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Summary. Based on Nessyahu and Tadmor’s nonoscillatory central differ-
ence schemes for one-dimensional hyperbolic conservation laws [16], for
higher dimensions several finite volume extensions and numerical results
on structured and unstructured grids have been presented. The experiments
show the wide applicability of these multidimensional schemes. The theo-
retical arguments which support this are some maximum-principles and a
convergence proof in the scalar linear case. A general proof of convergence,
as obtained for the original one-dimensional NT-schemes, does not exist
for any of the extensions to multidimensional nonlinear problems. For the
finite volume extension on two-dimensional unstructured grids introduced
by Arminjon and Viallon [3,4] we present a proof of convergence for the
first order scheme in case of a nonlinear scalar hyperbolic conservation law.

Mathematics Subject Classification (1991):65M12

1. Introduction

The Nessyahu-Tadmor schemes, introduced in [16], are Godunov-type
schemes for hyperbolic conservation laws. Their characteristic property is
the use of two alternating staggered grids combined with MUSCL-type
linear reconstruction and a predictor step, which yield second order accu-
racy. Due to the staggering the need of solving local generalized Riemann-
problems at cell interfaces is bypassed. Easy application to systems of hy-
perbolic conservation laws is possible due to this. For these one-dimensional
schemes theoretical foundation was established by the proof of convergence
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to the unique entropy solution for the scalar genuinely nonlinear case in the
introductory paper of Nessyahu and Tadmor. Some modifications of the
schemes have been proposed in [9,13,15].

The idea of the construction was extended to two-dimensional cartesian
grids by Arminjon, Stanescu, Viallon [2]. Discrete maximum-principles for
a slightly different extensionwereobtainedbyJiangandTadmor in the scalar
case [10], by Levy and Tadmor in case of the vorticity transport equation
for the2D–incompressible Euler-system [14].

A formulation of the NT-schemes by Arminjon, Viallon for two-dimen-
sional unstructured grids was presented in [3,4] and convergence has been
proven for the case of a linear hyperbolic equation [5]. Recently an extension
of the scheme to three space dimensions has been proposed by Arminjon et
al. [1].

In this paper we consider theCauchy-problemgiven by the full nonlinear
scalar conservation law with fluxf = (f1, f2)T and initial valuesu0

ut + ∇ · f(u) = 0 in R
2 × [0, T ],(1)

u(·, 0) = u0 in R
2.(2)

Our result is summed up in Theorem 4.1. We consider the basic first
order scheme as proposed by Arminjon and Viallon for unstructured grids,
which is the most simple NT-scheme, the staggered Lax-Friedrichs scheme.

We show that any sequence of discrete solutions defined by this stag-
gered Lax-Friedrichs schemeconverges to the unique entropy solution of the
Cauchy-problem. For this we need regularity of the data, i.e.f ∈ C1 (R)2,
u0 ∈ L1

(
R

2
) ∩L∞ (

R
2
)
, and a non-degeneracy condition on the underly-

ing sequence of refining space-time-grids. This is formulated by a CFL and
inverse CFL-condition for the time-discretization∆t and by geometrical
bounds for the finite volume cells.

To obtain this result we make use of measure-valued solutions, par-
ticularly means of DiPerna [8], which have been applied in several other
convergence proofs, e.g. [11,7,12]. The plot of our proof is the follow-
ing: After collecting some results concerning measure-valued solutions in
Sect. 2, it just remains to show several properties of the sequence of nu-
merical solutions in Sect. 4. First we derive anL∞-bound for our sequence
of numerical solutions. We continue with two discrete entropy inequalities,
yielding uniformL1- andL2-stability. These inequalities are the crucial
point in the proof. By an estimate of the entropy-dissipation for a special
entropy-function, we obtain a kind of weak BV-estimate. This finally en-
ables to derive estimates of weak consistency in the conservation law and
the associated continuous entropy inequality, finishing the proof.
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2. Convergence framework

In this section basic notations and existing results concerning measure-
valued solutions are introduced. They are collected in a general convergence
Theorem2.6 at the end of the section, whichwill be applied to show the con-
vergence of the staggered Lax-Friedrichs scheme. This will be formulated
in Theorem 4.1.

Notation 2.1. Let Prob(K) denote the space of probability-measures on
the compact setK ⊂ R. For all g ∈ C0(R), µ ∈ Prob(K) we denote

〈µ, g〉 :=
∫
K

gdµ.

Definition 2.2. (Young-measure, emv-solution)A (uniformly bounded)
Young-measureis a mapν : R

2 × [0, T ] → Prob(K) for some compact
K ⊂ R such that for allg ∈ C0(R) the map〈ν, g〉(x, t) := 〈ν(x, t), g〉 is
measurable.

A Young-measureν is anentropy measure-valued solutionof the con-
servation law (1) if∫ T

0

∫
R2

(〈ν, id〉ϕt + 〈ν, f〉∇ϕ) = 0,(3) ∫ T

0

∫
R2

(〈ν, U〉ϕt + 〈ν,F〉∇ϕ) ≥ 0(4)

are satisfied for all entropy pairs(U,F) (i.e.U ∈ C2(R) strictly convex,
F′ = U ′f ′ ) and allϕ ∈ C∞

0 (R2 × (0, T )), where in (4) we additionally
assumeϕ ≥ 0 . We used the notation〈ν, f〉 := (〈ν, f1〉, 〈ν, f2〉)T.

This notion of emv-solution naturally extends the well known notion of
weak entropy solution:

Remark 2.3.If an entropymeasure-valued solutionν is identical to a Dirac-
measureδu of a functionu(x, t) almost everywhere, then the definition
exactly states thatu is an entropy solution of the conservation law.

