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Abstract. Second-order accurate upwind and
centered schemes are presented in a framework that
facilitates their analysis and comparison. The up-
wind scheme employed consists of a reconstruc-
tion step (Van Leer 1977) followed by an upwind
step (Roe 1981). The two centered schemes are
of Lax-Friedrichs (L-F) type. They are the non-
staggered versions of the N-T scheme (called ORD
in Nessyahu-Tadmor 1990) and the CE/SE method
with � = 1=2 (Chang 1995). The upwind scheme is
extended to the case of two spatial dimensions (2D)
in a straightforward manner. The N-T and CE/SE
schemes are extended in a manner similar to the
2D extensions of the CE/SE schemes by Wang and
Chang (1999) and Zhang et al. (2002); the slope
estimates, however, are simpli�ed. Fourier stabil-
ity and accuracy analyses are carried out for these
schemes for the standard 1D and the 2D quadri-
lateral mesh cases. In the nonstandard case of a
triangular mesh, the triangles must be paired up
when analyzing the upwind and N-T schemes. An
observation resulting in an extended N-T scheme
which is faster and uses only one third of the stor-
age for 
ow data compared with the CE/SE method
is presented. Numerical results are shown. Other
improvements to the schemes are discussed.

Introduction. When solving a 
uid 
ow prob-
lem, a researcher has the option of choosing between
upwind and centered schemes using a quadrilat-
eral or a triangular mesh. In this paper, trade-o�s
among these choices are discussed. Relations be-
tween schemes and their strengths and weaknesses
are shown, and improvements are suggested.
The schemes employed are among the simplest

second-order accurate schemes that can capture
shocks and deal with unsteady problems. Both the
upwind and centered schemes here use piecewise-
linear reconstructions, i.e., MUSCL interpolants

(monotone upwind schemes for conservation laws,
Van Leer, 1977), which extend Godunov's piece-
wise constant method (1959). The key di�erence is
that for the upwind scheme, numerical dissipation
is added by the upwind step (Roe 1981, 1986), while
for the centered schemes, dissipation is obtained by,
loosely put, averaging the neighboring data (scheme
ORD of Nessyahu and Tadmor 1990).

The upwind step has a few drawbacks. Roe's

ux-di�erence splitting, which is mathematically
rigorous and among the most popular, may cause
oscillations as in the case of a slow-moving shock,
or instability as in the carbuncle problem. The
AUSM scheme (Liou and Ste�en Jr. 1992, Wada
and Liou 1997) does not have these problems, but
it is not clear to this author why the scheme works.
The upwind step is also sometimes perceived to be
costly and di�cult to grasp. In spite of these prob-
lems, upwind schemes are popular because they
work well for a large class of 
ows. The upwind
step employed here is Roe's splitting with an en-
tropy correction described in Huynh (1995a). It
can be derived by diagonalization and coded by
stepping across one acoustic wave. The resulting
scheme is concise and economical; the presentation
below is also simpler than most presentations in the
literature. Numerical solutions obtained with this
upwind scheme for the 1D Euler equations can be
found in Huynh (1995a,b). The 2D extension of this
scheme is conceptually straightforward. For other
versions of upwind schemes, see, e.g., Barth and
Jespersen (1989), Roe (1989), Hirsch (1990), and
Venkatakrishnan (1995).

To avoid upwinding, a second-order accurate
scheme, which extends the �rst-order scheme of
Lax-Friedrichs (L-F), was introduced by Nessyahu
and Tadmor (1990). There, the reconstruction step
is the same as that of the upwind scheme, but
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the upwind step is avoided by the use of a stag-
gered mesh. The scheme employed here, however,
is the nonstaggered version obtained by overlaying
two staggered meshes to form a regular mesh. The
drawback of the nonstaggered version is that the
computing time doubles. The main reason this ver-
sion is chosen is that the 2D extension retains its key
advantage of simplicity especially when the mesh is
triangular. In addition, the mesh and the boundary
conditions can be chosen to be the same as those of
the upwind scheme. The staggered version, on the
other hand, requires two sets of meshes and two sets
of boundary conditions|compromising the advan-
tage of simplicity. Moreover, for a triangular mesh,
the extension of the staggered version is quite in-
volved (Arminjon et al. 1997) and, as will be dis-
cussed, the advantage in computing time may no
longer hold. Therefore, unless otherwise stated, we
deal only with the the nonstaggered version below.
Note that since there is no one-sided bias, the N-T
scheme is centered. Also note that these L-F type
centered schemes are di�erent from the semidiscrete
centered schemes made popular by Jameson et al.
(1984).

While the numerical dissipation of the N-T
scheme is a lot less than that of the L-F method,
it is still considerable. The CE/SE or conservation
element and solution element method (Chang 1995)
provides a way to adjust dissipation for these cen-
tered schemes. Compared with the N-T scheme,
the mesh, the balancing of 
uxes, and the updates
of the cell average quantities are essentially iden-
tical. The di�erence is in the calculation of the
slopes (of the linear interpolant). For CE/SE, the
slopes must be stored, and due to the way the slopes
are updated, numerical dissipation can be adjusted
via a parameter called �. For the general CE/SE
scheme (� 6= 1=2), the slope calculation is quite
di�erent from that in a typical MUSCL approach.
When � = 0, the scheme has no numerical dissi-
pation, i.e., it is reversible in time. Currently, the
CE/SE member employed in essentially all practi-
cal calculations corresponds to � = 1=2. For this
reason, we restrict our attention to this member
and, from this point on, unless otherwise stated,
the term CE/SE refers to the member with � = 1=2.
Note that there are numerous di�erences in termi-
nology between (Nessyahu and Tadmor 1990) and
(Chang 1995); here, the terminology in the former
is often employed.

The CE/SE schemes were extended to 2D for un-
structured triangular meshes by Wang and Chang
(1999) using the nonstaggered version. What is

novel about this extension is that the spatial do-
main where each reconstruction is valid at the be-
ginning of the time level is a hexagon, which is
roughly twice as big as the triangular cell. This
CE/SE approach to extension is also applied here
to the N-T scheme. (Such an extension was men-
tioned as a coupled version for the CE/SE scheme
in Chang et al. (1999) and has recently been
incorporated|independently from this work|as
an option in the CE/SE code; private commu-
nication with Drs. Ananda Himansu, Ching Y.
Loh, and Xiao-Yen Wang. Note, however, that
the extended N-T scheme presented here has nu-
merous di�erences resulting in a scheme which
is faster and requires considerably less storage.)
The quadrilateral-mesh extension for the CE/SE
method can be found in Zhang et al. (2002); see
also Cook (1999). The CE/SE schemes have been
applied to solve numerous practical problems in two
and three dimensions with a lot of success, espe-
cially in aeroacoustics.

For a structured quadrilateral mesh, in a manner
similar to the 1D case, the nonstaggered mesh in
Zhang et al. (2002) can be obtained by overlaying
two staggered meshes in Arminjon et al. (1995)
and Jiang and Tadmor (1998) (see also Jiang et al.
1998). For a triangular mesh, however, a similar
statement does not hold; in fact, the nonstaggered
extension in Wang and Chang (1999) appears to
have numerous advantages over a staggered-mesh
extension (remark (c) in x6 below).
In this paper, the schemes involved are �rst pre-

sented for the 1D advection equation where key
ideas and trade-o�s can already be seen. It is shown
that the N-T and the CE/SE (� = 1=2) schemes are
respectively the centered counterparts of Van Leer's
�rst and second upwind schemes. Next, the exten-
sions of the upwind, N-T, and CE/SE schemes to
the 1D Euler equations are explained. Then, exten-
sions to the 2D Euler equations on a quadrilateral
and a triangular mesh as well as the simpli�ed slope
estimates are described. Comparison of schemes via
Fourier stability and accuracy analyses are carried
out. Here, for a triangular mesh, we must pair up
the downward and upward pointing triangles when
analyzing the upwind and N-T schemes.

Concerning the two L-F type methods, the N-T
and CE/SE schemes are shown to produce essen-
tially the same numerical solutions. The former has
the advantage of better coupling; consequently, it
converges better for a steady state problem. In ad-
dition, the following observation yields an extended
N-T scheme which is faster and requires consider-
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ably less storage than the CE/SE method (slopes
need not be stored): instead of gathering 
uxes to
update the solution, 
uxes are distributed to the
neighboring cells. This observation|made possible
in part by the simpli�ed slope estimates|results
in each cell needing to be visited only once during
each time step instead of three or four times as in
the case of the CE/SE scheme (three for a triangu-
lar mesh, and four for a quadrilateral mesh).
This paper is essentially self-contained. Readers

who are interested only in the Euler equations can
start with x4. The paper is organized as follows.
In x1, the �rst-order accurate upwind and centered
schemes are presented as two di�erent ways of sta-
bilizing the Euler forward scheme. In x2, upwind
schemes are developed for the 1D advection equa-
tion using piecewise linear reconstructions. The
centered counterparts of these upwind schemes are
described in x3; here, a comparison via Fourier anal-
ysis is carried out. Section 4 deals with extensions
to the case of the 1D Euler equations; x5, the 2D
Euler equations on quadrilateral meshes; and x6,
on triangular meshes. In x7, Fourier analysis for
the 2D case is carried out. Numerical examples are
shown in x8, and conclusions are presented in x9.
The author wishes to thank Prof. B. van Leer,

Mr. C. Ste�en, Jr., Drs. S.-C. Chang, R. Chima, A.
Himansu, D. Jacqmin, P. Jorgenson, M.-S. Liou, C.
Y. Loh, A. Suresh, and X.-Y. Wang for several illu-
minating discussions. This work was supported by
the Engine System Noise Reduction project, which
is part of the Quiet Aircraft Technology Program
at the NASA Glenn Research Center.

1. First-order accurate schemes for advec-
tion. The �rst-order case is straightforward, but it
conveys the ideas and the trade-o�s. In addition,
improvements and nonstandard observations will be
made. The simplest discretization|forward-time
centered-space (FTCS)|leads to the Euler forward
scheme, which is unstable. To stabilize this scheme,
we need numerical dissipation. Dissipation can be
added by using an upwind-biased di�erence, which
results in an upwind scheme, or by using a dissi-
pative start-o� value, which results in a centered
scheme.
For simplicity, consider the advection equation

with constant speed a,

@u
@t

+ a
@u
@x

= 0; (1:1a)

u(x; 0) = u0(x); (1:1b)

where t is time, x distance, and u0(x) the initial
condition. By assuming that u0(x) is periodic,
boundary conditions are straightforward and are
omitted. The exact solution is

u(x; t) = u0(x� at): (1:2)

To discretize the above problem, let h be the
mesh spacing, and xj = jh, j = 0; 1; 2; : : : be a uni-
form mesh. Let �t be the time step and tn = n�t
be the time level. At time tn, let unj be an approx-
imation to the the solution u at xj. Assume that
we know unj for all j; we wish to calculate un+1j .
To simplify the notation, the superscript n in unj
is omitted and the data is denoted by uj; all other
superscripts, however, are retained.
Next, set

� = a�t=h: (1:3a)

Then, the quantity j�j is the Courant number. As-
sume that the time step satis�es the CFL (Courant,
Friedrichs, and Lewy) condition

j�j � 1; (1:3b)

loosely put, information propagates no more than
one mesh size per time step.

1.1. Euler forward scheme. This scheme is
given by the FTCS di�erencing,

un+1j = uj � � 1
2(uj+1 � uj�1): (1:4)

Again, unj is abbreviated to uj.
For the Fourier (or Von Neumann) stability anal-

ysis, set xj = j and

uj = eIjw;

where I =
p�1 and w is the wave number, �� �

w < �. Equation (1.4) implies

un+1j = eIjw [ 1� � 1
2 (e

Iw � e�Iw) ] :

The quantity in the square brackets is the ampli�-
cation factor of the Euler forward scheme:

A = 1� � [12 (e
Iw � e�Iw)]: (1:5)

If a � 0, then, the CFL condition (1.3b) implies
0 � � � 1. Next, the slope ux by central di�erence

at j = 0 is given by 1
2
�!
CE = 1

2(e
Iw�e�Iw) shown in

Fig. 1.1, where the point C corresponds to j = �1,
A to j = 0, and E to j = 1. Thus, the ampli�cation
factor lies on the line segment AB, where A corre-
sponds to � = 0 and B, � = 1. Since this range is
outside the unit circle, the scheme is unstable. Also
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Fig. 1.1. Fourier Analysis. The circle is of radius 1
in the complex plane. The ampli�cation factor for
the Euler forward scheme lies on the line segment
AB; that for the �rst-order upwind scheme, AC;
and that for the L-F scheme, DC. To reduce nu-
merical dissipation for the L-F scheme, instead of
D, we can employ a start-o� value which blends D
and A, e.g., (1� j�j)uj + j�j 12 (uj�1 + uj+1).

note that after a time step corresponding to �, the
exact solution at j = 0 is e�I�w. The ampli�cation
factor is an approximation of this exact solution.

1.2. First-order accurate upwind scheme.
The Euler forward scheme can be stabilized by an
upwind-biased di�erence for (ux)j . The result is
(Courant, Isaacson, and Rees, 1952),

un+1j =

�
uj � �(uj � uj�1) if a � 0,
uj � �(uj+1 � uj) otherwise.

(1:6)

The ampli�cation factor for the �rst-order upwind
scheme is

A =

�
1� �(1� e�Iw) if a � 0,
1� �(eIw � 1) otherwise.

(1:7)

If a � 0, then 0 � � � 1, and the ampli�cation
factor lies on the line segment AC shown in Fig. 1.1.
Since this range is inside the unit circle, the scheme
is stable.
Notice that if the wind direction is incorrectly

determined|for systems of nonlinear equations, we
may potentially run into this problem due to vari-
ous approximations|the solution would follow the
direction EA but would lie outside the circle and, as

a result, the scheme may encounter stability prob-
lems.

