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Abstract. In this paper, we consider several high-order schemes in one space dimension. In
particular, we compare the second-order relaxation (ε << 1) or “relaxed” (ε = 0) schemes of Jin
and Xin [Comm. Pure Appl. Math., 48 (1995), pp. 235–277] with the second-order Lax–Friedrichs
scheme of Nessyahu and Tadmor [J. Comp. Phys., 87 (1990), pp. 408–463] and with higher-order
essentially nonoscillatory (ENO) and weighted essentially nonoscillatory (WENO) schemes. This
comparison is made first on a Sod shock tube and then on a very pathological example of a p-
system constructed by Greenberg and Rascle [Arch. Ration. Mech. Anal., 115 (1991), pp. 395–407].
This exotic system admits a family of periodic solutions which are shock-free but present pairs of
interacting centered compression waves. Therefore, the exact solution contains big spikes. We show
how these different schemes face this numerical challenge.
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1. Introduction. The motivation of this paper was to compare several second-
or higher-order schemes—which are described precisely below—on a couple of mono-
dimensional problems. The first example is of course the Sod shock tube. The second
case is a pathological example of a p-system constructed in [1]; see also [2]. This
system is built with a very specific pressure law (see the details in section 2) and
admits a family of periodic solutions in space and time. In particular, those solutions
are shock-free but present centered compression waves which interact and produce
severe spikes. Although this problem is one-dimensional, we have thought it would
be interesting to use it as a challenging case to compare several second- or higher-
order finite volume schemes. Namely, we have considered the second-order relaxation
(ε << 1) or relaxed (ε = 0) schemes of Jin–Xin [4]. We have compared these schemes
on one hand with the staggered second-order Lax–Friedrichs scheme of Nessyahu–
Tadmor [6] and on the other hand with higher-order essentially nonoscillatory (ENO)
and weighted essentially nonoscillatory (WENO) schemes, first on Sod’s shock tube
for Euler equations and then on this pathological p-system. Not surprisingly, all these
schemes work rather well, even in the second case, where the exact solution itself
presents big spikes due to the interaction of centered compression waves.

The outline of the paper is as follows. In section 2, we briefly recall the description
of this exotic example constructed in [1]. In sections 3 and 4, we recall a few basic facts,
first on higher finite volume schemes and then on second-order relaxation schemes. In
section 5, we first compare all these schemes on the more classical—and in practice,
more useful!—example of Sod’s shock tube, and then we present our numerical results
and comments on this pathological example, in particular on the presence of spikes,
before a brief conclusion in section 6.
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2. A pathological example of p-system. We consider here the p-system,
or more exactly the system of one-dimensional nonlinear elasticity in Lagrangian
coordinates {

∂tu− ∂xv = 0,
∂tv − ∂xσ(u) = 0,

(2.1)

where u denotes the strain, σ = σ(u) the stress, and v the velocity.
In a very particular case where σ(.) is an odd function, Greenberg and Rascle [1]

have constructed a sequence of periodic solutions in time and space, (uε, vε)(x, t) :=
(u, v)(xε ,

t
ε ), ε↘ 0, which satisfies the following properties:

The function u (resp., v) is odd (resp., even) in x and even (resp., odd) in t. More-
over (see Figure 2.1), the basic pattern is the interaction of two centered rarefaction
waves between two constant states N, S (north, south),

N :=

(
u = t0
v = 0

)
, S :=

(
u = −t0
v = 0

)
, t0 > 0,

and involves two other constant states E, W (east, west),

E :=

(
u = 0
v = x0

)
, W :=

(
u = 0
v = −x0

)
, x0 > 0.

In the interior domain of central interaction, the solution is supposed to be the uni-
versal solution (u, v) ≡ (t, x). The law is chosen so that the interaction of these two
centered rarefaction waves converts them into centered compressive waves and not
into shocks, which would consume energy and would prevent the solution from being
periodic in time. In order to obtain this pattern, the constitutive relation σ must
satisfy an ODE whose solution is written as

σ(u) =
c20λ

4

3
sgn(u)

(
1

(λ− |u|)3
− 1

λ3

)
, λ = t1 > t0.

