch entropy solution
uk(t, ·) until it touches uk+1(t, ·) for all 1 ≤ k ≤ K − 1. Reconstructing the multivalued
intensity will be done accordingly, switching from branch �k(t, ·) to the next one, �k+1(t, ·),
at the same points. Another criterion lies in the fact that some branches of the intensity
vector �� should blow up when approaching a caustic.

To update the intensity vectors, we relied on [29, 31] and selected a positivity-preserving
upwind scheme able to compute singular solutions free from spurious spikes and oscilla-
tions. In its three-point stencil version, it reads

��n+1
j = ��n

j − 
(〈

An
j+ 1

2
, �n

j+ 1
2

〉
R

2 − 〈An
j− 1

2
, �n

j− 1
2

〉
R

2

)
,

(24)
An

j+ 1
2

= (�an
j+ 1

2 ,0, �an
j+ 1

2 ,1

) ∈ (RK )2, �n
j+ 1

2
= (��n

j , ��n
j+1

) ∈ (RK )2,

and a convenient choice for An
j+ 1

2
has to be drawn in order to get a good numerical approx-

imation of (18). As in [31], and to share the same CFL as (22), we select

�an
j+ 1

2 ,0 = 1

2
max

(
0, �un

j+1 + �un
j

)
, �an

j+ 1
2 ,1 = 1

2
min
(
0, �un

j+1 + �un
j

)
, (25)

but any convex combination of the adjacent Riemann invariants could be admitted [29]. The
reason for this lies in the fact that, even if not rigorously established, discrete one-sided
Lipschitz conditions in the sense of [12] should be preserved.

All our numerical results have been obtained by means of these aforementioned dis-
cretizations. Of course, despite the fact that the construction of K -branch entropy solutions
in Section 2.2 was made only for nonnegative values, we shall compute in practice general
solutions belonging to R

K since the aforementioned kinetic formalism can be applied in
this context up to minor changes [9] (see also [40, 57]). When displaying antiderivatives of
K -branch entropy solutions, we shall always use the letter “p” to refer to the corresponding
(multivalued) phases.

3.2. A Fold Caustic with a Shadow Zone

We simulate a fold singularity, for instance, with the initial datum for (3):

u0(x) = −x2, �0(x) ≡ 1; x ∈ [0, 2]. (26)
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Using the notations of Section 2.1, we get

�(t, x0) = (t, x0 − t(x0)2), � =
{

x = 1

4t

}
,

together with


±(t, x) =
(

0,
1 ± √

�

2t

)
, � = 1 − 4xt.

Inside a domain where � is nonnegative, one can therefore define the twofold solutions of
(6) in the sense of Theorem 2.1,

u±(t, x) = u0(
±(t, x)) = u0

(
1 ± √

�

2t

)
, (27)

where the minus sign corresponds to the incident wave. The intensities are easily deduced
since z±(t, x) = ∫ x

�±(t, x) · dx satisfy a transport equation even in the case where solutions
are weak [7]. Thus one finds that

�±(t, x) = |∂x

±(t, x)|�0(
±(t, x)) = 1√

1 − 4t x
�0(
±(t, x)). (28)

As expected, WKB signals blow up on the caustic curve � . In the sequel, we shall refer to
(27), (28) as the ray-traced solutions to (2) with initial data (26); see the rays geometry on
Fig. 1. We simulated this problem using the 2-moment system corresponding to the case
K = 2; for this choice, (18) can handle the right number of phases. Another feature of the
choice (26) is that (17) is always in supersonic regime and the results displayed in Fig. 2
were obtained using the Godunov scheme, as in (22), together with the upwind scheme
(24), (25). This discretization turns out to be more robust than the NT scheme (23) close
to the degeneracy points u1 � u2 where (17) is not strictly hyperbolic anymore. In order to

FIG. 1. Ray geometry for (3) with data (26), x ∈ [0, 2], t ∈ [0, 0.7].
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FIG. 2. Phase, 2-branch entropy solutions and incident intensity for a plane wave in the fold caustic (26):
T = 0.3 (left), T = 0.5 (right). Dotted lines display ray-traced solutions (27), (28).

take full advantage of the decoupling property of the uk’s in the smooth region and to get
them to satisfy discrete OSLC conditions, we selected the following initialization for (18)
with a small ε > 0:

u1(t = 0, x) = u0(x), u2(t = 0, x) ≡ u0(2) − ε; �1(t = 0, x) = �0(x). (29)

In order to get correct results for the reflected intensity, we follow ideas from [24] and
impose the boundary condition on the caustic � ; since �(0.25, 2) = � (0.25),