We need several results from the theory of measure-valued solutions in
our proof, we list the most important ones. The first one is due to Tartar,
fitted to our needs, cf. [18,19].

Theorem 2.4. (Tartar)Let(uk)k∈N
bea sequence inL∞(R2×[0, T ])which

is uniformly bounded byB > 0. Then a subsequence(ukl
)l∈N

and a Young-
measureν exist, such thatνmapsR2×[0, T ] toProb(K)withK = [−B,B]
and for allg ∈ C0(R) the sequence(g(ukl

))l∈N converges weak-∗ towards
〈ν, g〉 in L∞(R2 × [0, T ]).



462 B. Haasdonk et al.

We formulate a second theorem following DiPerna [8]. It states that a
Young-measure is identical to a Dirac-measure almost everywhere under
certain conditions.

Theorem 2.5. (DiPerna)Let f1, f2 ∈ C1 (R), u0 ∈ L1
(
R

2
) ∩ L∞ (

R
2
)
.

Let us further assume the existence of a Young-measureν with the following
properties:

a) the function〈ν, |id|〉 is inL∞ (
[0, T ], L1

(
R

2
))
,

b) ν is an entropy measure-valued solution to the conservation law (1),
c) ν assumes the initial values in the sense that

lim
t↘0

1
t

∫ t

0

∫
R2

〈νx,s, |id− u0(x)|〉dxds = 0.

Thenν is a.e. identical to the Dirac-measureδu(x,t) associated to the unique
weakentropy solutionu(x, t)of theCauchy-problem (1), (2), i.e.〈νx,t, id〉 =
〈δu(x,t), id〉 = u(x, t) almost everywhere.

With these tools we formulate and prove a general convergence theorem.
This is not a new result, it simply collects sufficient conditions which allow
to apply the powerful toolsmentioned above. By satisfying these conditions,
one can prove convergence of any sequence of functions (not necessarily
numerical solutions).

Theorem 2.6. (General convergence)Let f1, f2 ∈ C1 (R), u0 ∈ L1(R2)
∩L∞(R2),T > 0, (uk)k∈N beasequenceof functions inL1

loc

(
R

2 × [0, T ]
)
,

(hk)k∈N a sequence of nonnegative real numbers withlimk→∞ hk = 0.
Let nonnegative constantsC1, C2, κ, Cϕ, CU,F,ϕ exist, such that for all

k ∈ N the following conditions hold:

a) ‖uk‖L∞(R2×[0,T ]) ≤ C1,
b) ‖uk (·, t)‖L1(R2) ≤ C2 for all t ∈ [0, T ],
c) for all ϕ ∈ C∞

0
(
R

2 × [0, T )
)

∣∣∣∣
∫ T

0

∫
R2

(ukϕt + f (uk)∇ϕ) +
∫

R2
u0ϕ(·, 0)

∣∣∣∣ ≤ Cϕh
κ
k ,(5)

d) for all ϕ ∈ C∞
0

(
R

2 × (0, T )
)
, ϕ ≥ 0 and all entropy pairs(U,F)∫ T

0

∫
R2

(U (uk)ϕt + F (uk)∇ϕ) ≥ −CU,F,ϕh
κ
k ,(6)

e) forU(u) ≡ 1
2u

2 and all t ∈ [0, T ]∫
R2

U (uk(·, t)) ≤
∫

R2
U (u0) .
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Then the sequence(uk)k∈N
converges inLqloc

(
R

2 × [0, T ]
)
for all 1 ≤ q <

∞ strongly towards the unique entropy solution of the Cauchy-problem (1),
(2).

Proof. Because of assumption a) Thm.2.4 is applicable and we find a sub-
sequence(ukl

)l∈N and a Young-measureν which describes weak-∗-limits
of composition-sequences(g (ukl

))l∈N
.

By proving the strong convergence for this subsequence,we immediately
gain strong convergence of the whole starting sequence. This follows from
the uniqueness of the weak entropy solution under the assumed regularities
of u0 andf . Therefore we only deal with this subsequence and denote it as
(uk)k∈N.

Further it suffices to show that Thm.2.5 is applicable toν. After that we
know, that the values ofν are Dirac-measuresδu(x,t) almost everywhere,
whereu denotes the unique weak entropy solution. This fact implies due to
[8, Cor. 2.1] the strong convergence of the sequence(uk)k∈N as we claimed.

So we prove thatν satisfies conditions a) to c) of Thm.2.5.
For Thm.2.5 a) it is necessary to prove

ess sup
t∈[0,T ]

∫
R2

〈ν, |id|〉(·, t) ≤ ‖u0‖L1(R2) .

This follows from assumption 2.6 b) and the weak-∗ convergence of
(|uk|)k∈N towards〈ν, |id|〉, cf. [12, Thm. 7.1].

Thm.2.5 b) directly follows from assumptions 2.6 c) and d). By taking
ϕ ∈ C∞

0
(
R

2 × (0, T )
)
, we obtain byk → ∞ that the right-hand terms of

(5) and (6) disappear ashk goes to zero and the left-hand sides also converge.
We directly end up with the inequalities (3), (4), stating thatν is an entropy
measure-valued solution.

Condition 2.5 c) can be proven identical to e.g. [11,7].

3. Scheme

We introduce some notations needed for the definition of the scheme’s finite
volume cells. For illustration consider the figures below.

Notation 3.1. LetT be a conform unstructured triangulation ofR
2, that is

a partition in triangles, pairwise intersections of which are either empty, a
common vertex or a common edge.