In particular, σ is such that
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1. ∀u 6= 0, uσ′′(u) > 0, σ: odd. The system is genuinely nonlinear, except for
u = 0, at which σ presents an inflection point; cf. section 5, Figure 5.5.

2. σ is of class C2, except at u = 0, where it is only C1.
It is important to notice that if σ were smooth at u = 0, then, following Di Perna’s
result [12], ∀ t > 0, the initial oscillations of the sequence (uε, vε) would be can-
celed by the nonlinear interactions. Therefore, the sequence (uε, vε) considered here
is very pathological, since large amplitude oscillations persist, although no eigenvalue
is linearly degenerate. In particular, it does not belong to the class of solutions for
which Serre [16], [17] constructed formal asymptotic expansions. We have tested a few
numerical schemes on this problem with (x, t) ∈ (−1, 1)2, with x1 = t1 = 1.

The solution consists of 4× 4 basic patterns (see Figure 2.2).1

The initial data (resp., boundary conditions on x = −1 and x = +1) on the four
successive subintervals are NSNS (resp., EWEW and EWEW).

From the numerical point of view, we remark that this solution has no shock but
contains centered rarefaction and compression waves which even interact so that the
exact solution presents big spikes, and we also remark that the stress-strain relation
σ has an inflection point. These unusual features are therefore a good challenge to
test several classical second-(or higher-) order numerical schemes. Before describing
the numerical results in section 5, we first must describe the schemes we have used.

3. Basic facts on high-order finite volume schemes. We consider the initial
value problem for a general one-dimensional system of N conservation laws:

∂tU + ∂xF (U) = 0,(3.1)

1More exactly, we should consider that a basic pattern is in fact four adjacent patterns (see
Figure 2.1), in order to recover the same constant states at the boundary of the period.
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U(x, 0) = U0(x).(3.2)

The system is supposed strictly hyperbolic. We denote by R the matrix of right eigen-
vectors rk(U) of F ′(U) and we set L := R−1. We briefly recall the classical construction
of high-order finite volume schemes: Let Ūnj denote the average value of the numerical
solution U(., t) on the cell Cj =]xj− 1

2
, xj+ 1

2
[ computed at time tn. Here, we have set

xj = x0 + j∆x.
After integration of (3.1) over the rectangle Cj × (tn, tn+1), we have to find an

approximation of

Ūn+1
j = Ūnj − λ

(
Fj+ 1

2
− Fj− 1

2

)
,(3.3)

where Fj+ 1
2

= 1
∆t

∫ tn+1

tn
F (U(xj+ 1

2
, t)) dt, and λ = ∆t/∆x.

Following Harten et al. [8], we split the algorithm into three steps: reconstruction,
evolution, and averaging. In the reconstruction step, which we will recall below, we
start with the averages Ūnj to construct a new function R(x, Ū) polynomial on each
cell. In the evolution step, we now consider the initial value problem

∂tW + ∂xF (W ) = 0, t ∈ (tn, tn+1),
W (x, tn) = R(x, Ūn).

(3.4)

The question is how to approximate the integral

I =
1

∆t

∫ tn+1

tn
F (W (xj+ 1

2
, t)) dt.

If the function t 7→ F (W (xj+ 1
2
, t)) were known, we would of course use a Gauss-type

formula of order r:

I '
s∑

k=1

αkF (W (xj+ 1
2
, tn + βk∆t)) +O(∆tr).

For instance, typical choices are
1. order 1: s = 1, α1 = 1, and β1 = 0,
2. order 2: s = 1, α1 = 1, and β1 = 1

2 ,

3. order 4: s = 2, α1 = α2 = 1
2 , β1 = 1

2 (1−
√

3
3 ), β2 = 1

2 (1 +
√

3
3 ).