�2(t, � (t) − 0) = �1(t, � (t) − 0), t ≥ 0.25. (30)

In [5], a fix relying on [36, 42] is proposed in order to handle such a shadow zone more
correctly by means of a local modification of the classical geometric optics ansatz. At the
practical level, one has to locate the caustic curve; one way out is to look for an index
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FIG. 3. Error decay for 2-branch entropy solutions (left) and intensities (right) as �x → 0 for a plane wave
in the fold caustic (26) at time T = 0.5.

value j0 such that | ��n
j0+1 − ��n

j0 | > C · �x , where C is a (big) positive constant and x j0 lies
in a neighborhood of an extremum of ��n . We used values for C ranging from 10 to 100
to get the results shown in Fig. 2. In order to reconstruct the phase, it is sufficient to take
numerical antiderivatives of the 2-branch entropy solutions on the right domains. Namely,
one has to follow u1(t, ·) until it touches u2(t, ·), and then to follow backward u2(t, ·) until
it reaches the moving endpoint x = 2 − 4t located ahead of the fold. The parameters used
were �x = 7.10−3, �t = 15.10−4, except for the fine grid for which �x = 2.10−3. In the
opposite case, u0(x) = x2, x ∈ [−2, 0], the same requirements would lead us to invert the
initializations; namely, u1(t = 0, x) ≡ u0(−2) + ε, u2(t = 0, x) = u0(x).

We decided also to make a convergence analysis for the 2-branch entropy solutions and
the corresponding intensities. Hence for the incident signal at time tn = 0.5 we looked at
the decay as �x → 0 of the quantities

∑
x j ∈[0,� (tn )]

�x |u−(tn, x j ) − u1(tn, x j )|,
∑

x j ∈[0,� (tn )]

�x |�−(tn, x j ) − �1(tn, x j )|,

together with (when t ≥ 0.25)

∑
x j ∈[2−4tn ,� (tn )]

�x |u+(tn, x j ) − u2(tn, x j )|,
∑

x j ∈[2−4tn ,� (tn )]

�x |�+(tn, x j ) − �2(tn, x j )|

for the reflected one. Despite the fact that theoretical results from [29] only ensure a weak
convergence for numerical approximations of linear conservation laws, we found the decays
presented in Fig. 3. The numerical rate of convergence is approximately 0.5 for the 2-branch
entropy solutions and 0.05 for the corresponding intensities. We refer the reader to [48, 3]
for related numerical experiments.

3.3. A Cusp Caustic Generated by a Focus

Figure 2 in [31] displays a blowup of the WKB ansatz for a focusing problem with the
free Schrödinger equation when interpreted in the sense of viscosity/duality, [19, 37, 7],
which corresponds here to the choice K = 1.



170 LAURENT GOSSE

Therefore, we take it again as an example to study our present approach in a situation
leading to a cusp caustic; we select a Gaussian pulse

u0(x) = −8 tanh(x), �0(x) = exp(−x2); x ∈ [−5, 5]. (31)

According to Section 2.1, we observe self-interference,

�(t, x0) = (t, x0 − 8t · tanh(x0)), � (t) = �

(
t, x0 = atanh

(
±
√

1 − 1

8t

))
,

and (x = 0, t = 0.125) is a “cool focus” in the sense of [51]. In this case, we cannot give an
analytical expression for 
k=1, 2, 3; we use instead Newton’s algorithm to find these values
numerically. Concerning the intensities, we observe that

�k(t, x) = |∂x
k(t, x)|�0(
k(t, x)) =
∣∣∣∣ 1

(∂x0�) ◦ 
k(t, x)

∣∣∣∣�0(
k(t, x)).

Therefore �u(t, x) and ��(t, x) can be known exactly and we refer to these values as to
the ray-traced solutions to (2), (31); see the ray geometry in Fig. 4. In Fig. 5, we present
the numerical results obtained from (18) with K = 3 by means of the NT scheme (23)
and (24). We initialized the 3-branch entropy solutions as follows, with ε > 0 a small
number:

u1(t = 0, x) = u0(x) + ε, u2(t = 0, x) = u0(x), u3(t = 0, x) = u0(x) − ε. (32)

Observe that u1 > u2 > u3, and as long as the solution remains smooth, each uk(t, ·) has to
satisfy (3) up to the accuracy of the selected numerical scheme. Beyond the shock appearance
in x = 0, an N -wave surrounded by two shocks (also present in u1 and u3) travelling at
characteristic speed develops in u2.