1.3. First-order centered scheme (L-F).
Another way to stabilize the Euler forward scheme
is by employing a dissipative start-o� value: replac-
ing uj in (1.4) by the average of the two neighbor-
ing values. The result is the Lax-Friedrichs (L-F)
scheme (Lax 1954):

un+1j = 1
2(uj�1 + uj+1)� � 1

2 (uj+1 � uj�1): (1:8)

Note that when �t = 0, the solution, instead of
being uj, is 1

2 (uj�1 + uj+1). Such a quantity is
called a start-o� value here.
The ampli�cation factor for the L-F scheme is

A = 1
2 (e

Iw + e�Iw)� � 1
2 (e

Iw � e�Iw): (1:9)

If a � 0, then 0 � � � 1, and the ampli�cation
factor lies on the line segment DC shown in Fig. 1.1.
As a result, the scheme is stable. Observe that the
two key advantages of the L-F scheme are simplicity
and stability (the solution lies well inside the unit
circle).
Concerning the disadvantages, by (1.8), the so-

lution at j does not depend on the data uj , but
depends only on the data at the two neighboring
indices. Consequently, the scheme has the odd-even
decoupling problem. This problem can also be seen
via the staggered-mesh formulation. Indeed, sup-
pose at time level n, we have data at even indices
only. At time level n + 1, (1.8) yields the solu-
tion at all odd indices. At time level n + 2, we
can obtain the solution at all even indices again,
etc. Such a scheme employs a staggered mesh. The
other staggered-mesh solution has data at odd in-
dices at time level n. Thus, the regular-mesh ver-
sion (1.8) above consists of two completely indepen-
dent staggered-mesh solutions. As a consequence,
the L-F scheme needs twice the number of mesh
points to have the same resolution as the �rst-order
upwind scheme. (This observation can also be seen
from Fig. 1.1.) In other words, the convenience of a
regular mesh is achieved at the cost of a) twice the
amount of calculations and b) the odd-even decou-
pling problem.
The next two observations hold for the L-F as

well as the second-order L-F type schemes in x3.
First, in an unsteady calculation, if we wish to an-
imate the solution, we should use the solutions at
even time steps only (or odd ones only). Similarly,
to check for convergence to a steady state, one must
compare the solution at time level n with that at
time level n � 2. Second, when � = 0, the L-F
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scheme has no phase error while the damping er-
ror reaches a maximum. Consequently, in practical
calculations, it is desirable to employ a time step as
large as possible to minimize damping.

1.4. Scheme blending Lax-Friedrichs and
Euler forward. The two drawbacks of the L-F
scheme (odd-even decoupling and too much numer-
ical dissipation) can be dealt with by blending it
with the Euler forward method. In other words, in
Fig. 1.1, instead of starting o� at the point D, we
can employ a start-o� value which blends D and
A: the quantity 1

2 (uj�1+ uj+1) in (1.8) is replaced
by (1 � j�j)uj + j�j 12(uj�1 + uj+1). The resulting
scheme is

un+1j = [(1� j�j)uj + j�j 12 (uj�1 + uj+1)]

� � 1
2 (uj+1 � uj�1):

(1:10)
The above centered scheme turns out to be iden-
tical to the �rst-order upwind scheme. For the
case of second-order accuracy, however, the blended
scheme is di�erent from the second-order upwind
one.
Note that in extending (1.10) to the Euler equa-

tions, the quantity j�j takes the form jAj�t=hwhere
A is the Jacobian matrix. For simplicity, jAj can be
replaced by the sum of the magnitude of the local

ow speed and the speed of sound.

2. Upwind schemes via MUSCL approach.
The above schemes were derived by �nite di�erenc-
ing. To ensure that shocks are captured, 
uxes need
to be balanced via the integral form of the equation
(Lax 1954). Oscillations near shocks can be sup-
pressed by using linear functions (or polynomials)
to approximate the data in each cell and by limiting
the slopes of these linear functions so that they are
not too steep near a discontinuity (Van Leer 1977).
Integrating (1.1a) on the interval [�; �], one ob-

tains

@
@t

Z �

�
u(x; t) dx+ au(�; t) � au(�; t) = 0; (2:1)

where au(�; t) is the 
ux (or rate of 
ow) of u across
interface � at time t.
Next, let xj+1=2 = (j + 1=2)h be the cell inter-

faces and xj = jh the cell centers of a uniform
mesh, j = 0; 1; 2; : : : For each cell [xj�1=2; xj+1=2],
second-order accuracy is obtained by applying the
midpoint rule to (2.1):

un+1j = uj +
�t
h (aun+1=2j�1=2 � aun+1=2j+1=2 ); (2:2)

Fig. 2.1. Interface 
uxes for second-order accurate
upwind schemes. At each interface j + 1=2 time
level n + 1=2, the reconstruction rj to the left of
the interface yields uL while rj+1 yields uR. The
upwind value is employed for the 
ux calculation.

here, uj (i.e., unj ) approximates the average value of

u in the cell j at time tn, and un+1=2j+1=2 approximates
the value at the interface j + 1=2 at time level n+
1=2. Assume that we know the data uj (i.e., unj )
for all j; we wish to calculate the solution un+1j .

2.1. First-order upwind scheme. For the
�rst-order case, in each cell j, the data are approx-
imated by a constant function: rj(x) = uj. Next,
applying the FTCS (forward-time centered-space)
approximation to (2.1), one obtains

un+1j = uj + �t
h (auj�1=2� auj+1=2): (2:3)

At each interface j+1=2, the data to the left is the
constant function uj, that to the right, uj+1. The

ux is given by the upwind choice

auj+1=2 =

�
auj if a � 0,
auj+1 otherwise.

(2:4)

For consistency with the case of the Euler equations
later, at each interface, a and u are combined as
above.

2.2. Second-order upwind scheme. For
second-order accuracy, the data are approximated
by a linear function in each cell. To calculate the

ux aun+1=2j+1=2 in (2.2), suppose f(ux)jg are known.
They can be approximated by, e.g., the central dif-
ference (also called the average slope)

(ux)j =
1
2h (uj+1 � uj�1): (2:5)

(A weighted average for (ux)j will be discussed
later.) The time derivative (ut)j follows from the
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advection equation,

(ut)j = �a(ux)j : (2:6)

In the domain [xj�1=2; xj+1=2]� [tn; tn+1], the solu-
tion can then be approximated by a linear function
rj called the reconstruction,

rj(x; t) = uj + (ux)j(x� xj) + (ut)j(t� tn): (2:7)

Note that the term `reconstruction' is typically used
for rj(x; tn). While rj(x; t) was employed by Harten
et al. (1987) and Nessyahu and Tadmor (1990),
it was not given a name. Here, we use the term
`reconstruction' in the extended sense above.
At the two interfaces of cell j, we can march to

the half time step using rj . At each interface xj+1=2
and time tn+1=2, we now have two values. The value
from cell j is denoted by uL; that from j + 1, by
uR, as shown in Fig. 2.1,

uL = uj +
h
2 (ux)j +

�t
2 (ut)j ;

uR = uj+1 � h
2 (ux)j+1 +

�t
2 (ut)j+1:

The upwind choice for the 
ux is

aun+1=2j+1=2 =

�
auL if a � 0,
auR otherwise.

(2:8)

This 
ux and (2.2) complete the description of the
second-order upwind scheme.
The calculation (2.6) of the time partial deriva-

tive from the spatial one follows Hancock's obser-
vation (Van Albada et al. 1982). It simpli�es the
extension to systems of equations. Also notice that
the Taylor series rj(x; t) yields a result identical to
that by the method of characteristics (1.2) applied
to the linear initial condition rj(x; tn).
Note that if a = 0, then there is ambiguity in

de�ning the interface value un+1=2j+1=2 in (2.8), but
since the 
ux is zero, this ambiguity causes no prob-
lem. In fact, the 
ux can be expressed without a
conditional statement:

aun+1=2j+1=2 = 1
2 (auL + auR) � 1

2 jaj(uR � uL): (2:9)

Similarly, for systems of equations, there is no ambi-
guity in splitting the 
ux, and the technique works
well. Splitting the variables, however, may result
in unwanted oscillations. Also note that the term
�1
2 jaj(uR � uL) produces the upwind-biased e�ect

and thus numerical dissipation.
If a � 0, expressions (2.2) and (2.5{2.8) yield the

following solution

un+1j = uj + �(uj�1 � uj) +

1
4�(1� �)[uj + uj�1 � uj�2 � uj+1]:

This scheme was formulated via �nite di�erencing
by Fromm(1968). The above reconstruction formu-
lation follows that of (Van Leer 1977) except that
the method of characteristics there is replaced by
the Taylor series (2.7) here. The scheme is the �rst
and also the least accurate among a series of �ve
schemes in the cited reference.
Fourier analysis yields the following ampli�cation

factor for the second-order upwind scheme,

A = 1 + �(e�Iw � 1) +

1
4�(1� �)(1 + e�Iw � e�2Iw � eIw):

(2:10)
To avoid oscillations near a discontinuity, instead

of the average (2.5), a weighted average (Van Al-
bada et al. 1982) can be employed for the slope.
For any two real variables x and y, de�ne

wtav (x; y) =
x2y + y2x

x2 + y2 + 10�20
: (2:11)

If x=y � 1, the above expression yields essentially
the average 1

2(x+ y); on the other hand, if x=y � 0
or1, the result is essentially the value with smaller
modulus. The slope formula takes the form

(ux)j = 1
h wtav(uj+1 � uj ; uj � uj�1): (2:12)

Note that between two slopes 1
h (uj � uj�1) and

1
h (uj+1�uj), the above weighted average produces
a result which is biased toward the less steep slope.
Since such a result is closer to the zero slope of the
�rst-order upwind scheme than the result by the av-
erage (2.5), the above weighted average adds a con-
siderable amount of numerical dissipation. In fact,
it yields a scheme which is only �rst-order accurate
near an extremum|a well-known drawback of all
standard weighted averages or limiter functions.

2.3. Scheme II of Van Leer. Next, we de-
scribe an upwind scheme which carries along (stores
and updates) the interface values. The scheme is
the second one presented in (Van Leer 1977) ex-
cept, again, the method of characteristics employed
there is replaced by the Taylor series (2.7) here.
While this upwind scheme does not extend easily
to the case of the Euler equations (more on this
later), its centered counterpart, which turns out to
be the CE/SE scheme with � = 1=2, does.
Suppose the data consist of the cell averages fujg

as well as the interface values fuj+1=2g. We wish to
calculate fun+1j g and fun+1j+1=2g. First, instead of the
average (2.5), the slope is de�ned via the interface
values:

(ux)j =
1
h (uj+1=2 � uj�1=2): (2:13)
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With the above slope formula, the cell averages
fun+1j g are calculated as before, by (2.2) and (2.6){
(2.8). The interface values are updated by using
the reconstruction in the upwind cell:

un+1j+1=2 =

�
rj(xj+1=2; tn+1) if a � 0,
rj+1(xj+1=2; tn+1) otherwise.

(2:14)

This completes the description of the scheme.
The above scheme has the same leading (phase)

error compared with the scheme using (2.5). The
dissipation error, however, is reduced by two thirds.
Thus, carrying along the interface values improves
the dissipation error considerably.
Note that extending (2.14) to the Euler equations

appears to be di�cult: when a = 0, there is no
ambiguity in de�ning the 
ux, but the choice of the
interface value becomes ambiguous.

3. Centered schemes via MUSCL appoach.
Each upwind scheme in x2 has a centered counter-
part in this section. For centered schemes, the spa-
tial region where the reconstruction is valid at time
t = tn, which is called the reconstruction cell here,
is twice the size of the original cell. Together, these
reconstruction cells cover the domain twice whereas
the original cells cover the domain once only.
More precisely, on the same mesh of cells

[xj�1=2; xj+1=2] as in the upwind case, let the recon-
struction cell j be the interval [xj�1; xj+1] of length
2h de�ned by the centroids of the two neighboring
cells. Assume that we know the data uj (i.e., unj )
for all j; uj approximates the average value of u on
the reconstruction cell j. We wish to calculate the
solution un+1j . See Fig. 3.1.

3.1. First-order centered scheme (L-F).
Here, we rederive the L-F scheme (1.8) from the
MUSCL perspective. In each reconstruction cell j,
the data are approximated by a constant function:
rj(x) = uj. Next, when updating the solution at j,
the reconstruction rj is ignored, while rj�1 and rj+1
are employed. See Fig. 3.1. Thus, the start-o� (av-
erage) value is

u�j =
1
2 (uj�1 + uj+1): (3:1)

Applying the FTCS approximation to (2.1) on the
reconstruction cell j, one obtains

un+1j = 1
2 (uj�1+uj+1)+ �t

2h (auj�1�auj+1): (3:2)
Here, there is no need of upwinding because the 
ux
auj�1 is evaluated at the center of the reconstruc-
tion cell j� 1, and the 
ux auj+1, the center of the
reconstruction cell j + 1.

Fig. 3.1. Centered schemes. The interval
[xj�1; xj+1] is called the reconstruction cell j (the
spatial region where the reconstruction is valid at
time t = tn). The two adjacent reconstruction cells
j and j + 1 overlap on [xj; xj+1]. For each j,
the reconstruction rj(x; t) is valid on the triangle
de�ned by the three corners (xj�1; tn), (xj+1; tn),
(xj ; tn+1). When calculating un+1j , the reconstruc-
tion rj is ignored, while rj�1 and rj+1 are em-
ployed. For second-order accuracy, the values at
the points marked by � and � are needed. They
are uj�1 + �t

2 (ut)j�1, uj+1 + �t
2 (ut)j+1; and

uj�1 + h
2 (ux)j�1, and uj+1 � h

2 (ux)j+1.

The next remark concerns the initial values for
the L-F scheme. The remark also holds for the N-T
and the CE/SE schemes below. Suppose the ini-
tial condition is a step function, say, u0(x) = 1 for
x � 0, and u0(x) = 0 otherwise. Suppose the cell
centers are xj = j, j = �N; : : : ; N where N = 50.
Then the solution at a later time tn in standard
textbooks exhibits a staircase pattern: u1 = u2,
and u3 = u4, etc. One way to avoid this problem is
to de�ne the initial data as the average of u0(x) on
the reconstruction cell j, i.e., u00 = 1=2.