– I denotes the set of vertices inT ,
– Ni for i ∈ I denotes the set ofi’s neighbouring vertices,
– Mij denotes the midpoint of the edge inT which connectsi, j ∈ I,
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– G+
ij , (G

−
ij) denotes the center of gravity of the unique triangle inT which

has verticesi, j, k ∈ I and for which this enumeration is positively
(negatively) oriented,

– Ci for i ∈ I denotes the dual cell aroundi, that is the polygonal area
with boundary

⋃
j∈Ni

G+
ijMij ∪ G−

ijMij ,
– Lij for i ∈ I, j ∈ Ni denotes the quadrangular area given by the convex
hull of the verticesi, G−

ij , j, G
+
ij .

These cellsCi are taken as finite volume cells for the first step of the scheme,
the cellsLij are taken for the second step.

k

j
M

M G

ij

ik ij
+

C
C

i

j

Gij
−

i

L

i j

k

M

M G

ij

ik ij
+

Lij

Gij
−

jk

FV cellsCi for first step FV cellsLij for second step

Fig. 1.

We need some further notations whereA(P ) denotes the area of the
PolygonP ⊂ R

2.

Notation 3.2. For all i ∈ I, j ∈ Ni we define

– η +
ij , (η

−
ij ) :=outer scalednormal ofCi for theedgeMijG

+
ij ,

(
MijG

−
ij

)
,

(that means
∣∣∣η +
ij

∣∣∣ =
∣∣∣MijG

+
ij

∣∣∣),
– θij := η +

ij + η −
ij ,

– rij := A(Lij∩Ci)
A(Ci)

.

Remark 3.3.With these notations for alli ∈ I, j ∈ Ni hold

Mij = Mji, G+
ij = G−

ji, j ∈ Ni ⇐⇒ i ∈ Nj ,

A(Lij ∩ Ci) = A(Lij ∩ Cj) = A(Lij)/2,
Lij = Lji, η +

ij = −η −
ji , θij = −θji,

rij = A (Lij) /(2A (Ci)),
∑
j∈Ni

rij = 1 and
∑
j∈Ni

θij = 0.

For our convergence proof we need a nondegeneracy-condition on the
triangulation.
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j

Gij
+

Gij
−

Mij
i

η
ij

+

η
ij

−

ijθ
j

Gji
−

Gji
+

Mjii

η
ji

+

η
ji

−

jiθ

Fig. 2.Normals toCi andLij

Definition 3.4. A conform unstructured triangulationT will be called an
(a, b)-nondegenerate triangulation, if the length of its edges are bounded,
i.e. the supremumh of these exists, and the areas of all trianglesD ∈ T are
bounded by

ah2 < A(D) < bh2.

From these bounds we gain some geometrical estimates.

Lemma 3.5. LetT be an(a, b)-nondegenerate triangulation. Then for all
i ∈ I, j ∈ Ni the followinggeometrical estimates hold,wherediamdenotes
the diameter of a polygon:

a)
2
3
ah2 ≤ A (Lij) ≤ 2

3
bh2,(7)

b)
∣∣∣η −
ij

∣∣∣ ≤ 1
3
h,

∣∣∣η +
ij

∣∣∣ ≤ 1
3
h, |θij | ≤ 2

3
h ,

c) diam (Ci) ≤ 4
3
h and A (Ci) ≤ 4

9
πh2.

The proofs are trivial remembering thatG+
ij resp.G

−
ij are centers of gravity.

Finally we define the discrete solution obtained by the staggered Lax-
Friedrichs scheme. In [3,4] these formulas are obtained by applying evolu-
tion-projection ideas on the finite volume cellsCi andLij .

Definition 3.6. (StgLxF-scheme)Let T be an(a, b)-nondegenerate trian-
gulation,∆t > 0. We define for alli ∈ I, j ∈ Ni, n ∈ 2N

u0
i :=

1
A (Ci)

∫
Ci

u0,(8)

un+1
ij :=

1
2

(
uni + unj

) − ∆t

A (Lij)
(
f
(
unj

) − f (uni )
)
θij ,(9)

un+2
i :=

∑
j∈Ni

riju
n+1
ij − ∆t

A (Ci)

∑
j∈Ni

f
(
un+1
ij

)
θij .(10)
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These values define the numerical solution

uh(x, t) :=
{

uni for (x, t) ∈ Coi × [n∆t, (n + 1)∆t)
un+1
ij for (x, t) ∈ Loij × [(n + 1)∆t, (n + 2)∆t) .

(11)

4. Convergence

We formulate the main result of this paper.

Theorem 4.1. (Convergence of StgLxF-scheme)Letf1, f2 ∈ C1 (R),u0 ∈
L1

(
R

2
) ∩ L∞ (

R
2
)
withB := ‖u0‖L∞ andT > 0. We define

L := max
u∈[−B,B],i=1,2

∣∣f ′
i(u)

∣∣ .
Let further(Tk)k∈N

be a sequence of uniformly(a, b)-nondegenerate trian-
gulations in the sense of Def.3.4 (a,b independent ofk) with

lim
k→∞

hk = 0.

Letβ, γ be constants with the relation0 < γ < β < a
4 . Let (∆tk)k∈N

be a
sequence of timesteps, such that for allk ∈ N the CFL-condition

∆tk
hk

L ≤ β(12)

and the lower bound

γ ≤ ∆tk
hk

L(13)

hold.(uhk
)k∈N

denotes the associated sequence of numerical solutions de-
fined by the StgLxF-scheme (8)–(11).