FIG. 4. Ray geometry for (3) with data (31); x ∈ [−3, 3], t ∈ [0, 0.7].
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FIG. 5. Phase (top), 3-branch entropy solutions (middle), and intensity (bottom) for a plane wave in the cusp
caustic (31) with (32), (33): T = 0.07 (left), T = 0.7 (right). Dotted lines display ray-traced solutions.

Concerning the intensities, we thus deduce from (32) and (30)

�1(t = 0, x) = �2(t = 0, x) = �3(t = 0, x) = �0(x),

�2(t, � (t) − 0) = �1(t, � (t) − 0), � (t) ≥ 0 and t ≥ 0.125, (33)

�2(t, � (t) + 0) = �3(t, � (t) + 0), � (t) ≤ 0 and t ≥ 0.125,

with identical notation. We observe that �1, �3 are quite well rendered when compared
to the ray-traced solution and also �2, which is first shrunk (before the shock) and then
expanded (beyond it); see also [34]. Finally, the reconstruction of the trivalued phase � is
fairly good for the whole time interval. The viscosity solution is the part of the graph laying
down the multivaluation; see again Fig. 2 in [31]. We used �x = 0.06, �t = 0.0075, and
ε = �x/10. Then we computed the intensities after the caustic on finer grid (see Fig. 6).
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FIG. 6. Intensities (T = 0.7) for �x = 0.0023 (left) and �x = 0.0011 (right).

A history for � and �� is displayed in Fig. 7. This can be seen as the correct behavior
one would expect instead of the one presented in Fig. 2 in [31]. We emphasize finally that
initializations of the type (32), (33) are also convenient for the computation of unsteady
shocks (as is seen in Section 3.4).

We then tried to simulate the test case (31) with the 2-moment system, as its structure is
much simpler. In this context, since the system (17) handles fewer values than the physical
problem generates, there are many possible ways to initialize it, depending on how the user
decides to represent a trivalued signal by means of a 2-branch entropy solution. Following
[47], we selected the following choice to get the results shown in Fig. 8 (1A stands for the
characteristic function of a set A):

u1(t = 0, x) = u0(x)1x<0 + u0(−x)1x>0, u2(t = 0, x) = u0(−x)1x<0 + u0(x)1x>0,

�1(t = 0, x) = �0(x)1x<0, �2(t = 0, x) = �0(x)1x>0.

But the other forthcoming choices also lead to reasonable results, as they just correspond to
another representation of a complex signal by means of a too-simple ansatz. For instance,
this one is inspired by an alternative to (32),

u1(t = 0, x) = u0(x)1x<0 + u0(0)1x>0, u2(t = 0, x) = u0(0)1x<0 + u0(x)1x>0, (34)

and now, this last one comes from the fold test case (29) with a small ε > 0,

u1(t = 0, x) = u0(x), u2(t = 0, x) = u0(5) − ε.

We do not claim that they are the only reasonable initial values for (18), (31) with the choice
K = 2. Each representation gives, rather acceptable values for the intensities: of course,
the two shocks appearing in u1, u2 induce concentrations in Dirac masses in �1, �2 as
we refine the computational grid. This drawback is not a consequence of any numerical
approximation but comes directly from the fact that the selected value of K is too low and
some superimposed signals collide instead of crossing each other (as already experienced
in [31]). We finally refer to [47, 48] for other experiments on focusing problems.
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FIG. 7. Phase (top) and intensity (bottom) histories for a plane wave in the cusp (31).

3.4. A Double Cusp Singularity

This last test case is inspired by a practical situation studied in [21, 23, 24, 31, 47, 48],
namely the focusing of light rays behind a thin convex lens. For the time being, we limit
ourselves to consider the following initial datum:

u0(x) = −4(tanh(x − 2) + tanh(x + 2)), �0(x) = 1; x ∈ [−2.5, 2.5]. (35)

The main difficulty lies in the fact that the signal develops up to five phases around x = 0
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FIG. 8. Two-branch entropy solutions and intensity for a plane wave in the cusp caustic with the two-phases
moment closure: T = 0.07 (left), T = 0.7 (right).

for t ≥ 0.4; see the ray geometry in Fig. 9. The geometrical solutions to (3), (35) can be
derived by means of computations similar to the ones in Section 3.3. We did not try to
simulate numerically this problem (18), (35) with the K = 5 moment closure, as it would
be too expensive, cf. the Appendix in [47] for an expression of the resulting flux functions.
Anyway, one can compute all the branches developed by (35) with a 3-branch moment

FIG. 9. Ray geometry for (3) with data (35); x ∈ [−3, 3], t ∈ [0, 0.7].
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FIG. 10. Phase evolution for the double cusp caustic (35): T = 0.3 (left), T = 0.7 (right).