3.2. Second-order centered scheme (N-T).
This scheme is the centered counterpart of the
second-order accurate upwind scheme of x2.2. It
was presented by Nessyahu and Tadmor (1990) us-
ing limiter functions of minmod type to de�ne the
slope and was named ORD. For consistency with
the upwind scheme here, Van Albada's weighted
average is employed. In addition, the average slope
(2.5) makes Fourier analysis possible.
As in the upwind case, the slopes are given by

(ux)j = 1
2h (uj+1 � uj�1); (3:3)

(ut)j = �a(ux)j : (3:4)

At time tn, on the reconstruction cell j, the data is
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assumed to be the linear function uj+(ux)j(x�xj).
Since information propagates a distance no more
than h per time step, information from outside the
reconstruction cell has not reached its center regard-
less of the wind direction. As a result, the above ut
is valid in the triangle de�ned by the three corners
(xj�1; tn), (xj+1; tn), (xj ; tn+1). In this region, the
solution can be approximated by, as in (2.7),

rj(x; t) = uj + (ux)j(x� xj) + (ut)j(t� tn): (3:5)

When updating the solution at j, again, the re-
construction rj is ignored, while rj�1 and rj+1 are
employed. The start-o� (average) value is

u�j =
1
2 [uj�1+

h
2 (ux)j�1+uj+1� h

2 (ux)j+1]: (3:6)

See Fig. 3.1. The midpoint rule for (2.1) on the
reconstruction cell j yields

un+1j = u�j +
�t
2h (au

n+1=2
j�1 � aun+1=2j+1 ): (3:7)

Note that the use of u�j instead of uj results in
numerical dissipation which stabilizes the scheme.
The values un+1=2j�1 and un+1=2j+1 are evaluated by the
reconstruction function: for any j,

un+1=2j = uj + �t
2 (ut)j : (3:8)

The above completes the description of the N-T
scheme.
With expression (3.3) for the slope, the result is,

un+1j = 1
2 [uj�1 +

1
4 (uj � uj�2) +

uj+1 � 1
4 (uj+2 � uj) ] +

1
2 �
�
[uj�1� 1

4�(uj � uj�2)] �
[uj+1 � 1

4�(uj+2 � uj)]
	
:

(3:9)

At �rst glance, since the right hand side above
involves uj, the N-T scheme appears to be (odd-
even) coupled. This coupling, however, is not a
strong coupling, as can be seen in the following ex-
ample. Suppose the data at odd indices are 1 and
those at even, �1. Then the solution by the N-T
scheme after two time steps remains identical to the
initial data for all time step sizes. It is desirable for
a scheme to damp out this odd-even data. In spite
of this observation, based on the author's experi-
ence, the N-T scheme produces solutions with no
odd-even noise in practice provided that the ini-
tial condition is appropriate as discussed in the last
paragraph of x3.1.
The ampli�cation factor of the N-T scheme is

given by, after some algebra,

A = cos(w)�I � sin(w)+ 1
2(1��2) sin2(w): (3:10)

The next remark concerns the staggered-mesh
version. At time level n, suppose we have data at
even indices only, and we wish to calculate the so-
lution at odd indices. Then, the slope at an even
index 2j is (u2j+2 � u2j�2)=(4h). For the non-
staggered version above, the slope at index 2j is
(u2j+1�u2j�1)=(2h). Because the latter slope uses
values at locations closer to j, the numerical dissi-
pation of the nonstaggered version is only 1/3 that
of the staggered version. The phase errors, however,
are essentially the same (for small wave numbers).
Thus, the nonstaggered version costs twice as much
as the staggered one, but its numerical dissipation
improves by two thirds.
As in the �rst-order case, to reduce numerical

dissipation for the nonstaggered N-T scheme when
� is small, we can use a blended start-o� value: with
u�j de�ned by (3.6)

un+1j = f(1� j�j)uj + j�ju�jg +
1
2h�t(au

n+1=2
j�1 � aun+1=2j+1 ):

(3:11)

The resulting scheme also damps the data of 1 at
odd and �1 at even indices.

3.3. CE/SE scheme. The centered counter-
part of Van Leer's second scheme in x2.3 turns out
to be Chang's CE/SE scheme (the � = 1=2 mem-
ber). To show this fact, we describe the CE/SE
scheme as one which carries along (stores and up-
dates) the slopes, and then as one which carries
along the interface values.
At time tn, suppose the data fujg as well as the

slopes f(ux)jg are known and stored. We wish to
calculate fun+1j g and f(ux)n+1j g. The cell average

quantities fun+1j g are updated exactly as in the N-T
case: by (3.4){(3.8). To update the slope, �rst, for
each j, the point value (as opposed to cell average)bun+1j is calculated by the reconstruction:

bun+1j = rj(xj; t
n+1) = uj + (ut)j�t: (3:12)

The slope is updated by the two neighboring point
values:

(ux)
n+1
j = 1

2h(bun+1j+1 � bun+1j�1 ): (3:13)

If the weighted average is employed, the cell average
un+1j is also needed:

(ux)
n+1
j = 1

h wtav(bun+1j+1 � un+1j ; un+1j � bun+1j�1 ):

Clearly, instead of storing the slopes f(ux)n+1j g,
we could store the interface values fbun+1j g. Such a
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scheme takes the following form: at time tn, sup-
pose the data fujg as well as the point values fbujg
are known and stored. To update the solution, �rst,
the slope is given by

(ux)j =
1
h wtav(buj+1 � uj; uj � buj�1): (3:14)

The cell average un+1j is then updated by again

(3.4){(3.8). The point value bun+1j is updated by
(3.12).
Note that the CE/SE scheme is odd-even decou-

pled, as can be seen by the following staggered-mesh
formulation. At time level n, suppose we have data
u2j at even indices and bu2j+1 at odd indices only.
Here, fbu2j+1g are the values at the interfaces of the
cells [x2j�1; x2j+1]. At time level n+1, we calculate
the solution un+12j+1 and bun+12j . The other staggered-
mesh solution is obvious. Thus, the nonstaggered
version is a result of overlaying two independent
staggered-mesh solutions.
The above observation also shows that for 1D

advection, in the form that carries along the inter-
face point values, the CE/SE scheme is the centered
counterpart of Van Leer's second scheme described
in x2.3.
Notice that the CE/SE scheme in above form

needs less storage: for the 3D case, instead of stor-
ing u, ux, uy, and uz, we only need to store u and
(the point value) bu. If we wish to adjust numerical
dissipation (� 6= 1=2), however, we have to store the
slopes.
A few remarks concerning the CE/SE and the

N-T schemes are in order. First, if the slopes are
carried along, the CE/SE scheme has a very com-
pact stencil: when updating the solution at cell j,
only the data at the immediate neighbors j�1 and
j+1 are employed. But the slopes at j�1 and j+1
use the point values at j � 2 and j + 2. Thus, in
the form of carrying along the interface point val-
ues, the stencil of the CE/SE scheme is the same as
that of the N-T method.
Next, after one time step, the cell average update

un+1j has an error of O(h3) (the solution is exact if
the data are on a parabola). The point value updatebun+1j , by (3.12), has an error of O(h2) (exact when
the data are linear). Therefore, when calculating
the slopes (ux)

n+1
j , the cell averages un+1j�1 and u

n+1
j+1

appear to be a better choice than the points valuesbun+1j�1 and bun+1j+1 . It turns out, however, that the
point values lead to a scheme with the same phase
error but less dissipation error (more details later),
i.e., the CE/SE scheme (� = 1=2) is less dissipative
than the N-T scheme.

For Fourier stability analysis, set

uj =

�
uj

(ux)j

�
: (3:16)

Then, the solution vector of the CE/SE scheme can
be written as

un+1j = Buj�1 +Cuj+1; (3:17)

where

B =

� 1
2 (1 + �) 1

4 (1� �)(1 + �)
�1
2

�
2

�
; (3:18)

and

C =

� 1
2 (1� �) �1

4(1� �)(1 + �)
1
2 ��

2

�
: (3:19)

The two eigenvalues of the matrix e�IwB+eIwC
are the ampli�cation factors of the CE/SE scheme.
After some algebra,

A� = 1
2 cos(w)� I � sin(w) �

1
2

q
1 + (1� 2�2) sin2(w):

(3:20)

Here A+, which approximates e�I�w and deter-
mines the accuracy of the scheme, is the principal
ampli�cation factor, while A� is the spurious one.
Our next remarks concern the start-o� slopes and

the reversible CE/SE scheme. This scheme involves
looking both forward and backward in time (Chang
1995). It is described below using a start-o� slope
and a forward only time evolution. For the case
of the Euler equations, such a forward marching
scheme provides an approximation to the reversible
scheme.
At time tn, suppose fujg and f(ux)jg are known.

Then if �t = 0, the slope (ux)
n+1
j of the above

CE/SE scheme (� = 1=2) reduces to the start-o�
slope

(ux)
�
j =

1
2h (uj+1 � uj�1): (3:21)

For �t � 0, the slope update (again, � = 1=2) is
given by

(ux)
n+1
j = (ux)

�
j +

�t
2h [(ut)j+1 � (ut)j�1]: (3:22)

The reversible CE/SE scheme (� = 0) can be de-
scribed as a scheme with a di�erent start-o� slope.
Instead of (ux)�j , the start-o� slope is de�ned by the
values employed in the start-o� average (3.6):

[(ux)j]
�
R = 1

h fuj+1� h
2 (ux)j+1�[uj�1+ h

2 (ux)j�1]g:
(3:23)
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Fig. 3.2. Dissipation errors (per time step) as func-
tions of � for w = �=12 (relatively low frequency).
For each scheme, this error is proportional to w4.
When � = 0, the N-T and CE/SE schemes have
a maximum amount of numerical dissipation. For
reference, the error of the Lax-Wendro� scheme is
also plotted. While the Lax-Wendro� scheme has
relatively small errors, it causes oscillations near
shocks.

The slope update for the reversible scheme is

(ux)
n+1
j = [(ux)j ]

�
R+

�t
2h [(ut)j+1� (ut)j�1]: (3:24)

To obtain the general CE/SE schemes, we simply
blend the two start-o� slopes (3.21) and (3.23) us-
ing a parameter � by [(ux)j ]�R+2�f(ux)�j�[(ux)j]�Rg.
The evolution for the slope, i.e., the quantity
�t
2h [(ut)j+1 � (ut)j�1], is the same for all �. As
such, the CE/SE schemes have an adjustable start-
o� slope.
It is remarkable that the start-o� average u�j via

(3.6) produces numerical dissipation, whereas the
start-o� slope can have the opposite e�ect: it can
reduce dissipation. Note that one can derive the
upwind counterparts of the reversible and the gen-
eral CE/SE schemes (0 � � � 1) as well. These
schemes, however, are beyond the scope of this pa-
per.
Also note that the reconstruction cell here is iden-

tical to the spatial part (or spatial projection) of the
solution element in Chang (1995), and the control
volume on which 
uxes are balanced here, the con-
servation element there.

3.4. Accuracy comparison. The upwind and
centered schemes described above are stable for
j�j � 1. To compare accuracy, recall that the am-
pli�cation factor A approximates the exact ampli�-
cation factor e�I�w . The phase error per time step
is Arg(A) � (��w). For the second-order schemes
discussed here, this quantity is proportional to w3

when the wave number w is small. The dissipation

0.2 0.4 0.6 0.8 1
CFL

0.0002

0.0004

0.0006

0.0008

0.001

Error Phase Error

L-W

Upwind

N-T
CE/SE

Fig. 3.3. Phase errors (per time step) as functions
of � for w = �=12. For each scheme, this error is
proportional to w3 and is the leading error. Note
that the phase errors of the two centered schemes
are nearly identical. (They are identical on a simi-
lar plot for w = �=32.)

error per time step is jAj� 1, which is proportional
to w4.
Figure 3.2 shows the dissipation errors as func-

tions of � for w = �=12 (relatively smooth data).
For ease of reference, the error of the Lax-Wendro�
scheme is also plotted.
Figure 3.3 shows phase errors as functions of � for

again, w = �=12. The phase errors of the centered
schemes are nearly identical. Notice that when � =
1=2, the upwind scheme has no phase error, while
its dissipation error reaches a maximum.
Observe that for 1D advection, the upwind

scheme is considerable more accurate than the non-
staggered N-T and CE/SE schemes. The reason
is that the cells of the upwind scheme are half the
size of the reconstruction cells of the two centered
schemes.
Between the N-T and the CE/SE schemes,

Fig. 3.2 shows that the latter has less numerical dis-
sipation. For a small CFL number, however, both
schemes have about the same amount of dissipation.
In practice, the weighted average adds additional
dissipation and the results by these two schemes
are nearly the same, as will be shown.

4. Schemes for the Euler equations. The
second-order upwind, N-T, and CE/SE schemes are
extended to the case of the Euler equations in this
section. For this case, the N-T and CE/SE schemes
remain simple; in fact, the equations are identical to
those in the case of advection except that the sym-
bols are boldfaced. As for the upwind scheme, we
need additional techniques, namely, Roe's splitting
with an entropy correction. Roe's method consists
of a diagonalization and an upwind side selection
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in the characteristic frame. The entropy correc-
tion serves the purpose of excluding non-physical
solutions and avoiding kinks (glitches) in the solu-
tion near sonic points. The entropy correction in
Huynh (1995a), which amounts to adding dissipa-
tion when the wave speeds spread past zero, is em-
ployed. While these concepts for the upwind step
are somewhat involved, the coding remains concise
and economical. The derivation for this upwind
step is carried out below to show the complexity|
or simplicity|of upwinding. Also note that the
presentation of Roe's scheme here is simpler than
most presentations in the literature.
The one-dimensional 
ow of an inviscid and com-

pressible gas obeys the conservation laws for mass,
momentum, and energy:

Ut +F(U)x = 0; (4:1)

U =

0
@ �
�u
e

1
A ; F =

0
@ �u

�u2 + p
(e + p)u

1
A ;

where t is time, x distance, � density, e total energy
per unit volume, u velocity, and p pressure. Let 

be the ratio of speci�c heats. Then for a perfect
gas,

p = (
 � 1)(e � 1
2�u

2): (4:2)

Integrating (4.1) on the interval [�; �], one ob-
tains the integral form

@
@t

Z �

�
U(x; t) dx+F(U(�; t)) �F(U(�; t)) = 0;

(4:3)
where F(U(�; t)) is the 
ux across interface � at
time t.
In regions where U is smooth, (4.1) is equivalent

to the non-conservation form

Ut +AcUx = 0; (4:4)

where the Jacobian matrix Ac is

Ac =
@F
@U

: (4:5)

With F(k) denoting the k-th component of F,

(Ac)k;l =
@F(k)

@U(l) :

By rewriting F in terms of �, m (m = �u), and e,
after some algebra,

Ac =

0
@ 0 1 0

(
 � 3)u2=2 (3� 
)u 
 � 1
(
 � 1)u3 � 
ue=� a32 
u

1
A ;

(4:6)

where
a32 = �3(
 � 1)u2=2 + 
e=�:

For the advection equation, the speed is a; here,
there are three wave speeds; they can be calculated
by diagonalizing Ac.
Since the centered schemes are very simple, they

are described �rst. Also note that we consider only
the interior points; boundary conditions are stan-
dard, and are omitted.