Then the sequence(uhk
)k∈N converges inL

q
loc

(
R

2 × [0, T ]
)
for all 1 ≤

q < ∞ strongly towards the unique weak entropy solution of the Cauchy-
problem (1) and (2).

Remark 4.2.Although Theorem 4.1 is restricted to pure convergence we
stress that an a–priori error estimate of the type‖u−uh‖L1 ≤ Ch1/4 can be
achieved easily following the lines of Bouchut-Perthame [6], for instance.
Furthermore, generalizations of 4.1 to higher-order schemes as in [12] or to
the case of weakly coupled systems[17] can be realized. We believe that the
proof can also be extended to the three-dimensional scheme on unstructured
grids recently presented by Arminjon [1].
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This formulation of convergence allows the existence ofγ > 0 just in
the case ofL > 0, which meansf ′ �≡ (0, 0)T. For the trivial caseL = 0
the proof is identical after choosing arbitraryL > 0. The proof of Thm.
4.1 consists of showing that the conditions 2.6 a) to e) are satisfied by the
sequence(uhk

)k∈N. This will be done in the sequel. In particular a) will be
proven by Prop. 4.3, b) is obtained by Prop. 4.6, c) and d) are the statement
of Prop. 4.10 and e) is a consequence of Prop. 4.7.

Proposition 4.3. (L∞-bound)Let the assumptions of Thm.4.1 be valid,uh
be an element of the sequence of numerical solutions. Then we have for all
n ∈ N, i ∈ I, j ∈ Ni∣∣u0

i

∣∣ ≤ B,(14)

min
{
uni , u

n
j

} ≤ un+1
ij ≤ max

{
uni , u

n
j

}
,(15)

min
j∈Ni

{
un+1
ij

}
≤ un+2

i ≤ max
j∈Ni

{
un+1
ij

}
,(16)

and therefore condition 2.6 a) is satisfied byC1 := B.

Proof. (14) follows directly from the definition ofu0
i as average of the

functionu0, which is bounded inL∞ byB.
(16) needs some calculations: First we obtain with (10) for an arbitrary

v ∈ [−B,B]

v − un+2
i = v −

∑
j∈Ni

riju
n+1
ij − ∆t

A (Ci)

∑
j∈Ni

−f
(
un+1
ij

)
θij .

As
∑
j∈Ni

rij = 1 and
∑
j∈Ni

θij = 0 we can insert terms dependent ofv
in both sums. Therefore the right hand is equivalent to∑

j∈Ni

rij

(
v − un+1

ij

)
− ∆t

A (Ci)

∑
j∈Ni

(
f (v) − f

(
un+1
ij

))
θij

=
∑
j∈Ni

rij

(
v − un+1

ij

)
− ∆t

A (Ci)

∑
j∈Ni

(
f1 (v) − f1(un+1

ij )
f2 (v) − f2(un+1

ij )

)
θij .

For someξj1, ξj2 betweenv, u
n+1
ij we continue with

=
∑
j∈Ni

rij

(
v − un+1

ij

)
− ∆t

A (Ci)

∑
j∈Ni

(
v − un+1

ij

) (
f ′
1 (ξj1)

f ′
2 (ξj2)

)
θij .

We conclude with an equivalence for anyv ∈ [−B,B] with appropriate
ξj1, ξj2 ∈ [−B,B]:

v − un+2
i =

∑
j∈Ni

(
v − un+1

ij

) [
rij − ∆t

A (Ci)

(
f ′
1 (ξj1)

f ′
2 (ξj2)

)
θij

]
.(17)
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For (16) it is sufficient to prove

max
j∈Ni

{
un+1
ij

}
− un+2

i ≥ 0 and(18)

min
j∈Ni

{
un+1
ij

}
− un+2

i ≤ 0.(19)

For (18) it is with v := maxj∈Ni{un+1
ij } in (17) sufficient to prove,

that all addends on the right are positive. We already have for allj ∈ Ni:
v − un+1

ij ≥ 0, therefore the first factor in the sum is positive. It remains to
show that the factor in angular brackets is also positive.

For (19) we have withv := minj∈Ni{un+1
ij } that for allj ∈ Ni holds:

v − un+1
ij ≤ 0, such that the first factor in the sum of (17) is negative.

Sufficient for the inequality in question is again that the factor in angular
brackets is positive.

This follows from geometrical estimates, the Lipschitz-bound off and
the CFL-condition (12), as for anyξ1, ξ2 ∈ [−B,B] holds

A(Lij)
A(Ci)

· ∆t

A(Lij)

∣∣∣∣
(
f ′
1(ξ1)

f ′
2(ξ2)

)∣∣∣∣ |θij | ≤ 2rij · ∆t
2
3ah

2
· 2L · 2

3
h

≤ 2rij · 2
a
β < rij .(20)

Equation (15) can be proven analogously.

To verify conditions 2.6 b) to e) we first need two discrete entropy in-
equalities.

Proposition 4.4. (Discreteentropy inequalities)Let theassumptionsofThm.
4.1 be valid,uh be an element of the sequence of numerical solutions. Then
for all n ∈ N, i ∈ I, j ∈ Ni and entropy pairs(U,F) hold

U
(
un+1
ij

)
≤ 1

2
(
U (uni ) + U

(
unj

))
− ∆t

A (Lij)
(
F

(
unj

) − F (uni )
)
θij ,(21)

U
(
un+2
i

) ≤
∑
j∈Ni

rijU
(
un+1
ij

)

− ∆t

A (Ci)

∑
j∈Ni

F
(
un+1
ij

)
θij .(22)

This Proposition turns out to be the most important point in the proof, as
it is fundamental for all further results. The problemof the initially unknown
structure of the entropy inequalities turns out to be perfectly solved by the
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inequalities (21),(22): first these inequalities are actually satisfied by the
scheme and secondly they allow to derive the further properties which are
sufficient for convergence of the scheme.