FIG. 11. Three-branch entropy solutions (left) and intensity (right) for the double cusp caustic (35) with the
three-phases moment closure: T = 0.1 (up), T = 0.3 (middle), T = 0.7 (bottom).
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moment closure (K = 3) exploiting the fact that x = 0 is a center of symmetry for �u. To
this end, we restrict ourselves to the nonnegative branches and use the initialization

u1(t = 0, ·) = u01x<0 + ε, u2(t = 0, ·) = u01x<0, u3(t = 0, ·) = u01x<0 − ε,

�1(t = 0, ·) = �2(t = 0, ·) = �3(t = 0, ·) = �01x<0; (36)

�2(t, � (t) − 0) = �1(t, � (t) − 0), �2(t, � (t) + 0) = �3(t, � (t) + 0).

The remaining part of the signal is reconstructed by symmetry (see Figs. 10 and 11). It can
be seen in Fig. 10 that the multivalued phase is quite well rendered even in the neighborhood
of x = 0, where it involves up to five values. Looking at the K -branch entropy solutions in
Fig. 11, one notices again that the second branch, u2, is not accurately computed for T � 0.3.
The computation of the intensities suffers from this fact, especially the middle branch �2

moving with u2. Concerning �1 and �3, correct blowups are observed when compared to a
ray-traced solution. The numerical runs have been achieved relying on the Godunov scheme
(22) and the upwind discretization (24) with the parameters �x = 0.01, ε = �t = �x/10.

4. SIMULATION OF A THIN CONVEX LENS

4.1. The Paraxial Problem

This approach may be extended to some cases of the steady 2D Helmholtz equation under
a paraxial assumption, as in [4, 31, 47]. We recall briefly how such a problem can be carried
out; more details are to be found, for instance, in [24, 46]. One starts from a 2D Helmholtz
equation written in the following form:

�u + k2�2u = 0, (x, y) ∈ R
2. (37)

The quantity k refers to the frequency and is assumed to be big; � is a smooth positive
function of x, y called the refraction index of the considered medium. When looking for os-
cillating plane wave solutions to (37), u(x, y) = A(x, y) exp(ik�(x, y)), k → +∞, a steady
version of the WKB system (2) is derived:

(∂x �)2 + (∂y�)2 = �2, ∂x (A2∂x �) + ∂y(A2∂y�) = 0. (38)

The first one is the well-known eikonal equation for the phase and the other is a linear
conservation law expressing the fact that the intensity A2 is preserved inside “ray tubes.” In
order to rewrite (38) in such a way that it matches our framework, we make the so-called
paraxial assumption, which reads ∂y� > 0. Hence, we can consider the following system,
where � = A2∂y�:

∂y� −
√

�2 − (∂x �)2 = 0, ∂y� + ∂x

(
�

∂x �√
�2 − (∂x �)2

)
= 0. (39)

In a homogeneous medium for which � ≡ 1, one can introduce u = ∂x � and is naturally
led to deal with a system of the form (where we substituted the variable t for y for ease of
reading)

∂t u − ∂x (
√

1 − u2) = 0, ∂t � + ∂x

(
u�√

1 − u2

)
= 0,
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and the kinetic formulation of [10] extends rather naturally up to more-involved calculations
in deducing the expression of the resulting flux functions FK .

4.2. Numerical Results

The problem we want to simulate consists in computing the geometrical solutions to (39)
with the following data: x ∈ [−1, 1], t ∈ [0, 2], D = ( t − 0.5

0.3 )2 + ( x
0.8 )2, and

�(t = 0, x) ≡ 0, �(t = 0, x) ≡ 1, �(t, x) =
{

4
3 − cos(�D) if D < 1,

1 in the other cases.
(40)

Several diffculties arise from this set of data. First, the refraction index is not constant
and the kinetic formulation of Section 2.2 does not apply straightforwardly. Second, the
ray-traced solution develops fives phases in the neighborhood of the focal point of the lens
located around t = x = 1 before settling with three; see [47], p. 82.

There is however a point to notice in order to treat efficiently this situation; namely,
K -multivalued solutions are not needed in the computational domain where D < 1, that is
to say, where the refraction index is not constant. Before and inside the lens, the solution
to (39) is still smooth: thus it can be computed easily by relying on the numerical schemes
proposed in [31]. Moreover, the problem is still endowed with the symmetry properties
which have been usefully exploited in Section 3.4: hence it can be treated by means of the
3-moment closure (the expression of the flux functions FK is to be found in Appendix A.2
in [48]). Thus it is sufficient to mimic the approach of Section 3.4 in order to produce the
numerical results displayed in Fig. 12; the parameters used were �x = 0.004, �t = 0.003.