4.1. The N-T and CE/SE schemes. Let
xj+1=2 = (j + 1=2)h be the cell interfaces and xj =
jh the cell centers, j = 0; 1; 2; : : : Recall that the
reconstruction cell j is the interval [xj�1; xj+1] of
length 2h.
At time tn, assume that we knowUj (i.e. Un

j ) for
all j; Uj appoximates the average of U on the re-
construction cell j. We wish to calculate Un+1

j . In
the CE/SE case, the slopes f(Ux)jg are also stored,
and f(Ux)

n+1
j g must also be calculated.

For stability, the time step �t is required to sat-
isfy the CFL condition�

max
j
(jujj+ aj)

�
�t
h
� 1; (4:7)

where a denotes the speed of sound: a = (
p=�)1=2.
Notice that the time step �t here corresponds to
the quantity �t=2 in Chang (1995) and Wang and
Chang (1999).
To update the cell average Un+1

j , the data Uj is
ignored. The midpoint rule for (4.3) on the recon-
struction cell [xj�1; xj+1] takes the form

Un+1
j = U�

j +
�t
2h

(Fn+1=2j�1 �Fn+1=2j+1 ); (4:8)

where the start-o� value U�
j takes the place of Uj

and will be de�ned below.
Next, we describe the reconstruction function. In

the CE/SE case, the stored slope is employed; for
the N-T case, the slope is estimated by Van Al-
bada's weighted average:

(Ux)j = 1
h wtav(Uj+1 �Uj ;Uj �Uj�1): (4:9)

The time derivative is given by (4.4):

(Ut)j = �(Ac)j (Ux)j : (4:10)

The reconstruction function takes the form

rj(x; t) = Uj+(Ux)j(x�xj)+(Ut)j(t�tn): (4:11)
When updating the solution at j, rj is ignored

while rj�1 and rj+1 are employed as shown in
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Fig. 3.1. The start-o� value is evaluated at t = tn,

U�
j = 1

2 [Uj�1+ h
2 (Ux)j�1 +

Uj+1 � h
2 (Ux)j+1 ]:

(4:12)

To estimate the 
ux Fn+1=2j in (4.8) for an arbi-
trary j, one �rst obtains

rj(xj; t
n+1=2) =Uj + �t

2 (Ut)j; (4:13)

and then evaluates the 
ux at this state. The above
completes the algorithm of the N-T scheme.
Instead of (4.13), which was utilized by Nessyahu

and Tadmor (1990), Chang (1995) employed

(Ft)j = (Ac)j(Ut)j; (4:14a)

and

Fn+1=2j = Fj +
�t
2
(Ft)j : (4:14b)

This calculation is costlier than (4.13), but it is use-
ful in the derivation of the reversible scheme.
Finally, to update the slope for the CE/SE

scheme, the point value bUn+1
j is calculated by the

reconstruction,

bUn+1
j = Uj + (Ut)j�t; (4:15)

and

(Ux)
n+1
j = 1

h wtav(
bUn+1
j+1 �Un+1

j ;Un+1
j � bUn+1

j�1 ):
(4:16)

The above completes the description of the CE/SE
method.

4.2. Second-order upwind scheme. Here,
for reasons of economy, we interpolate the primitive
variable V. Equation (4.4) implies

Vt +ApVx = 0; (4:17)

where

V =

0
@ �
u
p

1
A ; Ap =

0
@u � 0
0 u 1=�
0 
p u

1
A : (4:18)

Note thatAp is simpler thanAc. As a result, (4.17)
is slightly more economical than (4.4).
By applying the midpoint rule to the integral

form (4.3) on the cell j,

Un+1
j = Uj +

�t
h
(Fn+1=2j�1=2 �Fn+1=2j+1=2 ): (4:19)

The problem reduces to obtaining fFn+1=2j+1=2g. To
this end, �rst fVjg are calculated in a straight-
forward manner from their de�nitions. Next, the

spatial derivative is estimated by Van Albada's
weighted average:

(Vx)j =
1
h wtav(Vj+1 �Vj ;Vj �Vj�1): (4:20)

The time derivative then follows from (4.17):

(Vt)j = �(Ap)j (Vx)j: (4:21)

The linear reconstruction takes the form

rj(x; t) = Vj+(Vx)j(x�xj)+(Vt)j(t�tn): (4:22)
At each interface j + 1=2 time tn+1=2, as shown in
Fig. 2.1, the reconstruction rj yields a value de-
noted by VL, and the reconstruction rj+1, VR:

VL = rj(xj+1=2; tn+1=2); and

VR = rj+1(xj+1=2; t
n+1=2):

(4:23)

With the above VL and VR, the 
ux is calculated
by upwinding as described below.

4.3. Upwind 
ux. The upwind 
ux employed
here is Roe's splitting (1986) with an entropy cor-
rection. Roe's scheme amounts to picking the up-
wind side in the characteristic frame depending on
the wave speed.
Recall that for the case of advection, the upwind


ux is

fU = 1
2(auL + auR)� 1

2 jaj(uR � uL);

where a is the wave speed. In other words, with

fR � fL = a(uR � uL);

dissipation is added by replacing a with jaj. For the
Euler equations, Ac = @F=@U. The question is:
does the mean value theorem hold for these equa-
tions? More precisely, with VL and VR given by
(4.23), denote �F = FR�FL and �U = UR�UL.
Then, is there a state ~U which satis�es

�F = ~Ac�U ?

If such a state exists, the upwind 
ux is given by

FU = 1
2 (FL + FR)� 1

2 j~Acj�U;

where j~Acj is calculated via a diagonalization.
Another way to explain the motivation for Roe's

state is as follows. With VL and VR given by
(4.23), which state should we use for the diagonal-
ization? We could use the average state 1

2 (VL +
VR), but when the wave speed is zero, such a state

12



leads to ambiguity in the upwind side selection.
This ambiguity can be avoided by using Roe's tilde
state.
To diagonalizeAc, denote the Jacobian matrix of

the transformation between the primitive and con-
servative variables by M (Hirsch 1990):

M =
@U
@V

: (4:24)

Then

M =

0
@ 1 0 0

u � 0
u2=2 �u 1=(
 � 1)

1
A : (4:25)

By applying the chain rule to (4.4),

Ap =M�1AcM: (4:26)

Thus the diagonalization of Ac reduces to that of
Ap. The eigenvalues of Ap are

�(1) = u� a; �(2) = u; �(3) = u+ a: (4:27)

Let Rp be the matrix of the right eigenvectors of
Ap; Lp, that of the left; then, Lp = R�1

p , and

Lp =

0
@ 0 ��=(2a) 1=(2a2)
1 0 �1=a2
0 �=(2a) 1=(2a2)

1
A ; (4:28)

Rp =

0
@ 1 1 1
�a=� 0 a=�
a2 0 a2

1
A : (4:29)

Denote by � be the diagonal matrix whose diagonal
entries are �(1), �(2), and �(3). Then

LpApRp = � or Ap = Rp�Lp: (4:30a; b)

The diagonalization of Ac follows from the above
and (4.26):

LcAcRc = � or Ac = Rc�Lc; (4:31a; b)

where

Lc = LpM
�1; Rc =MRp: (4:32a; b)

Let H be the total enthalpy,

H = (e + p)=�: (4:33)

Then, (4.32b), (4.29), and (4.25) lead to

Rc =

0
@ 1 1 1

u� a u u+ a
H � ua u2=2 H + ua

1
A : (4:34)

Note that Lc is complicated, but we only need Rc

and Lp for the �nal expression of Roe's scheme.
Roe's tilde state is a state ~U which satis�es

�F = ~Ac�U; (4:35)

and
�U = ~M�V: (4:36)

Here, (4.35) provides consistency to the picking pro-
cess, while (4.36) leads to the use of Lp, which is
more economical than Lc. Solving the above two
equations, we obtain

~� =
p
�L�R; (4:37)

and with

�L = �L=(�L + ~�); �R = 1� �L; (4:38)

the other two quantities are given by

~u = �LuL + �RuR; (4:39)

~H = �LHL + �RHR: (4:40)

With the above tilde state, we can multiply by
~Lc to switch to the characteristic frame:

GL = ~LcFL; and GR = ~LcFR: (4:41)

The i-th component of either GL or GR is chosen
by the sign of ~�(i) for i = 1; 2 and 3. The result is
an upwind 
ux in the characteristic frame

GU = 1
2(GL +GR) � 1

2 sign(
~�)�G: (4:42)

Next, we switch back to the regular frame by mul-
tiplying by ~Rc: FU = ~RcGU ,

FU = 1
2(FL +FR)� 1

2
~Rc sign( ~�) ~Lc�F:

Using (4.35) and (4.31b), one obtains

FU = 1
2 (FL +FR)� 1

2
~Rc j~�j ~Lc�U: (4:43)

Note that the above expression involves no condi-
tional statement; i.e., due to (4.35), if ~�(i) = 0 the
choice of the left or the right value in (4.42) leads
to the same �nal upwind 
ux. Next, due to (4.36),
~Lc�U = ~Lp�V. As a result,

FU = 1
2(FL +FR) � 1

2
~Rc j~�j ~Lp�V: (4:44)

We now discuss the entropy correction. Set

�W = ~Lp�V: (4:45)
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For the �rst characteristic, the spreading rate can
be estimated by (for details, see (Huynh 1995a)),

�� = ��(1) = � (
 + 1)~a�w(1)

2~�
; (4:46a)

or if it is the third one,

�� = ��(3) =
(
 + 1)~a�w(3)

2~�
: (4:46b)

For any real number z, de�ne the negative part of
z by z� = min(z; 0), and the positive parts of z by
z+ = max(z; 0). To see how far the wave speeds
spread past zero, evaluate

� = (�j~�j+ 1
2��)

+: (4:47)

For an approximation of Osher's 
ux (1984), set

� = (�j~�j+ 1
2 j��j)+: (4:48)

Roe's splitting with an entropy correction can be
coded as follows.
Given the left and right states, calculate HL and

HR by (4.33) and the tilde state by (4.37){(4.40).
Next, if ~u � 0, obtain �w(1) via (4.45), ��(1)

(4.46a), �(1) (4.47) and, with R1
c denoting the �rst

column of Rc,

FU = FL + [(~u� ~a)� � 1
2�

(1)]�w(1) ~R1
c: (4:49a)

Otherwise, obtain �w(3) via (4.45), ��(3) (4.46b),
�(3) (4.47), and

FU = FR � [(~u+ ~a)+ + 1
2�

(3)]�w(3) ~R3
c: (4:49b)

5. Two-dimensional extensions on a
quadrilateral mesh. The second-order upwind,
N-T, and CE/SE schemes are extended to the 2D
case in this and the next section.
The 2D Euler equations take the form

Ut + F(U)x +G(U)y = 0; (5:1)

where

U =

0
B@

�
�u
�v
e

1
CA ;

F =

0
B@

�u
�u2 + p
�uv

(e + p)u

1
CA ; and G =

0
B@

�v
�vu

�v2 + p
(e + p)v

1
CA :

At regions where U is smooth, (5.1) is equivalent
to the non-conservation form

Ut +AcUx +BcUy = 0; (5:2)

here, with F(k) denoting the k-th component of F,

(Ac)k;l =
@F(k)

@U(l) and (Bc)k;l =
@G(k)

@U(l) :

Let V be the vector of primitive variables. Then
(5.2) can be put in the form

Vt +ApVx +BpVy = 0: (5:3)

As in the 1D case, Ap and Bp are simpler than Ac

and Bc.
Let 
 be a spatial control volume whose bound-

ary is @
. At each point on the boundary, denote
by ~n = (nx; ny) the outward unit normal and

~F = (F;G):

Then the normal 
ux vector is

~F � ~n = nxF + nyG: (5:4)

The Euler equations in integral form for the control
volume 
 take the form

@
@t

Z Z


U dx dy +

I
@


~F � ~n ds = 0: (5:5)

A discussion on the integral form for a space-time
domain can be found in, e.g., (Roe 1983).
Below, 
 is a polygon of index j with ne edges.

Denote by areaj the area of 
, and by Uj the aver-
age value of U on 
 at time tn. For each i-th edge,
denote by li its length, ~ni its outward unit normal,
and ~Fn+1=2i the 
ux vector ~F at the midpoint of
the edge at time tn+1=2, i = 1; : : : ; ne. Then, for
second-order accuracy, (5.5) can be approximated
by

Un+1
j = Uj � �t

areaj

neX
i=1

li (~F
n+1=2
i � ~ni): (5:6)

Next, let the (x; y)-plane be divided into nonover-
lapping quadrilaterals called cells; two adjacent
quadrilaterals share a common edge (Fig. 5.1). The
mesh can be structured: the cells are indexed by i
and j; it can be unstructured: the cells are indexed
by j and, for each cell j, the four neighboring cells
are located by pointers. Without loss of generality,
we assume the mesh is unstructured.
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Fig. 5.1. A quadrilateral cell and its four neighbors.
The centroids of the cells are denoted by Q, A, B,
C, and D. For the second-order upwind scheme, to
update the solution at Q, we need the 
uxes at time
tn+1=2 at the midpoints of the cell edges, denoted by
A0, B0, C0, and D0.