Proof. We just prove the second inequality, as the proof for the first one is
similar. Let (U,F) be an entropy pair,n ∈ 2N, i ∈ I fixed. We sort and
enumerate the set{un+1

ij }j∈Ni by size.
For this we takem := |Ni|. Let α : {1, . . . ,m} → Ni be a bijection,

such that withul := un+1
iα(l) holds

u1 ≤ u2 ≤ . . . ≤ um.(23)

This mapα also induces an enumeration onrij andθij . For the second step
of the scheme (10) we obtain the alternative representation

un+2
i =

m∑
l=1

(
rlul − ∆t

A (Ci)
f (ul)θl

)
.(24)

The inequality in question is written accordingly

U
(
un+2
i

) ≤
m∑
l=1

(
rlU (ul) − ∆t

A (Ci)
F (ul)θl

)
.(25)

To reformulate this once more, we define

q (t1, . . . , tm) :=
m∑
l=1

(
rltl − ∆t

A (Ci)
f (tl) θl

)
and

p (t1, . . . , tm) := U (q (t1, . . . , tm)) −
m∑
l=1

(
rlU (tl) − ∆t

A (Ci)
F (tl)θl

)
.

This impliesq (u1, . . . , um) = un+2
i , compare (24). Thus (25) is equivalent

to the statement

p (u1, . . . , um) ≤ 0.(26)

This will be proven in the following.
As p is differentiable it is sufficient for (26) to find pointsP1, . . . , Pm ∈

R
m such that

i) p (P1) = 0, ii) Pm = (u1, . . . , um)T ,
iii) for all k = 2, . . . ,m and all P ∈ Pk−1Pk holds

∇p|P · (Pk − Pk−1) ≤ 0.
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These conditions are satisfied by the choice

P1 := (u1, . . . , u1)
T

P2 := (u1, u2, . . . , u2)
T

...
...

Pm−1 := (u1, . . . , um−1, um−1)
T

Pm := (u1, . . . , um)T .

It remains to check the conditions i) and iii) because ii) holds trivially. Proof
of i): We obtain with Remark 3.3

q (u1, . . . , u1) =
m∑
l=1

(
rlu1 − ∆t

A (Ci)
f (u1)θl

)

= u1

m∑
l=1

rl − ∆t

A (Ci)
f (u1)

m∑
l=1

θl = u1.

This is used in the definition ofp and we obtain with Remark 3.3

p (P1) = p (u1, . . . , u1)

= U (q (u1, . . . , u1)) −
m∑
l=1

(
rlU (u1) − ∆t

A (Ci)
F (u1)θl

)

= U (u1) − U (u1) = 0.

It remains to prove iii). Choosek ∈ {2, . . . ,m}, P ∈ Pk−1Pk, thatmeans

P = (u1, . . . , uk−1, u, . . . , u)T for some u ∈ [uk−1, uk] .(27)

We reformulate the inequality of iii) using the notationel for the l-th unit-
vector ofRm. This yields for the difference-vector

Pk − Pk−1 = (uk − uk−1)
m∑
l=k

el,

and herewith

∇p|P · (Pk − Pk−1) = (uk − uk−1)
m∑
l=k

∇p|P · el

= (uk − uk−1)
m∑
l=k

∂

∂tl
p

∣∣∣∣
P

.
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As the first factor is nonnegative due to (23), it is sufficient to show that

for all l = k, . . . ,m holds
∂

∂tl
p

∣∣∣∣
P

≤ 0.(28)

Let l ∈ {k, . . . ,m} be fixed. We obtain by definition ofp

∂

∂tl
p (t1, . . . , tm) = U ′ (q (t1, . . . , tm))

∂

∂tl
q (t1, . . . , tm) −(

rlU
′ (tl) − ∆t

A (Ci)
F′ (tl)θl

)
.

From the definition ofq we obtain

∂

∂tl
q (t1, . . . , tm) = rl − ∆t

A (Ci)
f ′ (tl)θl.

This yields together withF′(t) = U ′(t)f ′(t) in the partial derivative ofp

∂

∂tl
p (t1, . . . , tm)

= U ′ (q (t1, . . . , tm))
(
rl − ∆t

A (Ci)
f ′ (tl)θl

)
−(

rlU
′ (tl) − ∆t

A (Ci)
U ′ (tl) f ′ (tl)θl

)

=
(
U ′ (q (t1, . . . , tm)) − U ′ (tl)

) (
rl − ∆t

A (Ci)
f ′ (tl)θl

)
.

There exists someξ betweenq (t1, . . . , tm) andtl, such that

∂

∂tl
p (t1, . . . , tm) = U ′′ (ξ) (q (t1, . . . , tm) − tl)

(
rl − ∆t

A (Ci)
f ′ (tl)θl

)
.

(29)
The first factor is positive with convexity ofU , the last one is positive with
the calculations in (20). Therefore it is sufficient to prove that the middle
factor is negative if evaluated inP . With definition ofq we rewrite it again

q (t1, . . . , tm) − tl =
m∑
j=1

(
rjtj − ∆t

A (Ci)
f (tj)θj

)
− tl

=
m∑
j=1

(
rj (tj − tl) − ∆t

A (Ci)
(f (tj) − f (tl))θj

)

=
m∑
j=1

(tj − tl)
(
rj − ∆t

A (Ci)

(
f ′
1 (ξj1)

f ′
2 (ξj2)

)
θj

)
(30)
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for certainξj1, ξj2 betweentj andtl. Evaluation inP yields tj |P = uj or
u and tl|P = u with (27). Therefore we obtain by (20) again that the last
factors in (30) are positive if evaluated inP . The first factors seperate in two
cases:
If j ≤ k − 1 we havetj − tl|P = uj − u ≤ uj − uk−1 ≤ 0 due to (27) and
(23).
If j ≥ k we havetj − tl|P = u − u = 0. Thus (28) holds and herewith the
proposition.