Now, in order to approximate the above function F (W ((xj+ 1
2
, .))), we consider the

local Riemann problem:

∂tZ + ∂xF (Z) = 0,

Z(x, 0) =

{
ak
j+ 1

2

,

bk
j+ 1

2

,
(3.5)

where ak
j+ 1

2

(resp., bk
j+ 1

2

) is constructed in the following way [8]: Starting from poly-

nomial data vj(x)(= Rj(x, Ū)) in the cell Cj , we first extend this initial data to
the neighbor cells. The corresponding solution vj(x, t) is locally smooth, and ak

j+ 1
2

is

the value at point (xj+ 1
2
, tn + βk∆t) of the Taylor expansion of vj(x, t), denoted by

ṽj(x, t
n + t), around the point (xj , t

n), in which we have used the equation to replace
all the time derivatives by space derivatives. Of course bk

j+ 1
2

is constructed in a similar
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way in the cell Cj+1; therefore, for i = j, j + 1 and r = 3,

ak
j+ 1

2

= ṽj(xj+ 1
2
, tn + βk∆t) and bk

j+ 1
2

= ṽj+1(xj+ 1
2
, tn + βk∆t),

ṽi(x, t
n + t) = ṽi(x, t

n)− t∂xf(ṽi(x, t
n)) +

t2

2
∂x(f ′(ṽi(x, tn))∂xf(ṽi(x, t

n))),

with ṽi(x, t
n) = vi(x, 0) = R(x, ū)|Ci .

Therefore, with the property on R(x, ū),

dk

dxk
Ri(x, ū

n) =
∂k

∂xk
u(x, tn + t) +O(∆xr−k), 0 ≤ k ≤ r − 1.

We have ṽi(x, t
n + t) = u(x, tn + t) +O(∆xr) when ∆x = O(∆t).

Therefore, the exact flux of the solution to the Riemann problem (3.5) satisfies
fG(a, b) = f(ZR(0, a, b)) = f(u(xj+ 1

2
, tn+t))+O(∆xr), where fG means the Godunov

flux. Practically we may take any numerical flux g(a, b) which is Lipschitz continuous
and monotone. Here, we will use the Roe scheme with the entropy fix used by Osher–
Shu; see [9]. The averaging is obtained by taking the average value of the solution
U(x, tn+1) on the cell Cj . Finally, the scheme is written as

Ūn+1
j = Ūnj − λ

(
s∑

k=1

αk(g(akj+ 1
2
, bkj+ 1

2
)− g(akj− 1

2
, bkj− 1

2
))

)
.(3.6)

Of course, the Godunov and Van Leer MUSCL schemes belong to this class, as well
as the ENO schemes and also the (second-) order staggered Lax–Friedrichs scheme of
Nessyahu–Tadmor [6], provided that we average at each time step on the staggered
grid. Of course that avoids using any Riemann solver. This scheme can also be viewed
as a predictor-corrector scheme:

Ū
n+ 1

2
j = Ūnj −

λ

2
F
′n
j ,(3.7)

Ūn+1
j+ 1

2

=
1

2
(Ūnj + Ūnj+1)− 1

8
(U
′n
j+1 − U

′n
j )− λ

(
F (Ū

n+ 1
2

j+1 )− F (Ū
n+ 1

2
j )

)
,(3.8)

where F
′n
j /∆x and U

′n
j /∆x are numerical approximation of, resp., ∂xF (U(xj , t

n))
and ∂xU(xj , t

n).
Now, if ∆t goes to zero in (3.6), we obtain

d

dt
Ūj(t) = − 1

∆x

(
g(Rj(xj+ 1

2
, Ū), Rj+1(xj+ 1

2
, Ū))(3.9)

−g(Rj−1(xj− 1
2
, Ū), Rj(xj− 1

2
, Ū))

)
,

which allows us to uncouple spatial and temporal approximations.
Now, (3.9) is a system of ODEs that we approach with the Runge–Kutta total

variation diminishing (TVD) method of Osher–Shu [9, pp. 444–447].
As observed in [10], the WENO reconstruction allows us to gain one order of

accuracy at the interfaces. Therefore, the time approximation must be of order (r+1)
to exploit this gain.