5.1. Second-order upwind scheme. Suppose
the data fUjg (i.e., fUn

j g) are known; Uj approx-
imates the average of U on the cell j. We wish to
calculate fUn+1

j g.
Let EFGH be a typical quadrilateral whose cen-

troid is Q; this quadrilateral is also identi�ed as the
cell Q. Let A, B, C, and D be the centroids of the
four neighboring cells as shown by Fig. 5.1.
Applying (5.6) to the cell Q, the problem reduces

to obtaining the 
uxes at time tn+1=2 across the
four edges. These 
uxes are evaluated at the mid-
point A0, B0, C0, and D0 of the edges by using the
reconstruction functions described below.
For reasons of economy, we interpolate V. The

spatial derivatives of V at Q are estimated by Van
Albada's weighted average in the following manner.
Set

~e� = 1
2(
�!
FE+

��!
GH) and ~e� = 1

2(
�!
GF +

��!
HE): (5:7a)

We can also use

~e� = 1
2
�!
CA and ~e� = 1

2
�!
DB: (5:7b)

Next, let ~e� and ~e� be the basis vectors for the (�; �)
coordinates:

(x; y) = � ~e� + � ~e�: (5:7c)

Then

(V�)Q = wtav(VA �VQ;VQ �VC);

(V�)Q = wtav(VB �VQ;VQ �VD):
(5:8)

FromV� and V�, the chain rule yields Vx and Vy.
The time derivative follows by applying (5.3):

(Vt)Q = �(Ap)Q (Vx)Q � (Bp)Q (Vy)Q: (5:9)

The linear reconstruction takes the form

rQ(x; y; t) = VQ + (Vx)Q (x� xQ) +

(Vy)Q (y � yQ) + (Vt)Q (t� tn):
(5:10)

Note that the term `reconstruction' is typically used
for rQ(x; y; tn). Here, we use the term `reconstruc-
tion' in the extended sense above.
At time tn+1=2, at the midpoint of each of the

four edges, say, at A0, the reconstruction rQ yields
a value denoted by VL; the reconstruction rA, a
value denoted by VR:

VL = rQ(xA0 � xQ ; yA0 � yQ ; tn+1=2);

VR = rA(xA0 � xA ; yA0 � yA ; tn+1=2):
(5:11)

With the above VL and VR, the 
ux is calculated
by upwinding as described in the next subsection.
The other three 
uxes at B0, C0, and D0 are similar.
Observe that for this upwind scheme, there is a

trade-o� between computing time and storage if the
quadrilateral mesh is unstructured. This observa-
tion also holds for an unstructured triangular mesh,
but if the mesh is structured, it does not apply. For
each cell Q, we can carry out �ve reconstructions
(per cell) at Q, A, B, C, and D, and four upwind

uxes to update the solution at Q. If the number of
cells is N , this approach needs to evaluate 5N (vec-
tor) reconstructions and 4N upwind 
uxes. The
number of values fUn

j g and fUn+1
j g to be stored

is 2 � (4N ). To reduce computing time, we can
carry out only one reconstruction per cell and store
the left and right interface values at time tn+1=2

for all edges, and then, loop over all edges to get
the 
uxes. If the number of cells is N , the num-
ber of edges is roughly 2N . This approach needs
to evaluate only N reconstructions and 2N upwind

uxes. However, the number of additional values to
be stored is 4� (4N ).

5.2. Upwind 
ux. Again the upwind 
ux em-
ployed here is Roe's splitting (1986) with the en-
tropy correction in Huynh (1995).
Let ~n = (nx; ny) be the outward unit normal

at A0. If U is a state at A0, then, because the 
ux
is homogeneous of degree one in U,

~F�~n = (nx; ny)�(F;G) = (nxAc+nyBc)U: (5:12)

To obtain the upwind 
ux, we need to diagonal-
ize the matrix (nxAc + nyBc). (Notice that be-
cause the tangential component is ignored, this di-
agonalization is sometimes said to be dimensional
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splitting; but the 
ux for the centered schemes is
also given by (5.12) where the tangential compo-
nent is ignored. As such, the upwind and centered
schemes here are equally dimensional splitting or
non-splitting.) Next, set

q = nxu+ nyv: (5:13)

Then the eigenvalues of the matrix (nxAc + nyBc)
are

�(1) = q � a; �(2) = q; �(3) = q; �(4) = q + a;
(5:14)

and, the matrix Rc of the right eigenvectors is0
BB@

1 0 1 1
u� nxa �nya u u+ nxa
v � nya nxa v v + nya

H � qa a(�nyu+ nxv) u2+v2
2 H + qa

1
CCA :

(5:15)
As for the matrix of the left eigenvectors of nxAp+
nyBp, where the subsript p stands for `primitive',

Lp =

0
B@
0 �nx�=(2a) �ny�=(2a) 1=(2a2)
0 �ny�=a nx�=a 0
1 0 0 �1=a2
0 nx�=(2a) ny�=(2a) 1=(2a2)

1
CA :

(5:16)
We only need the �rst and last columns of (5.15)
and the �rst and last rows of (5.16).
Roe's splitting with an entropy correction can be

coded as follows.
Let the left and right states and the unit nor-

mal ~n be given. First, calculate HL and HR by an
expression similar to (4.33) and the tilde state by
(4.37){(4.40) (~v is similar to ~u and ~H). Next, if
~q � 0, obtain �w(1) via (4.45), ��(1) (4.46a), �(1)

(4.47) and, with R1
c denoting the �rst column of

Rc,

(~F � ~n)U = (~F � ~n)L + [(~q � ~a)� � 1
2�

(1)]�w(1) ~R1
c:

(5:17a)
Otherwise, obtain �w(4) via (4.45), ��(4) (4.46b),
�(4) (4.47), and

(~F � ~n)U = (~F � ~n)R � [(~q + ~a)+ + 1
2�

(4)]�w(4) ~R4
c:

(5:17b)

5.3. Second-order centered schemes. The
CE/SE schemes were extended to the case of a
quadrilateral mesh by Zhang et al. (2002). This
approach to extension is also applied to the N-T
scheme below. The key di�erence here, however,
is that the slope estimates are simpli�ed, and they
only use the data at the current time level. The

Q
Q
_

A

A
_

BB
_

C

C
_

DD
_

E
F

G H

Fig. 5.2. Reconstruction cells for the two centered
schemes. The domain where the reconstruction is
valid at time t = tn for the cell Q is the dotted line
octagon, namely, AEBFCGDH. This octagon is
called the reconstruction cell Q here. It is also the
control volume on which 
uxes are balanced when
the solution at Q is updated. The centroid of the oc-
tagon is marked by the gray dot and denoted by �Q.

simpli�ed slope estimate together with an observa-
tion on distributing the 
uxes to the neighboring
cells result in an extended N-T scheme which is
faster and requires considerably less storage than
the CE/SE method for the case of an unstructured
mesh. The extended CE/SE scheme here is also
di�erent from that by Zhang et al. (2002) in that
essentially, the scheme which carries along the in-
terface values explained after (3.14) is employed.
Finally, the presentation below is simpler.

Consider a typical quadrilateral EFGH whose
centroid is Q shown in Fig. 5.2. Let the centroid of
the four neighboring cells be denoted by A, B, C,
and D. For the two centered schemes, let the re-
construction cell Q be de�ned as the (dotted line)
octagon AEBFCGDH. At time t = tn, the re-
construction for these two schemes is assumed to
be valid on this octagon. This octagon is roughly
twice as big as the original cell EFGH. The cen-
troid of this octagon is marked by a gray dot and
denoted by �Q. It is called a solution point by Wang
and Chang (1999). Note that the two adjacent re-
construction cells Q and A overlap on the quadri-
lateral QHAE (see also Fig. 5.3). Also note that
the reconstruction cell is the spatial part (or spatial
projection) of the solution element in Zhang et al.
(2002).

At time tn, assume that we know Uj (i.e. Un
j )

for all j; Uj appoximates the average of U on the
reconstruction cell j. We wish to calculate Un+1

j .

If UQ approximates the average of U on the re-
construction cell Q, it is considered to be the value
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U at the centroid �Q, not at Q. A more precise no-
tation would be U �Q, but for simplicity, we use the
notation UQ below.

In the CE/SE case, the spatial slopes f(Ux)jg
and f(Uy)jg are also stored; in addition, f(Ux)

n+1
j g

and f(Uy)
n+1
j g must be calculated.

To update the cell average Un+1
Q , the data UQ

is ignored. Denote by area(rc(Q)) the area of the
reconstruction cell Q. Then the midpoint rule for
(5.5) on this reconstruction cell takes the form

area(rc(Q))Un+1
Q = area(rc(Q))U�

Q �
�t
P8

i=1 li (
~Fn+1=2i � ~ni) ;

(5:18)
where the start-o� value U�

Q and the eight 
uxes
are de�ned below.

First, we describe the reconstruction function for
an arbitrary cell, say, cell Q shown in Fig. 5.2. In
the CE/SE case, the stored slopes are employed;
for the N-T case, they are estimated by using the
neighboring values as follows. Let the (�; �) coor-

dinates be de�ned as in (5.7c) with ~e� = 1
2

�!
�C �A and

~e� = 1
2

�!
�D �B, or we can also use (5.7a). Then

(U�)Q = wtav(UA �UQ;UQ �UC);

(U�)Q = wtav(UB �UQ;UQ �UD):
(5:19)

FromU� and U�, the chain rule yields Ux andUy.
The time derivative follows by applying (5.2):

(Ut)Q = �(Ac)Q (Ux)Q � (Bc)Q (Uy)Q: (5:20)

Since UQ approximates the average of U on the
reconstruction cell, it is considered to be the value
at the centroid �Q. The linear reconstruction takes
the form

rQ(x; y; t) = UQ + (Ux)Q (x� x �Q) +

(Uy)Q (y � y �Q) + (Ut)Q (t� tn):
(5:21)

Note x �Q and y �Q above take the place of xQ and yQ
in the upwind case.

Next, when updating the solution at Q, rQ is
ignored, and rA, rB , rC , and rD are employed
(Fig. 5.3). The start-o� (average) value at time
t = tn is calculated as follows. Denote by A� the
centroid of QHAE; B�, QEBF ; C�, QFCG; and,
D�, QGDH. At time t = tn, the value at A� is
evaluated using rA; at B�, using rB; C�, rC; and
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Fig. 5.3. Centered schemes. When updating the so-
lution at Q, rQ is ignored, while the reconstructions
at the neighboring cells rA, rB, rC , and rD are em-
ployed. Denote the centroid of QHAE by A�, and
that of QEBF , B�. The values needed from rA are:
at time tn at A�; at time tn+1=2 at the midpoint of
AH and the midpoint of AE marked by (+). The
values needed from rB are: at time tn at B�; at time
tn+1=2 at the midpoint of BE and the midpoint of
BF marked by (+). Similar statements hold for the
reconstructions at C and D.

D�, rD. The start-o� value U�
Q is given by

area(rc(Q))U�
Q =

area(QHAE) rA(xA� ; yA� ; tn) +

area(QEBF ) rB(xB� ; yB� ; tn) +

area(QFCG) rC(xC� ; yC� ; tn) +

area(QGDH) rD(xD� ; yD� ; tn);
(5:22)

here, again, area(rc(Q)) is the area of the recon-
struction cell (octagon) AEBFCGDH.

As for the 
uxes ~Fn+1=2i � ~ni across the eight
edges, the 
uxes across AH and AE are calculated
by the reconstruction rA; those across BE and BF ,
by rB; CF and CG, by rC; and DG and DH, by
rD. Denote by M the midpoint of AE. Then one
calculates the conservative variables at M at time
tn+1=2 via rA(xM ; yM ; tn+1=2), and the 
ux across
AE by (5.4). The other seven 
uxes are obtained in
the samemanner. This completes the quadrilateral-
mesh extension of the N-T scheme.
Next, the slope update for the CE/SE scheme be-

low is a simpli�cation of that in Zhang et al. (2002).
First, the point value at �A at time tn+1, denoted bybUn+1

�A , is calculated by the reconstruction,

bUn+1
�A = rA(x �A; y �A; t

n+1) : (5:23)

The other point values bUn+1
�B , bUn+1

�C , and bUn+1
�D are
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Fig. 5.4. Distributing the 
uxes results in a
faster algorithm with no penalty in storage for
the extended N-T scheme. After calculating
Ux, Uy, and Ut at �Q, distribute the quantity
area(QHAE) rQ(xA� ; yA� ; tn) and the two 
uxes
at H0 and E0 to cell A; distribute the quantity
area(QEBF ) rQ(xB� ; yB� ; tn) and the two 
uxes at
E0 and F 0 to cell B; the distribution to cells C and
D is similar.

obtained in a similar manner, and

(U�)Q = wtav( bUn+1
�A �Un+1

Q ;Un+1
Q � bUn+1

�C );

(U�)Q = wtav( bUn+1
�C �Un+1

Q ;Un+1
Q � bUn+1

�D ):
(5:24)

The spatial derivatives (Ux)
n+1
Q and (Uy)

n+1
Q can

then be calculated via the chain rule. This calcula-
tion completes the quadrilateral-mesh extension of
the CE/SE method.
The following observations are in order.
(a) Contrary to the upwind case, for an unstruc-

tured quadrilateral (or triangular) mesh, the above
extended N-T scheme can be coded in a manner
which results in a faster algorithm with no penalty
in storage. Indeed, instead of gathering 
uxes to
update the solution, 
uxes can be distributed to
the neighboring cells in the following manner.
First, set all Un+1

j to zero. Next, evaluate

area(rc(j))Un+1
j for all j as follows. In a Do loop

with index j, when j equals Q, obtain rQ. Calculate
the values of rQ at time t = tn at A�, B�, C�, and
D� (see Fig. 5.4). Calculate the values of rQ at time
t = tn+1=2 at the spatial locations marked by (+)
in Fig. 5.4. These locations are: E0, the midpoint
of QE; F 0, that of QF ; G0, QG; and H0, QH. Dis-
tribute the quantity area(QHAE) rA(xA� ; yA� ; tn)
and the two 
uxes at H0 and E0 to cell A, and
store the sum in Un+1

A ; distribute the quantity
area(QEBF ) rA(xB� ; yB� ; tn) and the two 
uxes at
E0 and F 0 to cell B, and store the sum inUn+1

B ; the
distribution to cells C and D is similar. When the

Fig. 5.5. Two staggered meshes in Arminjon et
al. (1995) overlay to form a nonstaggered mesh in
Zhang et al. (2002) provided that the indices (k; l)
are assigned along the two diagonal directions.

loop is completed, each cell will have received all
the 
uxes it needs to update its cell average value.

(b) The above extension of the nonstaggered N-T
scheme relates to the extension of the staggered ver-
sion in Arminjon et al. (1995) and Jiang and Tad-
mor (1998) as follows.

For the staggered version, the scheme alternates
between the black and gray dots shown in Fig. 5.5.
More precisely, let a mesh of squares whose edges
are the black lines, centers black dots, and vertices
gray dots be given. At time tn, the values Un

i;j
are known at the black dots. The reconstruction
at each black dot is assumed to be valid on the
corresponding square (black lines). At time tn+1,
calculate the solutions at the gray dots by balancing

uxes on the squares whose edges are the gray lines.
At time tn+2, obtain the solutions at the black dots
by balancing 
uxes on the squares whose edges are
black lines.

This extension of the staggered scheme can be
made nonstaggered in the following manner. At
time tn, assume the data are known at both the
black and gray dots. At time tn+1, obtain the
solutions at black dots by using the reconstruc-
tions at gray dots, and the solutions at gray dots
by using the reconstructions at black dots. If we
assign indices (k; l) along the two diagonal direc-
tions (observed by Drs. Ananda Himansu and Xiao-
Yen Wang), the resulting scheme is very similar to
the nonstaggered extension of the N-T scheme pre-
sented here.

(c) Compared with the CE/SE scheme discussed
in Zhang et al. (2002), we can save storage by
carrying along the point values bU �Q instead of the
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Fig. 6.1. The centroid of the triangle EFG is de-
noted by Q. The centroids of the three neighboring
cells are denoted by A, B, and C. For the second-
order upwind scheme, to update the solution at Q,
we need the 
uxes at time tn+1=2 at the midpoints
of the cell edges, denoted by A0, B0, and C0.