Notation 4.5. LetD ⊂ R
2 be a disc. We denoteID := I ∩ D as the set

of vertices inD. Let a, b, h0 be nonnegative constants. Then there exists
a constantCD, such that for all(a, b)-nondegenerate triangulations with
h ≤ h0 holds (cf. Not. 3.1)∑

i∈ID
|Ni| ≤ CD

1
h2 .(31)

Regarding the geometrical estimates of Lemma 3.5 the proof is obvious.
From the entropy inequalities now follows the uniformL1-stability.

Proposition 4.6. (Uniform L1-stability) Let the assumptions of Thm. 4.1
be valid,uh be an element of the sequence of numerical solutions. Then for
all n ∈ N, i ∈ I, j ∈ Ni hold∑

i∈I
A (Ci)

∣∣u0
i

∣∣ ≤ ‖u0‖L1(R2) ,(32)

∑
i∈I,j∈Ni

1
2
A (Lij)

∣∣∣un+1
ij

∣∣∣ ≤
∑
i∈I

A (Ci) |uni | ,(33)

∑
i∈I

A (Ci)
∣∣un+2
i

∣∣ ≤
∑

i∈I,j∈Ni

1
2
A (Lij)

∣∣∣un+1
ij

∣∣∣ .(34)

and therefore condition 2.6 b) is satisfied byC2 := ‖u0‖L1(R2).

Proof. (32) again follows directly from the definition of the initial-values
(8).

Proof of (33): Let(Um)m≥1 be a sequence of nonnegative convex func-
tions with Lipschitz-bound 1 and which approximate| · | from below with
0 ≤ |u| − Um(u) ≤ 1/m for all u ∈ R. For such entropyUm and entropy
fluxFm, wemultiply the first discrete entropy inequality (21)withA(Lij)/2
and sum it overi ∈ I, j ∈ Ni. This yields∑

i∈I,j∈Ni

1
2
A (Lij)Um

(
un+1
ij

)
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≤
∑

i∈I,j∈Ni

1
2
A (Lij)

(
1
2
Um (uni ) +

1
2
Um

(
unj

))

−
∑

i∈I,j∈Ni

1
2
∆t

(
Fm

(
unj

) − Fm (uni )
)
θij

=: T1 − T2.(35)

We restrict the sum on the left hand toi ∈ ID for an arbitrary discD with
radiusR and use the properties ofUm:∑
i∈I,j∈Ni

1
2
A (Lij)Um

(
un+1
ij

)
≥

∑
i∈ID,j∈Ni

1
2
A (Lij)Um

(
un+1
ij

)

≥
∑

i∈ID,j∈Ni

1
2
A (Lij)

∣∣∣un+1
ij

∣∣∣
−

∑
i∈ID,j∈Ni

1
2
A (Lij)

1
m

=: T3 − T4.

We obtain with (35)
T3 − T4 ≤ T1 − T2.

The terms on the right hand are absolutely convergent, which can proven
easily with the help of

∑
i∈I A(Ci) |uni | < ∞. Rewriting the sums inT1

andT2 by swappingi, j directly yields

T1 ≤
∑
i∈I

A(Ci) |uni | , T2 = 0.

In the limitm → ∞, T4 disappears, thusT3 is bounded independent ofD
byT1. By the limitR → ∞we obtain (33). (34) can be proven analogously.

Proposition 4.7. (L2-stability)Let the assumptions of Thm.4.1 be valid,uh
be an element of the sequence of numerical solutions,U(u) = u2/2. Then

‖U(uh(·, 0))‖L1(R2) ≤ ‖U(u0))‖L1(R2) ≤ ∞
and for all0 ≤ t1 ≤ t2 ≤ T

‖U(uh(·, t2))‖L1(R2) ≤ ‖U(uh(·, t1))‖L1(R2)

hold. Therefore condition 2.6 e) is valid.

Proof. The first statement follows from the definition of the initial values
and the relation‖u0‖2

L2(R2) ≤ ‖u0‖L1(R2) ‖u0‖L∞ . The second statement
follows identical to the proof of the previous proposition: We obtain (35)
containingU(u) = u2/2 instead ofUm. Again absolute convergence ofT1
andT2 can be proven and rearranging the sums yields the result for the first
step of the scheme. The second step follows similarly.
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For the proof of the remaining conditions 2.6 c) and d) we need a weak
BV-estimate. This is based on a more accurate estimate of the entropy dis-
sipation for a quadratic entropy.

Lemma 4.8. (Entropy dissipation)Let the assumptions of Thm.4.1 be valid.
Then there exists a nonnegative constantC such that for all numerical
solutionsuh of the sequence, alln ∈ N, i ∈ I, j ∈ Ni and entropy pairs
(U,F) withU(u) = u2/2 holds

U
(
un+1
ij

)
− 1

2
(
U (uni ) + U

(
unj

))
+

∆t

A (Lij)
(
F

(
unj

) − F (uni )
)
θij

≤ −C
(
uni − unj

)2
.(36)

The constant might be chosen asC = C (a, β) = 1
2

(1
2 − 2

aβ
)2
.