We now briefly recall the reconstruction procedure. Starting with known averages
Ūnj on each cell Cj , we construct a piecewise polynomial function R(x, Ū) which
satisfies the following properties:
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(i) high-order approximation in regions where the solution is smooth: Rj(x, Ū) =
U(x, t) + e(x)∆xr +O(∆xr+1);

(ii) conservation of average values: R̄(xj , Ū) = Ūj ;
(iii) control of oscillations, either TVD no oscillation is created: TV (R(x, ū)) ≤

TV (u) or ENO: TV (R(x, ū)) ≤ TV (u) +O(∆xr).
We begin with the scalar case, in which the construction is based on the primitive of
u(., t)2:

W (x) =

∫ x

x
j0− 1

2

u(y, t) dy,

with W (xj+ 1
2
) = ∆x

∑j
k=j0

ūk. Knowing the values of W at the interfaces provides
an approximation of u by evaluating the derivatives of a polynomial interpolation of
W at the interfaces. Let us simply recall that we typically obtain

(i) for r = 1, the Godunov scheme: Rj(x, ū) = ūj ;
(ii) for r = 2, Van Leer’s type of schemes: Rj(x, ū) = ūj +

σj
∆x (x − xj), where

σj = ∆x∂xu(xj , t) + O(∆x2) if TVD or σj = ∆x∂xu(xj , t) + O(∆x3) if
uniformly nonoscillatory (UNO) (see [7]);

(iii) for r > 2, either the ENO or the WENO type of schemes. The latter involves
a convex combination of all the interpolation polynomials of W on the stencil
Sj+k = (xj+k−r+ 1

2
, . . . , xj+k+ 1

2
), whereas the former involves only one of

them.
Finally, in the case of systems considered here, the reconstruction has been

performed either componentwise, e.g., in LF2, or in characteristic variables (ENO,
WENO). In the next section, we recall the construction of relaxation schemes [4].

4. Second-order relaxation schemes. The basic idea of relaxation schemes
[4] is to (formally) consider a nonlinear hyperbolic system of conservation laws,

∂tU + ∂xF (U) = 0,(4.1)

as the zero-relaxation limit, of a sequence of semilinear hyperbolic systems of size 2N,
with a stiff source term:

∂tU + ∂xV = 0,(4.2)

∂tV +A2∂xU =
1

ε
(F (U)− V ), ε↘ 0.(4.3)

Here A2 is a constant diagonalizable matrix (practically, A is diagonal), and we assume
that the classical subcharacteristic condition of Whitham [15], and Liu [13] is satisfied,
namely, that the characteristic speeds of the full system (4.2) (4.3) “dominate” those
of the relaxed equilibrium system (4.1) : A2 ≥ F ′(U)2; see a more precise statement in
[14]. Let (U, V ) := (U ε, V ε) be the solution to (4.2), (4.3). If we consider the Chapman–
Enskog expansion

V ε = V0(U) + εV1(U, ∂xU) + · · · ,

where U is the solution to the equilibrium system, then (see, e.g., [18]) we classically
obtain

2This is called reconstruction via primitive function.
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V0(U) = F (U ε),

and finally, at the order ε, U ε satisfies

∂tU
ε + ∂xF (U ε) = ε∂x((A2 − F ′(U ε)2)∂xU

ε),(4.4)

which is well-posed, in view of the subcharacteristic condition. There are essentially
two classes of schemes introduced in [4]. In either case, the scheme is based on the
obvious splitting between the stiff ODE,{

∂tU = 0,
∂tV = 1

ε (F (U)− V ),
(4.5)

and the conservation law without source term,{
∂tU + ∂xV = 0,
∂tV +A2∂xU = 0.