Q

0

1

2 3

Fig. 6.2. To derive the triangular-mesh version for
the weighted average formula, it is convenient to
denote A, B, C by 1, 2, and 3 respectively.

slopes. In addition, we can save computing time by
applying the observation on distributing the 
uxes
so that each cell is visited only once instead of four
times. Also note that for a quadrilateral mesh, since
there is no reversible scheme, it is not clear how to
adjust numerical dissipation even if the slopes are
carried along.
(d) For the CE/SE method, the 
ux at time

tn+1=2 can be obtained via (Ft)A and (Gt)A in a
manner similar to (4.14). Such a calculation, how-
ever, is costlier.

6. Two-dimensional extensions on a trian-
gular mesh. For the schemes discussed here, the
extension to a triangular mesh di�ers from that to a
quadrilateral mesh described in the previous section
only in the slope evaluation, which employs three
neighboring data, not four.
Let the (x; y)-plane be divided into nonoverlap-

ping triangles called cells; two adjacent triangles

share a common edge (Fig. 6.1). Assume that the
mesh is unstructured: the cells are indexed by j
and, for each cell j, the three neighboring cells are
located by pointers.
Let EFG be a typical triangle whose centroid is

denoted by Q. This triangle is also identi�ed as the
cell Q. Let A, B, and C be the centroids of the
three neighboring cells as shown in Fig. 6.1.
Next, we describe the triangular-mesh extension

of Van Albada's weighted average. The following
version is a modi�cation of the extension by Wang
and Chang (1999). It is designed for the upwind
and the N-T schemes where only data at the cur-
rent time level are available. It also makes the ob-
servation on distributing the 
uxes applicable.
For the purpose of deriving this weighted average,

as will be seen in (6.1), it is more convenient to use
numbers 1, 2, and 3 to denote the neighbors; e.g.,
instead of (xA; yA), we use (x1; y1) (see Fig. 6.2).
Let uQ be a scalar value at the the point (xQ; yQ),
and similarly, u1, u2, and u3, at the three neighbor-
ing cell centers. Next, the values at any three points
determine a plane in the (x; y; u) space; for exam-
ple, the values u1, u2, and u3 at (x1; y1), (x2; y2),
and (x3; y3) respectively, determine a plane. Denote
the slopes of this plane by (ux)123 and (uy)123.
The plane we wish to obtain is biased toward the

least steep one among the three planes 12Q, 23Q,
and 31Q, but if (xQ; yQ) lies on one of the edges
of the triangle 123, then one of the three planes is
not well de�ned. To avoid this problem, let (x0; y0)
be the centroid of the triangle 123. The value u0 is
de�ned by linear extrapolation using the plane 123:

u0 = uQ + (ux)123(x0 � xQ) + (uy)123(y0 � yQ):

The �nal slopes are obtained by the values at the
points 0, 1, 2, and 3 as follows. After calculating
the slopes of the three planes 012, 023, and 031, set

�1 = [(ux)023]2 + [(uy)023]2;

�2 = [(ux)031]2 + [(uy)031]2;

�3 = [(ux)012]2 + [(uy)012]2;

(6:1)

and
�123 = �1�2 + �2�3 + �3�1:

Note the less steep the plane 012, the smaller the
quantity �3. The �nal slope at Q is given by biasing
toward the least steep plane among the above three:

(ux)Q = [(�1�2)(ux)012 + (�2�3)(ux)023 +

(�3�1)(ux)031]=�123:
(6:2)
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Fig. 6.3. Reconstruction cells for the two centered
schemes. The domain where the reconstruction is
valid at time t = tn for the cell Q is the dotted
line hexagon, namely, AEBFCG. This hexagon is
called the reconstruction cell Q. It is also the control
volume on which 
uxes are balanced when the solu-
tion at Q is updated. The centroid of the hexagon
is marked by the gray dot and denoted by �Q.

A similar expression holds for (uy)Q. This
completes the triangular-mesh extension of the
weighted average.

6.1. Second-order upwind scheme. Suppose
the data fUjg (i.e., fUn

j g) are known; Uj approx-
imates the average of U on the cell j. We wish to
calculate fUn+1

j g.
To update the solution at the cell Q, we need to

calculate the 
uxes at the midpoint A0, B0, and C0

at time tn+1=2 (Fig. 6.1). These 
uxes are obtained
by using the reconstructions described below.
Consider an arbitrary cell, say, cell Q. The values

V at Q and at the three neighboring cells determine
the slopes Vx and Vy at Q via (6.2). The time
derivative then follows from (5.9), and the recon-
struction, (5.10). At time tn+1=2, at say, A0, the re-
construction rQ yields VL, and rA yields VR. The

ux at A0 is calculated by the upwind step (5.17).
The other two 
uxes are similar. These 
uxes com-
plete the upwind algorithm.
Observe that for this upwind scheme, there is a

trade-o� between computing time and storage. For
each cell Q, we can carry out four reconstructions
(per cell) at Q, A, B, and C, and three upwind

uxes to update the solution at Q. To reduce com-
puting time, we can carry out only one reconstruc-
tion per cell and store the left and right interface
values at time tn+1=2 for all edges, and then, loop
over all edges to get the 
uxes.

6.2. Second-order centered schemes. The
CE/SE schemes were extended to the case of an

unstructured triangular mesh by Wang and Chang
(1999). This approach to extension is also applied
to the N-T scheme below. The key di�erence here,
however, is that the slope estimates are modi�ed
so that only the data at the current time level
are needed. As in the quadrilateral-mesh case, the
modi�ed slope estimate made the observation on
distributing the 
uxes to the neighboring cells ap-
plicable. This observation, in turn, results in an
extended N-T scheme which is faster and requires
considerably less storage than the CE/SE method
(slopes need not be stored). The extended CE/SE
scheme here is also di�erent from that by Wang
and Chang (1999) in that essentially, the scheme
which carries along the interface values explained
after (3.14) is employed. Finally, the presentation
below is simpler.
For the two centered schemes, let the reconstruc-

tion cell Q be de�ned as the (dotted line) hexagon
AEBFCG (Fig. 6.3). At time t = tn, the recon-
struction for these two schemes is assumed to be
valid on this reconstruction cell. The centroid of
the reconstruction cell is marked by a gray dot and
denoted by �Q. The two adjacent reconstruction
cells Q and A overlap on the quadrilateral QGAE
(Fig. 6.4). Note that the reconstruction cell is the
spatial part (or spatial projection) of the solution
element in Wang and Chang (1999).
At time tn, assume that we know Uj (i.e. Un

j )
for all j; Uj appoximates the average of U on the
reconstruction cell j. We wish to calculate Un+1

j .
In the CE/SE case, the spatial slopes f(Ux)jg

and f(Uy)jg are also stored; in addition, f(Ux)
n+1
j g

and f(Uy)
n+1
j g must also be calculated.

Next, we describe the reconstruction function for
an arbitrary cell, say, cell Q shown in Fig. 6.3. In
the CE/SE case, the stored spatial slopes are em-
ployed; for the N-T case, the value UQ, which is
considered to be at �Q, and those at �A, �B, and �C
determined Ux and Uy via the weighted average
(6.2). The time derivative is given by (5.20), and
the reconstruction, (5.21).
The solution at Q is calculated by balancing


uxes over the reconstruction cell Q. Denote by
area(rc(Q)) the area of the reconstruction cell Q.
Then, similar to (5.18), by the midpoint rule,

area(rc(Q))Un+1
Q = area(rc(Q))U�

Q �
�t
P6

i=1 li (
~Fn+1=2i � ~ni) :

(6:3)
When updating the solution at Q, rQ is ignored,

and rA, rB, and rC are employed (Fig. 6.4). Denote
by A� the centroid of QGAE; B�, QEBF ; and C�,
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Fig. 6.4. Centered schemes. When updating the
solution at Q, rQ is ignored, while the reconstruc-
tions at the neighboring cells rA, rB , and rC are
employed. Denote the centroid of QGAE by A�;
that of QEBF , B�; and that of QFCG, C�. The
values needed from rA are: at time tn at A�; at time
tn+1=2 at the midpoint of AE and the midpoint of
AG marked by (+). The values needed from rB are:
at time tn at B�; at time tn+1=2 at the midpoint of
BE and the midpoint of BF marked by (+). A sim-
ilar statement holds for the reconstruction at C.

QFCG. The start-o� (average) value is given by

area(AEBFCG)U�
Q =

area(QGAE) rA(xA� ; yA� ; tn) +

area(QEBF ) rB(xB� ; yB� ; tn) +

area(QFCG) rC(xC� ; yC� ; tn) :

(6:4)

As for the 
uxes ~Fn+1=2i � ~ni across the six edges
at time tn+1=2, those across AG and AE are cal-
culated by the reconstruction rA; those across BE
and BF , by rB; and CF and CG, by rC. Denote
by M the midpoint of AE. Then one calculates the
conservative variables atM via rA(xM ; yM ; tn+1=2),
and the 
ux across AE by (5.4). The other �ve

uxes are calculated in the same manner. This
completes the triangular-mesh extension of the N-T
scheme.
Next, the slope update for the CE/SE scheme be-

low is a simpli�cation of that by Wang and Chang
(1999). First, the point value at �A at time tn+1,
denoted by bUn+1

�A , is calculated via the reconstruc-
tion, bUn+1

�A = rA(x �A; y �A; t
n+1) : (6:5)

The point values bUn+1
�B and bUn+1

�C are obtained in
a similar manner. These three values and Un+1

Q

Fig. 6.5. For the staggered version, the scheme can
alternate between any two of the three sets of data:
at cell vertices, at cell centers, and at midpoints of
edges.

(at �Q) determined (Ux)
n+1
Q and (Uy)

n+1
Q via the

weighted average (6.2). This calculation com-
pletes the triangular-mesh extension of the CE/SE
method.
The following remarks are in order.
(a) Distributing the 
uxes results in a faster al-

gorithm with no penalty in storage for the ex-
tended N-T scheme. Indeed, let E0 denote the
midpoint of QE; F 0, QF ; and G0, QG. After
calculating Ux, Uy, and Ut at �Q, distribute the
quantity area(QGAE) rQ(xA� ; yA� ; tn) and the two

uxes at G0 and E0 to cell A; distribute the quantity
area(QEBF ) rQ(xB� ; yB� ; tn) and the two 
uxes at
E0 and F 0 to cell B; �nally, distribute the quantity
area(QFCG) rQ(xC� ; yC� ; tn) and the two 
uxes at
F 0 and G0 to cell C.
(b) The above observation can also be applied to

the CE/SE scheme: instead of storing the slopes,
we can store the point values bU �Q and, when visiting
the cell Q, after distributing the 
uxes, we updatebUn+1

�Q .

(c) The next remark concerns the extension of
the staggered version. Let an unstructured trian-
gular mesh of N vertices be given. Then the num-
ber of cells is roughly 2N , and the number of edges,
roughly 3N . The data can be stored at the vertices,
the cell centers, or the midpoint of the edges. We
can alternate between any two of these three sets
of data, say, between data at vertices and those at
edges. Then, at one time level, the 
ow �eld is re-
solved by N points (vertices), and at the next time
level, by 3N points (edges). Such a solution can
only be as accurate as resolving the 
ow �eld by
N points only; thus, the scheme is not optimal,
and there is no gain in accuracy compared with
the nonstaggered version (see below). In addition,
the reconstruction, the solution procedure, and the
bookkeeping for such a method are quite involved.
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The triangular-mesh extension of the N-T scheme
here has 2N pieces of data at each time level, but
because the reconstruction cell is twice as large as
the original triangular cell, the 
ow �eld is e�ec-
tively resolved by N points (not 2N ). However, the
scheme is simple and has numerous nice features as
will be shown in the next section.

7. Fourier analysis for the 2D case. For
convenience, the 2D extension of the N-T scheme
presented above will be called the centered scheme
from here on|as opposed to the upwind scheme.
It is indeed the centered counterpart of the upwind
scheme. When more details are needed, we refer
to it as the Lax-Friedrichs type second-order accu-
rate centered scheme. It can also be considered as a
coupled version of the CE/SE method. (Since the
upwind scheme is sometimes called MUSCL-Roe,
this scheme could have been named LF-MUSCL-
NT-CE/SE, but such a name seems too unwieldy.)
If the slopes are carried along (� = 1=2), the corre-
sponding 2D extension is called the CE/SE scheme
with the contributions by MUSCL, N-T, and the
various authors explained in the previous sections
understood. Thus, in this section, we carry out the
stability and accuracy analyses for the upwind, cen-
tered, and CE/SE schemes.
For Fourier analysis, consider the 2D scalar ad-

vection equation:

ut + aux + buy = 0: (7:1)

The mesh consists of square cells with cell widths
�x = �y = 1 and cell centers at (x; y) = (i; j).
Next, since �x = �y = 1, set

�x = a�t; and �y = b�t: (7:2)

For each time step, the data are advected by a spa-
tial vector (�x; �y), which is called the displacement
vector (per time step) here.
In this section, as is typical for Fourier analysis,

the slope employed is the average slope.

7.1 Fourier analysis for a square mesh. As-
sume that a � 0 and b � 0. Then the upwind
scheme reproduces the exact solution when (�x; �y)
equals (0; 0), (1; 0), and (0; 1). Loosely put, as can
be seen from Fig. 7.1, when (�x; �y) = (1; 0) the
square centered at B slides onto the square cen-
tered at Q.
The centered and the CE/SE schemes, on the

other hand, do not reproduce the exact solution for
any (�x; �y) even when (�x; �y) = (0; 0). Indeed,

QB

C

Fig. 7.1. The upwind scheme reproduces the exact
solution when (�x; �y) equals (0; 0), (1; 0), or (0; 1).

E
F

G
H
I

J
K

Q

A

B

C

Fig. 7.2. The centered and the CE/SE schemes do
not reproduce the exact solution for any (�x; �y).

suppose (�x; �y) =
�!
BQ = (1; 0) (Fig. 7.2). Then,

when updating the solution for the cell Q, at the
beginning of the time step, the contribution from
the cell B is the reconstruction on BKQE shown
in Fig. 7.2. By the end of the time step, the re-
construction on BEGHIK 
ows into the cell Q via
the 
uxes across BE and BK. Thus, when up-
dating the solution at Q, the contribution from the
cell B is the reconstruction on QEGHIKQ, which
is not the whole reconstruction cell. Therefore, we
do not recover the value at B. Another way to see
this fact is by setting all slopes to be zero. Using
indices i and j and assuming (�x; �y) = (1; 0), one
obtains, after some algebra,

un+10;0 = 1
4 (3u�1;0 + u0;�1 + u0;1 � u1;0):

That is, we do not recover u�1;0.
The fact that the solution recovers the exact

value, loosely speaking, helps keep the error from
becoming too big. For a triangular mesh, the situa-
tion is reversed as will be shown in the next subsec-
tion: the centered and CE/SE schemes recover the
exact solution for certain values of (�x; �y) while
the upwind scheme does not.