In order to reconstruct the phase, one has to be careful only at one level. More precisely,
if u = ∂x �, the correct phase is given by

�(t, x) = t +
∫ x

−1
u(t, s) · ds, x ∈ [−1, 1].

And the reason is that ∂t � = 1 + ∫ x
−1 ∂x

√
1 − (∂x �)2 · ds = 1 +

√
1 − (∂x �)2 − √

1 be-
cause the computational domain is big enough to have ∂x � = 0 in x = ±1. Then we display
in Fig. 13 the values obtained from schemes (23) and (24). A standard computation relying

FIG. 12. K -branch entropy solutions �u outside the convex lens (40): T = 1.35 (left), T = 1.85 (right). Dotted
lines refer to the positive part of the ray-traced solution.
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FIG. 13. Multivalued phase �(T, ·) −T (left) and amplitude A(T, ·) (right) for a plane wave outside the convex
lens (40). (Top to bottom) T = 0.85, 1.05, 1.35, 1.85.
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on an interpretation of (39) within the theory of viscosity/duality solutions can be checked
in [31], Fig. 5. In the present case, we observe the formation of the five valuations in the
phase and the intensity.

5. CONCLUSION

We presented in this paper a reasonable “shock-capturing” compromise to compute the
multivalued signals one would expect out of geometric optics expansions, for instance in the
case of the free 1D Schrödinger and a steady 2D Helmholtz equations. As an extension, fully
nonhomogeneous problems can be considered within a similar framework: for instance, a
potential with wells for the Schrödinger equation would lead from (4) to a K -moment
system of the form

∂t mk + ∂x mk+1 = (k − 1)V ′(x)mk−1, k = 1, . . . , K , (41)

to which the same closure formalism can be applied. This amounts in general to adding
another source term in the kinetic equation (8). At the theoretical level, one should then
use the SRS solutions built in [2] and Theorem 2.5 will hold relying on the modified
one-sided estimates established in [26]. The numerical analysis can be delicate, as the use
of accurate well-balanced [27] discretizations may be necessary [9]. In contrast, a truly
multidimensional approach seems still to lie out of reach; some alternatives have been
recently proposed in, e.g., [3, 5, 22, 34, 35, 51, 52].

APPENDIX: A SHORT NONHOMOGENEOUS EXAMPLE

We wish to present briefly a way to solve an interesting nonhomogeneous test case
suggested by Brenier, [9]; namely, we consider the Liouville equation (4) in the special case
H(x, u) = 1

2 (u2 + x2). This leads to a classical Vlasov equation,

∂t f + ∂uH · ∂x f − x∂u f = 0,

which describes a rigid rotation in the phase space at a unit angular speed. An exact solution
is to be found in [18]. We reduce it by means of the 2-moment closure to the following
system of balance laws (see (41)):

∂t m1 + ∂x m2 = 0, ∂t m2 + ∂x

(
(m2)2

m1
+ (m1)3

12

)
= −xm1. (A.1)

It turns out that such a system can hardly be numerically simulated by means of a conven-
tional time-splitting Godunov scheme for which the convection step and the source term
are treated independently. However, following [28], it is possible to modify the homoge-
neous discretization (22) in order to tackle properly this problem: indeed, keeping u1 and
u2 positive, one can make use of

�mn+1
j = �mn

j − 
(

F2
( �mn

j

)− F2
( �mn

j− 1
2

))
, (A.2)

where the state �mn
j− 1

2
is deduced from �mn

j−1 following, as usual, the steady-state equations

of (A.1). It is at this level that the richness of (A.1) plays a role since these last equations
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FIG. 14. Two-branch entropy solutions for V (x) = − 1
2
x2: T = 0.07 (left), T = 0.7 (right).

can be easily integrated in the Riemann coordinates. One finds within the notation of (14)
the following values to be used in (A.2):

(u1,2)n
j− 1

2
=
√(

(u1,2)n
j−1

)2
, −2x · �x − �x2, �mn

j− 1
2

= �m((u1)n
j− 1

2
, (u2)n

j− 1
2

)
.

The results displayed in Fig. 14 were obtained with �x = 0.01 and fitting the time step �t
in order to keep a constant CFL value of 1. The initial data are

u0
1 = 0.15 + �x + max(0, −5(x + 1)(x + 0.7)), u0

2 = 0.15 + min(0, 5(x + 1)(x + 0.7)).
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