(4.6)

The stiff ODE (4.5) is either approximated with an implicit (not A-stable) second-
order Runge–Kutta method or replaced by the equilibrium relation

V := F (U).(4.7)

The latter choice is much more natural as soon as the time step satisfies

∆t/ε >> 1,(4.8)

which is the practical case. As in [4], in order to approximate the convective part
(4.6), we use here the MUSCL reconstruction, based on the Riemann invariants. We
consider here the case where A = c I, c > 0, where I is the unit 2 × 2 matrix. The
corresponding vector-valued Riemann invariants are the linear functions

W = V +AU, Z = V −AU, W,Z ∈ R2,(4.9)

and the subcharacteristic condition is simply

c2 ≥ σ′(u).(4.10)

Taking into account the associate characteristic speeds, the corresponding reconstruc-
tions are

R+
j (xj+ 1

2
, W̄ ) = W̄j +

σ+
j

2
,

R−j (xj− 1
2
, Z̄) = Z̄j −

σ−j
2
,

where σ+
j = ∂xW (xj , .)∆x+O(∆x2) and σ−j = ∂xZ(xj , .)∆x+O(∆x2) are obtained

with the Van Leer slope limiter [3]. Using (4.9) to recover the original variables, we
obtain the numerical fluxes

Gj+ 1
2
(U) =

1

2c
(R+

j (xj+ 1
2
, V̄ +AŪ)−R−j+1(xj+ 1

2
, V̄ −AŪ)),

Gj+ 1
2
(V ) =

1

2
(R+

j (xj+ 1
2
, V̄ +AŪ) +R−j+1(xj+ 1

2
, V̄ −AŪ)).
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Finally, the MUSCL scheme used here combines this spatial approximation with a
second-order Runge–Kutta method [9], which is TVD, provided that the CFL condi-
tion 1/2 is satisfied. Now, we can describe the full relaxation schemes used here. In
the first case, we solve numerically the stiff ODE, with the above-mentioned implicit
second-order Runge–Kutta method [4] (see also [5]) to obtain the relaxation (called
relaxing in [4]) scheme{

Ū
n+ 1

4
j = Ūnj ,

V̄
n+ 1

4
j = V̄ nj − ∆t

ε (F (Ū
n+ 1

4
j )− V̄ n+ 1

4
j ),

(4.11)

{
Ū
n+ 2

4
j = Ū

n+ 1
4

j −∆tDconv
j V n+ 1

4 ,

V̄
n+ 2

4
j = V̄

n+ 1
4

j −∆tA2Dconv
j Un+ 1

4 ,
(4.12)

{
Ū
n+ 3

4
j = Ū

n+ 2
4

j ,

V̄
n+ 3

4
j = V̄

n+ 2
4

j + 2∆t
ε (F (Ū

n+ 1
4

j )− V̄ n+ 1
4

j ) + ∆t
ε (F (Ū

n+ 3
4

j )− V̄ n+ 3
4

j ),
(4.13)

{
Ū
n+ 4

4
j = Ū

n+ 3
4

j −∆tDconv
j V n+ 3

4 ,

V̄
n+ 4

4
j = V̄

n+ 3
4

j −∆tA2Dconv
j Un+ 3

4 ,
(4.14)

{
Ūn+1
j = 1

2 (Ū
n+ 4

4
j + Ūnj ),

V̄ n+1
j = 1

2 (V̄
n+ 4

4
j + V̄ nj ).