The upwind scheme yields the following solution
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at i = 0 and j = 0:

un+10;0 = u0;0 +

1
4 �x(�u�2;0 + 5u�1;0 � 3u0;0� u1;0) +

1
4 �y(�u0;�2 + 5u0;�1 � 3u0;0� u0;1) +

1
4 �

2
x(u�2;0 � u�1;0 � u0;0 + u1;0) +

1
4 �

2
y(u0;�2 � u0;�1 � u0;0 + u0;1) +

1
4 �x�y (2u�1;�1 � u�1;0 � u�1;1 �

u0;�1 + u0;1 � u1;�1 + u1;0):
(7:3)

The ampli�cation factor A is obtained by replac-
ing ui;j in the above expression by e I (iwx+jwy),
where wx and wy are the wave numbers in the x
and y directions respectively, and I =

p�1. The
exact ampli�cation factor is e I (��xwx��ywy).
The derivation of the ampli�cation factors for the

CE/SE scheme is similar to that of the 1D case
except for the more involved algebra. If we carry
along the interface values, we need to calculate the
eigenvalues of a 2� 2 matrix; if we carry along the
slopes, we need to calculate the eigenvalues of a 3�3
matrix, but one of the three eigenvalues turns out
to be identically zero.
The expressions for the ampli�cation factors of

the three schemes are lengthy and are omitted.
However, the stability regions and the plots on ac-
curacy comparison, which are generated by Mathe-
matica, will be shown.
Figure 7.3 shows the stability regions for the up-

wind, centered, and CE/SE schemes. Note that the
upwind scheme has the largest stability region, and
the CE/SE, the smallest. Here, the two ampli�ca-
tion factors of the CE/SE scheme yield the same
stability region.

To compare errors among the three schemes, �rst,
observe that the ampli�cation factors are functions
of �x, �y, wx, and wy. We wish to plot the errors
for relatively smooth data; therefore, we �x small
wave numbers wx and wy and plot the errors as
functions of

� = j(�x; �y)j
along the rays �y = constant � �x. (That is, for a
�xed angle �, �x = � cos(�) and �y = � sin(�).)
The phase error per time step is Arg(A)+(�xwx+

�ywy). For the second-order schemes discussed
here, this quantity is proportional to O(w3

x)+O(w
3
y)

and is the leading error. The dissipation error per
time step is jAj�1, which is proportional toO(w4

x)+
O(w4

y). The total error is jA � e I (��xwx��ywy)j.

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Upwind

Centered

CE/SE

Fig. 7.3. Stability regions for a rectangular mesh. If
the displacement vector based at the origin lies in-
side the stability region, the corresponding scheme
is stable. The upwind scheme has the largest stabil-
ity region, and the CE/SE, the smallest.

For the next four plots, the wave numbers are
wx = �=16 and wy = �=8. The results by the
standard one-step Lax-Wendro� scheme are also in-
cluded for ease of reference. Note that this scheme
has di�culties dealing with shocks.
In Figs. 7.4, the 
ow is along the diagonal y = x,

i.e., �x = �y. Fig. 7.4(a) shows the phase errors
as functions of � (denoted by CFL on the plot).
Note that the phase errors of the centered and the
CE/SE schemes are nearly identical.
Figure 7.4(b) shows the dissipation errors as func-

tions of �. The upwind scheme has the smallest dis-
sipation error, and the centered scheme, the largest.
Figure 7.4(c) shows the total errors as functions

of �. Here, the centered and CE/SE schemes have
essentially the same errors while the upwind scheme
has the smallest error.
Figure 7.5 shows the total errors averaged over all


ow directions; again, wx = �=16 and wy = �=8.
The next four plots in Figs. 7.6 and 7.7 are iden-

tical to the previous four except that wx = �=32
and wy = �=16.
Figures 7.5 and 7.7 show that the total error of

upwind scheme is considerably less than those of
the centered and CE/SE schemes, and the latter
two have essentially identical total errors.
Note that the order of accuracy of the schemes

can be veri�ed using these �gures. For example,
the maximum phase error for the CE/SE scheme
in Fig. 7.4(a) is about 0.0016; that in Fig. 7.6(a)
is about 0.0002, which is 1/8 of 0.0016. In other
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(b) Dissipation errors
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Fig. 7.4. Errors as functions of � (denoted by CFL);

ow along y = x; wx = �=16 and wy = �=8.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
CFL

0.0005

0.001

0.0015

0.002

Errors; average all directions

Upwind

Centered

CE/SE

L-W

Fig. 7.5. Total errors; average for all 
ow direc-
tions; again wx = �=16 and wy = �=8.
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(a) Phase errors
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(b) Dissipation errors
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Fig. 7.6. Errors as functions of �; 
ow along y = x;
wx = �=32 and wy = �=16.
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Fig. 7.7. Total errors; average for all 
ow direc-
tions; again wx = �=32 and wy = �=16.
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Fig. 7.8. The upwind scheme does not reproduce
the exact solution for any (�x; �y) other than the
obvious value of (0; 0).
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Fig. 7.9. The centered and the CE/SE schemes re-
produce the exact solution if (�x; �y) equals one of

the three vectors
�!
AQ,

�!
BQ, or

�!
CQ.

words, when we double the number of mesh points
in each direction (quadruple the total number of
points), the wave numbers reduce by a factor of 2,
the phase error after one time step reduces by a
factor of 8, and the dissipation error, a factor of 16
(as can be seen in Figs. 7.4(b) and 7.6(b)). Similar
observations also hold for the other schemes.
Note that the errors for the square-mesh case here

are similar to those for the 1D case in x3.

7.2 Fourier analysis on a triangular mesh.
Here, each square in Fig. 7.1 is cut into two trian-
gles along the diagonal from the northwest to the
southeast corners as shown in Fig. 7.8.
The �rst question is when do the schemes recover

the exact solution? Here, the upwind scheme re-
covers the exact solution only for the obvious case
of (�x; �y) = (0; 0). The reason is that under the

translation
�!
AQ, the triangle A does not match with

L,i,j

R,i,jR,i-1,j

L,i-1,j

L,i,j-1

R,i,j-1

Fig. 7.10. The numbering of the triangles for
Fourier analysis.

the triangle Q as can be seen from Fig. 7.8. Similar

observations hold for the translations
�!
BQ and

�!
CQ.

The centered and CE/SE schemes, on the other
hand, do not recover the exact solution when
(�x; �y) = (0; 0), but they recover the exact so-
lution when (�x; �y) equals one of the three dis-

placement vectors
�!
AQ,

�!
BQ, or

�!
CQ, as shown in

Fig. 7.9. Indeed, suppose (�x; �y) =
�!
AQ. Then,

loosely put, the reconstruction cell A slides onto
the reconstruction cell Q. More precisely, at the
end of the time step, through the start-o� value on
AEQG and the two 
uxes across AE and AG, the
contribution from the cell A is the reconstruction
on the whole reconstruction cell A. Therefore, af-
ter one time step, the solution at Q is identical to
the data at A: we recover the exact solution. This
property of recovering the exact solution helps the
centered and the CE/SE schemes gain back some
accuracy compared with the upwind scheme as will
be shown later.
The next few examples using the �rst-order

schemes are simple, but they convey the behavior
of schemes on a triangular mesh.
For �rst-order accuracy, the slopes are set to zero,

and both the centered and CE/SE schemes reduce
to the L-F scheme. If the data are on a plane, this
scheme recovers the exact solution. Indeed, the so-
lution at Q is obtained by applying the displace-
ment to the plane through the data at A, B and C
shown in Fig. 7.9.
The upwind scheme, on the other hand, does not

recover the plane. Indeed, suppose the 
ow angle
is between 0 and ��=4 so that the upwind cell to
cell Q is cell B (Fig. 7.8). Then, when updating the
solution at Q, the solution involves the data at only
Q and B. These two pieces of data cannot recover
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a plane (we need three). What happens is that
typically there is a cancellation of errors (for the

uxes) so that a scheme using a piecewise constant
reconstruction reproduces the exact solution if the
data are on a plane. Here, the cancellation of errors
did not occur.
The next question is: what does the piecewise-

constant upwind scheme do to a data which is on
a plane? It turns out that the scheme propagates
the plane and turns it into a `bumpy plane'. As
an example, suppose �y = 0 and �x > 0. Then
(see Fig. 7.10), for the piecewise-constant upwind
scheme,

un+1L;i;j = uL;i;j + 2�x(uR;i�1;j � uL;i;j); (7:4a)

and

un+1R;i;j = uR;i;j + 2�x(uL;i;j � uR;i;j): (7:4b)

If the data are on the plane u = x, then (see
Fig. 7.10),

uL;i;j = i � 1=6; and uR;i;j = i + 1=6: (7:5)

Next, consider the following data of odd-even type
noise

eL;i;j = �1=12; and eR;i;j = 1=12: (7:6)

Suppose the data is a `bumpy plane' obtained by
superimposing (7.6) on (7.5):

uL;i;j = (i�1=6)�1=12; uR;i;j = (i+1=6)+1=12:
(7:7)

Then the solution by the piecewise-constant upwind
scheme for this initial data after one time step is,
by (7.4),

un+1L;i;j = uL;i;j � �x; (7:8a)

and
un+1R;i;j = uR;i;j � �x: (7:8b)

For the initial data (7.5), i.e., the data that are on
the plane u = x, the exact solution is also given by
(7.8).
Thus, the bumpy initial data (7.7) is preserved by

the piecewise-constant upwind scheme in the sense
that the solution is given by �rst propagating the
plane u = x exactly, and then superimposing the
odd-even noise (7.6) back on. In fact, if we start
with the data on the plane, the solution by the
piecewise-constant upwind scheme turns it into a
`bumpy plane' of type (7.7) after 8 iterations (for
�x = :2). Note that if we calculate the value at
the center of each square by averaging the `bumpy'

values at the centroids of the two triangles, we get
back the data on the plane, i.e., if the triangles are
combined in pairs to form squares, then the cancel-
lation e�ect again takes place.
The above observation is consistent with the re-

sult of Fourier analysis. To carry out this anal-
ysis for the triangular mesh case, we must pair
up the downward and upward pointing triangles
so that the solution at each square looks the same
as the solution at any other square. Consequently,
each scheme has two ampli�cation factors: princi-
pal and spurious. The principal eigenfunctions of
the (piecewise constant and piecewise linear) up-
wind schemes turn out to be somewhat bumpy,
while those for the centered and CE/SE schemes
remain smooth. For the piecewise-constant upwind
scheme, the spurious component is of order O(h),
but this error does not accumulate as we march to a
�xed �nal time, and the piecewise constant upwind
scheme retains its �rst-order accuracy. A similar re-
mark also holds for the second-order upwind scheme
(the spurious component is of order O(h2)).
To calculate the ampli�cation factor, de�ne (see

Fig. 7.8)

ui;j =

�
uL;i;j
uR;i;j

�
: (7:9)

Then, the solution vector can be written as

un+1i;j = C
�1;0ui�1;j +C0;�1ui;j�1+C0;0ui;j

+C1;0ui+1;j +C0;1ui;j+1 + : : :

(7:10)
Here each Ci;j is a 2� 2 matrix. The two eigenval-

ues of the matrix e�I wxC
�1;0+e�I wyC0;�1+ : : :

are the ampli�cation factors of the corresponding
scheme. The eigenvalue which approximates the ex-
act ampli�cation factor e I (��xwx��ywy) is the prin-
cipal ampli�cation factor, and the other, the spuri-
ous.
Note that because the CE/SE scheme is odd-even

decoupled, instead of pairing up the triangles, we
only need to take two time steps. After calculating
the eigenvalues (associated with two time steps),
we need to take their square roots to obtain the
ampli�cation factor (per time step).
The expressions for the ampli�cation factors of

the three schemes are very lengthy and are omitted
here. The stability regions and accuracy compar-
isons are shown below, however.
Figures 7.11(a), (b), and (c) show the stability re-

gions for the upwind, centered, and CE/SE schemes
respectively. Here, the time step size for the upwind
scheme is reduced considerably due to the stability
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limit along the two axes shown in Fig. 7.11(a). In
practice, however, the maximum time step size is
not restricted too much compared with those of the
centered and CE/SE schemes.
For the next four plots, Figs. 7.12(a){(c) and

7.13, the wave numbers are wx = �=16 and wy =
�=8. The four plots in Figs. 7.14(a){(c) and 7.15
are the same as the previous four except that
wx = �=32 and wy = �=16. Observe that as in
the rectangular-mesh case, the errors are of appro-
priate order.
Note that as shown by Figs. 7.13 and 7.15, the

advantage in accuracy of the upwind scheme over
the centered and CE/SE schemes is considerably
less here compared to the rectangular-mesh case in
Figs. 7.5 and 7.7. The upwind scheme also has the
drawbacks of a somewhat large spurious component
and a relatively small time step size (due to the

ower-shape stability region).

7.3. Accuracy comparison between rect-
angular and triangular meshes. We can also
compare the errors between the rectangular- and
the triangular-mesh cases. First, observe that be-
cause the triangular mesh is obtained by slicing each
square into two triangles, the number of triangles
are twice that of squares. To have the same num-
ber of cells as the triangles, the squares must have
a width of 1=

p
2. Thus, for the same number of

cells, if the scheme is equally accurate between the
square and the triangular mesh, then the phase er-
rors in Figs. 7.5{7.7 must be (

p
2)3 � 2:8 times

the corresponding ones in Figs. 7.13{7.15, and the
dissipation errors, (

p
2)4 = 4 times.