Proof. We define similar as in the proof of Prop. 4.4

q(t1, t2):=
1
2
(t1 + t2) − ∆t

A (Lij)
(f(t2) − f(t1))θij .

p(t1, t2):=U (q(t1, t2)) − 1
2

(U(t1) + U(t2))

+
∆t

A (Lij)
(F(t2) − F(t1))θij .

Further calculation yields a representation similar to (29), (30)

∂

∂t2
p(t1, t2) =

(
1
2

− ∆t

A (Lij)
f ′(t2)θij

)
U ′′ (ξ) (t1 − t2)

·
(

1
2

+
∆t

A (Lij)

(
f ′
1 (ξ1)

f ′
2 (ξ2)

)
θij

)
,(37)

for certainξ, ξ1, ξ2 betweent1 andt2. With r(t1, t2) := −C(t1 − t2)2 it is
sufficient to show thatp(t1, t2) ≤ r(t1, t2). Asp andr are identical zero for
t2 = t1, this is equivalent to proving

(t1 − t2)
∂

∂t2
p(t1, t2) ≥ (t1 − t2)

∂

∂t2
r(t1, t2)(38)

for all t1, t2 ∈ [−B,B]. We rewrite the left hand with (37). Using (20)
we see that the first and last factor in (37) are greater or equal to1

2 − 2
aβ.

Therefore we obtain withU ′′ ≡ 1 andC

(t1 − t2)
∂

∂t2
p(t1, t2) ≥ 2C(t1 − t2)2.

This is exactly the statement of (38).
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Using this estimate, we now derive a weak BV-estimate. This kind of
estimate is weaker than a BV-estimate, but strong enough to obtain conver-
gence. A similar estimate was derived in the proof for the case of the linear
equation [5], called an estimate on the weighted total variation.

Proposition 4.9. (Weak BV-estimate)Let the assumptions of Thm. 4.1 be
valid, D ⊂ R

2 be a disc. Then there exists a constantC, such that for
all numerical solutionsuh of the sequence and correspondingh,∆t with
N := max{n ∈ 2N|n∆t ≤ T} holds

∑
i∈ID,j∈Ni

n∈2N,n≤N

h2 ∣∣uni − unj
∣∣ ≤ Ch− 1

2 .(39)

Proof. For everyn ∈ 2N andC as given in Lemma 4.8

C
∑

i∈ID,j∈Ni

A (Lij)
(
uni − unj

)2

≤
∑

i∈I,j∈Ni

1
2
A (Lij)

(
(uni )

2 −
(
un+1
ij

)2
)

,(40)

0 ≤
∑

i∈I,j∈Ni

1
2
A (Lij)

((
un+1
ij

)2 − (
un+2
i

)2
)

(41)

hold. (40) follows by multiplying (36) withA(Lij) and summing overi ∈
I, j ∈ Ni. The sum over(unj )

2 is rewritten as sum over(uni )
2 by swapping

i, j, the sum over the entropy fluxes equals zero and the sum of the squares
of the differences is restricted toi ∈ ID, j ∈ Ni.

Equation (41) follows by multiplying the second entropy inequality (22)
by2A(Ci), usingU(u) = u2/2, rijA(Ci) = A(Lij)/2 and

∑
j∈Ni

rij = 1.
This is summed up over alli ∈ I, the sum over the fluxes again cancels after
splitting and swappingi, j, asθij = −θji:

∑
i∈I,j∈Ni

2∆tF
(
un+1
ij

)
θij =

∑
i∈I,j∈Ni

∆tF
(
un+1
ij

)
θij

+
∑

i∈I,j∈Ni

∆tF
(
un+1
ij

)
θji.

Let
∑
i,j,n denote the sum over alli ∈ ID, j ∈ Ni, n ∈ 2N, n ≤ N and∑

n denote the sum over thesen. We sum the inequalities (40) and (41) over
all n ∈ 2N, n ≤ N , by this the right hand simplifies as the addends cancel
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pairwise except two remaining terms

C
∑
i,j,n

A (Lij)
(
uni − unj

)2

≤
∑

i∈I,j∈Ni

1
2
A (Lij)

((
u0
i

)2 −
(
uN+2
i

)2
)

(42)

Let us denote the term on the right hand byRH, the left hand byLH.
Proposition 4.3 and 4.6 yield an upper bound forRH:

RH ≤
∑

i∈I,j∈Ni

1
2
A (Lij)

(
u0
i

)2 ≤ B ‖uh(·, 0)‖L1(R2) ≤ B ‖u0‖L1(R2) .

Further the left hand can be estimated from below using (7):

C
2
3
a

∑
i,j,n

h2 (
uni − unj

)2 ≤ LH.

We conclude with a new constantC∑
i,j,n

h2 (
uni − unj

)2 ≤ C.(43)

Thestatementof theproposition followseasilybyusing theCauchy-Schwarz
inequality:

∑
i,j,n

h2 ∣∣uni − unj
∣∣ ≤

√∑
i,j,n

h2

√∑
i,j,n

h2
(
uni − unj

)2
.

The last factor can be bounded with help of (43) by
√
C, the first one can

be estimated with assumptionN ≤ T/∆t, the inverse CFL-property (13)
L∆t/h ≥ γ, (31) andh0 := maxk∈N hk∑
n

∑
i∈ID,j∈Ni

h2 ≤
∑
n

CD
1
h2h

2 =
(
N

2
+ 1

)
CD

≤
(

TL

2γh
+

h0

h

)
CD =

(
TL

2γ
+ h0

)
CD

1
h

=: C ′ 1
h
.