(4.15)

In the second case, we just replace steps (4.11) (resp., (4.13)) by imposing the equi-
librium relation (4.16) (resp., (4.17)):

V̄
n+ 1

4
j = F (Ū

n+ 1
4

j ),(4.16)

V̄
n+ 3

4
j = F (Ū

n+ 3
4

j ).(4.17)

The resulting scheme (4.16), (4.12), (4.17), (4.14), (4.15) is called the zero-relaxation
scheme.3 In the case of (2.1), where U = (u, v), we have also considered a physically
more natural relaxation system: ∂tu− ∂xv = 0,

∂tv − ∂x(c2u+ Y ) = 0,
∂tY = 1

ε (σ(u)− c2u− Y ).
(4.18)

The adaptation to this case is straightforward. We just note that the subcharacteristic
condition is still

c2 ≥ σ′(u).(4.19)

Remark. As is well known, if we approximate the convective part (4.6) by the
upwind scheme with a CFL = 1 and impose the equilibrium in (4.5) for the 4 × 4
system, then we just recover the Lax–Friedrichs scheme for the equilibrium system
(4.1). We note that the three eigenvalues of (4.18) are −c, 0, c and therefore are
interlaced with those of (2.1) in the sense of Chen, Levermore, and Liu [14].

3This is also called a relaxed scheme in [4].
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5. Numerical results. Before describing the results for the special p-system
(2.1), we have first considered the test-case of a Sod shock tube for one-dimensional
compressible Euler equations:

∂tρ+ ∂xm = 0,

∂tm+ ∂x(m
2

ρ + p) = 0,

∂tE + ∂x(mρ (E + p)) = 0,

(5.1)

p = (γ − 1)

(
E − 1

2

m2

ρ

)
, γ = 1.4.

5.1. The case of Sod’s shock tube. On this problem, we have shown the
results for the density and the velocity obtained with several schemes:

(i) The second-order staggered Lax–Friedrichs scheme (3.7), (3.8) (plotted with
+), and the zero-relaxation scheme (4.16), (4.12), (4.17), (4.14), (4.15) (plot-
ted with ×) (see Figure 5.1);

(ii) The relaxation scheme (4.11), (4.12), (4.12), (4.14), (4.15), with ε = 10−4

(plotted with +) and 10−8 (plotted with ×); see Figure 5.2.
The reference solution (plain line) has been obtained with the fourth-order WENO
scheme with ∆x = .00025. The numerical solution displayed with (+) or (×) is
computed at time t = .1644, the space and time steps are ∆x = .0025, ∆t = .0005565,
and the Riemann data are (ρ,m,E)− = (1, 0, 2.5), (ρ,m,E)+ = (.125, 0, .25).

We have compared these schemes more precisely. In Figure 5.3, we have simulta-
neously plotted the differences between the reference solution and

(i) LF2 plotted with (+),
(ii) the zero-relaxation plotted with (×).

In the same way, Figure 5.4 shows the differences between the zero-relaxation and
(i) the ε = 10−4 case plotted with (+),
(ii) the ε = 10−8 case plotted with (×).
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Comments.

1. The relaxation (“relaxing”) and the zero-relaxation (“relaxed”) schemes have
been tested in [4] with the same matrix A2, with a CFL = 0.75 and ∆x =
0.005 instead of CFL = 0.5 and ∆x = 0.0025 here, which may explain why
our numerical results are nicer.

2. All the schemes studied here give comparable results. We see in Figures 5.1
and 5.3 that the LF2 scheme produces a slightly sharper shock than the zero-
relaxation (one grid point instead of three), but on the contrary the contact
discontinuity and the rarefaction wave are slightly more spread out.

3. Not surprisingly, in Figures 5.2 and 5.4, the results of the zero-relaxation
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scheme are almost exactly the same—up to 10−6—as in the case ε = 10−8.
In fact, the curves are indistinguishable. On the other hand the waves are
(slightly) more spread out in the ε = 10−4 case, with a maximal difference of
10−2 with the zero-relaxation case. We recall that ∆t ' 5.6 10−4, so that in
this case ∆t/ε = 5.6 = O(1). In all cases the maximal difference is reached
at the shock or at the contact discontinuity (except of course for the velocity
and the pressure) but is also not negligible at the edges of the rarefaction
wave (see Figures 5.3 and 5.4).

4. In the following, we will compare only the zero-relaxation and the second-
order staggered Lax–Friedrichs scheme with the other high-order schemes.