For the upwind scheme, the maximum error in
Fig. 7.7 is about 0.00004; that in Fig. 7.15 is also
about 0.00004; i.e., there is no improvement in the
triangular mesh case even though the number of
cells is twice that of the quadrilateral mesh. Thus,
for the same number of cells, the upwind scheme is
more e�cient on a rectangular mesh.
Another drawback for the upwind scheme in the

case of a triangular mesh is a rather large spuri-
ous component. For a smooth data the spurious
component is of order O(h2) whereas the error of
the principal ampli�cation factor per time step is
O(h3); here, h is the smallest edge length. To reach
a �xed �nal time, we need a number of time steps
proportional to 1=h, and the error by the princi-
pal ampli�cation factor accumulates to O(h2). The
spurious component is eventually damped out, and
the corresponding error O(h2) does not accumulate.
As a result, the (piecewise linear) upwind scheme

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

0.4

0.6

(a) Upwind scheme, stability region, triangular
mesh.

-0.6 -0.4 -0.2 0.2 0.4 0.6
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(b) Centered scheme (i.e., extended N-T or coupled
CE/SE).

-0.6 -0.4 -0.2 0.2 0.4 0.6
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-0.4

-0.2

0.2

0.4

0.6

(c) CE/SE scheme.

Fig. 7.11. Triangular-mesh stability regions. If the
displacement vector based at the origin lies inside
the stability region, the scheme is stable. The dark
curve is produced by the principal ampli�cation fac-
tor; the light curve, the spurious one. The trian-
gular cell and the reconstruction cell (hexagon) for
the centered and CE/SE schemes are shown.
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(a) Phase errors; triangular mesh
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(b) Dissipation errors
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Fig. 7.12. Errors for the triangular-mesh case; 
ow
along y = x; wx = �=16 and wy = �=8.
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Fig. 7.13. Total errors; average for all 
ow direc-
tions; again wx = �=16 and wy = �=8.
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(a) Phase errors; triangular mesh
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(b) Dissipation errors
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Fig. 7.14. Errors for the triangular-mesh case; 
ow
along y = x; wx = �=32 and wy = �=16.
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Fig. 7.15. Total errors; average for all 
ow direc-
tions; again wx = �=32 and wy = �=16.
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retains its second-order accuracy for the case of a
triangular mesh.
For the centered and CE/SE schemes, the max-

imum error in Fig. 7.7 is about 0.0002; that in
Fig. 7.15 is about 0.00005; the improvement is by
a factor of 4, more than the expected factor of 2.8.
The maximum dissipation error in Fig. 7.7 is the
value at � = CFL = 0, which is about 0.0001; that
in Fig. 7.15 is about 0.000005, which is an improve-
ment by a factor of 20, more than the expected
factor of 4. Thus, between a quadrilateral and a
triangular mesh with the same number of cells, the
centered and CE/SE schemes are more e�cient on
the triangular mesh.
Notice that the above analysis is linear. It pro-

vides useful information on stability and accuracy.
However, the analysis no longer holds when there is
a solid wall or when a limiter function is employed.
In such cases, we resort to numerical experiments.

8. Numerical results. Results for the 1D as
well as the 2D quadrilateral and triangular meshes
are shown below.

8.1 Results for the 1D case. In the following
1D numerical examples, 
 = 1:4 and the CFL num-
ber is 0.9. Unless otherwise stated, the number of
mesh points is 200.
The �rst numerical test, used by Sod (1978), is

the Riemann problem

(�L; uL; pL) = (1; 0; 1);

(�R; uR; pR) = (0:125; 0; 0:1):

The �nal time is t = 0:2. The solid line repre-
sents the exact solution. The results are shown in
Fig. 8.1.
The second problem, due to Shu and Osher

(1989), has several extrema in the smooth regions.
In the interval �5 � x � 5, a moving Mach 3 shock
interacts with sine waves in density as described by
the following initial conditions:

(�; u; p) =

�
(3:857; 2:629;10:333) if x < �4,
(1 + 0:2 sin5x; 0; 1) otherwise.

The �nal time is t = 1:8. Figure 8.2 shows the re-
sults with 800 mesh points. Since the exact solution
is not known, the solid line represents the solution
for 1600 cells via a uniformly second-order accurate
upwind scheme described in Huynh (1995a).
Note that for these two problems, the upwind

results are more accurate than the N-T and CE/SE

Fig. 8.1 Sod's problem.

Fig. 8.2 Shu and Osher's problem (800 mesh points).

Fig. 8.3 Slow-moving shock problem. Final time = 2.2
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Fig. 8.4 Straightforward nonre
ecting boundary
condition works for the CE/SE as well as the up-
wind and N-T schemes.

results. Between the N-T and CE/SE solutions, the
formers are very slightly more dissipative.
The next test is the slow-moving shock problem

for which the upwind scheme generates oscillations.
The initial condition is a velocity of 0.05 superim-
posed on a Mach 3 normal shock:

(�L; uL; pL) = (0:24; 2:2238;0:09);

(�R; uR; pR) = (0:9256; 0:6137; 0:9299):

Figure 8.3 shows the results for the �nal time t = 3.
Here, the upwind solution oscillates. Note that the
entropy condition (4.49) employed helps reduce os-
cillations considerably compared with a typical im-
plementation of Roe's scheme or (4.48). The N-T
and CE/SE solutions have no oscillations. An up-
wind step that generates no oscillations for this
problem can be found in Wada and Liou (1997).
The last 1D test concerns nonre
ecting bound-

ary conditions, which let waves leave the domain
of computation. The boundary condition employed
below is an obvious one: the value at the ghost cell
is set to be that of the immediate (interior) neigh-
bor, and the slope is set to zero (see also Chang et
al. 1999). The results for Sod's problem at time
:28, :30, :40, and :60 are shown in Fig. 8.4. Here,
since the CE/SE solutions are again essentially the

Fig. 8.5. Oblique shock; 80 � 20 rectangular and
40� 10� 4 triangular meshes.

same as the N-T solutions, they are omitted. The
nonre
ecting boundary condition works well for all
schemes: there are no re
ecting waves.

8.2 Results for the 2D case. As explained at
the beginning of x7, the extended N-T scheme us-
ing the CE/SE approach to extension is called the
centered scheme here|as opposed to the upwind
scheme. If the slopes are carried along, the corre-
sponding extension is called the CE/SE scheme.
For 2D test problems, the solutions are obtained

by the author's codes except in the case of the
CE/SE scheme on a triangular mesh where the
CE/SE code, kindly provided by Dr. Xiao-Yen
Wang, is employed. Because a uni�ed CFL number
for both the triangular and quadrilateral meshes is
not readily available, we provide information on the
time steps, which are generally chosen to be close
to the largest time step possible.
The schemes discussed here are designed to solve

unsteady problems. The 2D test cases chosen be-
low, however, are steady-state problems because the
exact solutions are either known or have certain fea-
tures which are useful for the purpose of compari-
son.
The �rst 2D test is the oblique shock problem

on the domain [0; 4]� [0; 1] (Yee et al. 1983). The
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condition at the in
ow boundary is (�; u; v; p) =
(1:; 2:9; 0:;1:=1:4) and that at the top boundary,
(1:7; 2:6193;�:5063; 1:5282). The rectangular mesh
is 80 � 20. The triangular mesh is obtained by
slicing each rectangle (along the two diagonals)
of a 40 � 10 rectangular mesh into four trian-
gles. Thus, each mesh has 1600 cells. The solu-
tions are shown in Fig. 8.5; here, pressure at cell
centers at a �xed y location are plotted; for the
rectangular-mesh case y = :475; for the triangular-
mesh case y = :45. Note that all schemes smear the
oblique shocks. The upwind solution is slightly less
smeared than the centered and CE/SE solutions for
the rectangular-mesh case, but it oscillates for the
triangular-mesh case, while the other two solutions
do not. Also note that again, the solutions by the
centered and CE/SE schemes are nearly identical.
For these two schemes, the triangular-mesh solu-
tions are also nearly the same as the rectangular-
mesh solutions.
Notice that the CE/SE solutions shown in

Fig. 8.5 here are considerably di�erent from the so-
lutions by Chang et al. (1999) and Zhang et al.
(2002), where the shocks are resolved by only one
point. The reason is that the mesh is di�erent. The
result for the 80 � 20 rectangular mesh here has
also been veri�ed by Dr. Xiao-Yen Wang using her
CE/SE code (private communication).
Next, we discuss the time step sizes and conver-

gence. In the quadrilateral-mesh case, for the up-
wind scheme, with �t = 0:0106, the solution con-
verges to machine accuracy; it blows up with �t =
0:0107. For the centered scheme, with �t = 0:0100,
the solution converges to machine accuracy; it does
not converge for 0:0101� �t � 0:0104; and it blows
up with �t = 0:0105. For the CE/SE scheme, the
solution blows up at �t = 0:0108, and does not con-
verge well for most �t, e.g., with �t = 0:006, the
maximum residual goes down from .35E0 to .79E-4
after 3000 iterations (the other two schemes con-
verge to machine accuracy of E-15 under the same
conditions). It appears that because the scheme
is odd-even decoupled, it does not converge well.
Note that for the centered and CE/SE schemes, the
residual is calculated using the data at even time
levels only (as discussed at the end of x1.3). In
the triangular-mesh case, for the upwind and cen-
tered schemes, with �t = 0:0078, the solutions con-
verge to machine accuracy. For the CE/SE scheme,
with �t = 0:0075, the maximumresidual goes down
three orders of magnitude.

Figure 8.6(a), (b), and (c) show the solutions on
an unstructured triangular mesh. (The mesh for

this case as well as that in Fig. 8.9 were kindly
provided by Dr. Philip Jorgenson.) Here, the up-
wind solution is slightly less smeared compared with
the other two. Also note that this upwind solution
(Fig. 8.6(a)) improves considerably compared with
the oscillatory solution in Fig. 8.5; the minimum
pressure here is .698 whereas that for the 40�10�4
triangular mesh, .612 (and that for the y = :45 slice
in Fig. 8.5, .653); the exact minimum pressure is
.714.
Since solutions by the CE/SE schemes are essen-

tially the same as those by the centered schemes,
they are omitted from here on.
The next problem is the nozzle problem (Ver-

ho� 1985). Here, the domain is [0; 3]� [0; 1] except
that for x in [1; 2], the bottom wall is de�ned by
y = :1 sin2(x � 1)�. The 
ow is subsonic, and the
boundary conditions are standard. At in
ow, we
set the total pressure p0 = 1; stagnation speed of
sound a0 = 1; and v0 = 0; pressure, however, is ex-
trapolated from the interior. At out
ow, pressure
is set to .843, which results in an in
ow Mach num-
ber of .5; the other three variables are extrapolated
from the interior. Since there are no shocks in the
solution, the average slope is employed.
The 64�16 quadrilateral mesh and the solutions

are shown in Fig. 8.7(a) and (b) respectively. Here,
in Fig. 8.7(b), the line is the solution by the cen-
tered scheme on a 128�32 mesh. Observe that the
solution by the upwind scheme is slightly more ac-
curate: the peak is higher, and the valleys are lower
than those of the centered scheme.
For the same problem, the 32 � 8� 4 triangular

mesh and the solutions are shown in Fig. 8.8(a) and
(b) respectively. Here, in Fig. 8.8(b), the solution
by centered scheme is slightly more accurate and
maintains symmetry better than that of the upwind
scheme. Also note the accuracy at the lower wall
near the out
ow boundary.
The last test is the transonic 
ow over a circu-

lar bump. The boundary conditions are the same
as those of the above nozzle problem except that
the out
ow pressure is .736. The mesh has 2466
cells. For the upwind scheme, the time step is .011.
After 5000 iterations, the residual decreases from
.938E-1 to .918E-4, but after another 24000 itera-
tions, the residual is still .532E-4, i.e., the solution
does not converge well. A time step of 0.008 does
not improve convergence. For the centered scheme,
the time step is .013 (.014 does not converge). After
10000 iterations, the residual decreases from .157E0
to .822E-8, and after another 10000 iterations, the
residual reaches machine error of E-14.

31



(a) Upwind scheme

(b) Centered scheme

(c) CE/SE scheme

Fig. 8.6. Pressure contours, oblique shock.

Fig. 8.7(a) Quad mesh (64� 16); nozzle problem.

Fig. 8.7(b) Quad-mesh results; nozzle problem.

Fig. 8.8(a) Triangular mesh (32 � 8 � 4); nozzle
problem.

Fig. 8.8(b) Triangular-mesh results; nozzle problem.

(a) Upwind scheme

(b) Centered scheme

Fig. 8.9. Mach contours, circular bump on a wall.
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9. Conclusions and discussion. The numer-
ical tests here are clearly preliminary; more tests
need to be performed.
In summary, the second-order accurate upwind,

the Lax-Friedrichs type second-order accurate cen-
tered (or the extended N-T scheme using the
CE/SE approach to extension), and the CE/SE
(� = 1=2) schemes were presented in a framework
that facilitates their comparison. These schemes all
use piecewise-linear reconstructions (MUSCL inter-
polants). The key di�erence is that the centered
and CE/SE schemes avoid the upwind step by em-
ploying reconstruction cells that are roughly twice
as big as the original cells.
The schemes employed have several properties

in common. They are all of �nite-volume type,
conserve 
uxes locally and globally, are equally di-
mensional splitting (or non-splitting), can capture
shocks, are only �rst-order accurate near extrema
when the slope is de�ned by a weighted average
or a limiter function, and can handle nonre
ecting
boundary conditions.
Fourier stability and accuracy analyses were car-

ried out for these schemes for the standard 1D and
the 2D quadrilateral mesh cases. In the nonstan-
dard case of a triangular mesh, the triangles were
paired up for the analyses of the upwind and the
centered schemes. Among the three schemes, on a
quadrilateral mesh, the upwind scheme is more ac-
curate. On a triangular mesh, however, accuracy
among the three schemes appears to be compara-
ble. Comparing the same scheme on the two meshes
with the same number of cells, the upwind scheme is
more e�cient on a quadrilateral mesh, and the cen-
tered and CE/SE schemes, on a triangular mesh.
The centered scheme has numerous advantages

over the CE/SE scheme: it produces essentially the
same solution, runs faster, converges better, and
requires only one third of the storage for 
ow vari-
ables. The capability of adjusting dissipation of the
CE/SE schemes, however, has not been fully ex-
plored.
Compared with the upwind scheme, the centered

scheme is more stable, conceptually simpler (the ge-
ometry involved is slightly more complicated, how-
ever), and requires less storage (for an unstructured
mesh). Besides providing an alternative to the up-
wind choice, the centered scheme can be very use-
ful when the equations become complicated, and
the upwind model either has not been derived or is
no longer appropriate (the equations are no longer
hyperbolic).
The development, analysis, and comparison of

these schemes with viscous terms remain to be ex-
plored. (A discussion of the CE/SE scheme for vis-
cous 
ows can be found in Chang et al. (1995).)
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