5.2. The special p-system. We have considered the case where the parameters
given in section 2 are c0 = 0.75, u0 = 0.25, x0 = 0.25, λ = 1, x1 = 1, t1 = 1.

The initial data are alternately N := (u0, 0) and S := (−u0, 0). The space and time
steps are ∆x = 2.10−3 and ∆t = 5.10−4; the CFL condition is 1/3. The solution
therefore consists of 4 × 4 basic patterns. See the graph of the strain-stress relation
σ(u) in Figure 5.5. We have considered

(i) The second-order zero-relaxation scheme (4.16), (4.12), (4.17), (4.14), (4.15),
either for the 4 × 4 system (4.2), (4.3) (see Figure 5.6) or for the physically
more natural 3× 3 system (4.18) (see Figure 5.7);

(ii) The second-order staggered Lax–Friedrichs scheme (3.7), (3.8) (see Figure
5.8);

(iii) The ENO schemes (3.6) of order 2 (see Figure 5.9) or of order 4 (see Figure
5.10);

(iv) The WENO scheme of order 4 (see Figure 5.11).
In all the figures, the results are displayed at final time t = 1, and the u (resp., v)

component is displayed in part (a) (resp., (b)). We have also displayed in Figures 5.13
and 5.14 the numerical results—only with the second-order zero-relaxation scheme—
at time t = 0.75, which corresponds to the inflection point at u = 0; see Figure
5.5.
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Fig. 5.6.

Comments. All the schemes are comparable—with sharper fronts for the fourth-
order schemes—and give quite good results, apart from the numerical spikes. Those

numerical spikes involve only the velocity v and the biggest ones are located near
the centers of interacting compression waves, but there are also smaller ones at the
inflection point u = 0, e.g., at t = 0.75 (see Figure 5.13(a)).

We first thought that this phenomenon was similar to the spikes produced by
(first-order) Lax–Friedrichs scheme near a slowly moving shock [11]. In fact, this is not
the case. The reason for those spikes is double. First, the exact solution itself presents
big spikes in v, except exactly at time t = 1 (see Figure 2.2), and next, the numerical
propagation speed is slightly smaller than the exact one. Therefore, the numerical
solution depicted, for instance, in Figure 5.7, would be a better approximation of
the exact solution at some time t∗ = 1 − O(∆t). Similarly, for instance, with the
zero-relaxation scheme, the numerical results at time t = 1 + 7∆t are much better
(see Figure 5.12). The same phenomenon occurs near the inflection point at time
t = 0.75 + 6∆t. See Figure 5.14(a). (We recall that ∆t = 5.10−4.)
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6. Conclusion. In this paper, we have considered and compared several classes
of high-order finite volume schemes, first on Sod’s shock tube for compressible Eu-
ler equations and then on a one-dimensional pathological example, where even the
exact solution contains severe spikes due to the interaction of centered compression
waves. All these schemes give comparable results and work rather well, considering
the stiffness of the problem. The numerical spikes are essentially due to the fact that
the numerical propagation speed is slightly smaller than the exact one, so that the
numerical solution “is late.” If the problem were linear, a classical Fourier analysis
would probably explain this phenomenon.
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Fig. 5.11.



1602 PHILIPPE HOCH AND MICHEL RASCLE

−1 0 1
−0.25

−0.2

−0.1

0

0.1

0.2

0.25

 ZERO−RELAXATION SCHEME ON (3X3) 

x

u

−1 0 1
−0.25

−0.2

−0.1

0

0.1

0.2

0.25

 ZERO−RELAXATION SCHEME ON (3X3) 

x
v

(a) (b)
Fig. 5.12.

−1 0 1
−0.25

−0.2

−0.1

0

0.1

0.2

0.25

 ZERO−RELAXATION SCHEME 

x

u

−1 0 1
−0.25

−0.2

−0.1

0

0.1

0.2

0.25

 ZERO−RELAXATION SCHEME 

x

v

(a) (b)
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