This yields the statement of the proposition∑
i,j,n

h2 ∣∣uni − unj
∣∣ ≤

√
C ′Ch− 1

2 ,

as bothC andC ′ are independent of the choice ofuh.

With this weak BV-estimate we can prove a last proposition, which com-
pletes the convergence proof.
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Proposition 4.10. (Weak consistency)Let the assumptions of Thm. 4.1 be
valid,ϕ ∈ C∞

0
(
R

2 × [0, T )
)
. Then nonnegative constantsCϕ andCU,F,ϕ

exist, such that for allk ∈ N the numerical solutionuhk
satisfies∣∣∣∣

∫ T

0

∫
R2

(uhk
ϕt + f (uhk

)∇ϕ) +
∫

R2
u0ϕ(·, 0)

∣∣∣∣ ≤ Cϕh
1
2
k ,

and for all entropy pairs(U,F), ϕ withϕ(x, 0) ≡ 0, ϕ ≥ 0 holds∫ T

0

∫
R2

(U (uhk
)ϕt + F (uhk

) ∇ϕ) ≥ −CU,F,ϕh
1
2
k .

Thus conditions 2.6 c) and d) are satisfied byκ := 1/2.

Proof. Letuh be an element of the sequence of numerical solutions,(U,F)
be an arbitrary entropy pair. We first give some notations which will be used
in the proof.

– LetN be defined as in Prop. 4.9,N := max {n ∈ 2N |n∆t ≤ T}.
– Let h0 := maxk∈N hk.
– Let D ⊂ R

2 be a disc, which covers the support ofϕ(·, t) for all t
and is large enough, thatϕ vanishes on all boundary-cellsCi of the set
{Ci}i∈ID for all t ∈ [0, T ] and all triangulationsT from the sequence
(Tk)k∈N.

– LetCϕ be anL∞-bound ofϕ and all of its derivatives up to degree 2.
– We denoteϕn := ϕ(·, n∆t), ϕnt := ϕt(·, n∆t).
– Si denotes the center of gravity of cellCi for all i ∈ I.
– Letϕni := ϕn (Si) for all n ∈ 2N, i ∈ I.
– The frequently used sums are abbreviated by

∑
n :=

∑
n∈2N,n≤N ,∑

i :=
∑
i∈ID ,

∑
i,n :=

∑
i

∑
n,

∑
i,j :=

∑
i

∑
j∈Ni

and
∑
i,j,n :=∑

i,j

∑
n.

With these notations the statement of the proposition follows from

a)−
∑
i,n

2∆tA (Ci)
un+2
i − uni

2∆t
ϕni

=
∫

R+

∫
R2

uhϕt +
∫

R2
u0ϕ

0 + O
(
h

1
2

)
,

b)−
∑
i,n

A (Ci)
(
un+2
i − uni

)
ϕni = −

∫
R+

∫
R2

f (uh)∇ϕ + O
(
h

1
2

)
,

c) −
∑
i,n

2∆tA (Ci)
U

(
un+2
i

) − U (uni )
2∆t

ϕni

=
∫

R+

∫
R2

U (uh)ϕt + O
(
h

1
2

)
,
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d)−
∑
i,n

A (Ci)
(
U

(
un+2
i

) − U (uni )
)
ϕni

≥ −
∫

R+

∫
R2

F (uh)∇ϕ + O
(
h

1
2

)
.

This is obvious as the left hand of a) and b) resp. c) and d) are identical.
Proof of a). For technical reasons, we extendϕ on the domainR2 × R,

such thatϕ(·, t) ≡ 0 for t > T , ϕ and its derivatives still can be estimated
byCϕ andϕ ∈ C∞

0
(
R

2 × R
)
. This is obviously possible.

Rewriting of the left hand by partial summation yields

LH of a)= −
∑
i,n

2∆tA (Ci)un+2
i

ϕni − ϕn+2
i

2∆t

+
∑
i

A (Ci)u0
iϕ

0
i −

∑
i

A (Ci)uN+2
i ϕN+2

i .

The last term disappears asϕ (·, (N + 2)∆t) ≡ 0. Thus for a) is sufficient
to prove two relations:

∫
R+

∫
R2

uhϕt =
∑
i,n

2∆tA (Ci)un+2
i

ϕn+2
i − ϕni

2∆t
+ O

(
h

1
2

)
(44)

and
∫

R2
u0ϕ

0 =
∑
i

A (Ci)u0
iϕ

0
i + O (h) .(45)

(45) follows from elementary calculations remembering the definition of
the initial values (8), the Lipschitz-bound ofϕ and using that the integration-
error of the midpoint-rule on polygons with diameter ofO(h2) has order of
magnitudeO(h4).

Proof of (44): Starting with the left hand we successively cut off terms
which are small, that means of magnitudeO(h1/2). First we discretize the
time integrals pointwise with errorR(x)

∫ T

0

∫
R2

uhϕt =
∑
i,j

∫
Lij∩Ci

∫ (N+2)∆t

0
uhϕt

=
∑
i,j

∫
Lij∩Ci

∑
n

∆t
(
uni ϕ

n
t + un+1

ij ϕn+1
t

)

+
∑
i,j

∫
Lij∩Ci

R(x)

=: T5 + T6.
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We obtainT6 = O (h) as|R(x)| ≤ CϕT∆t for all x ∈ R
2. T5 is rewritten

as

T5 =
∑
i,j,n

∆t

∫
Lij∩Ci

2uni ϕ
n
t +

∑
i,j,n

∆t

∫
Lij∩Ci

(
un+1
ij ϕn+1

t − uni ϕ
n
t

)
=: T7 + T8.(46)

T8 again is small, as further decomposition yields

T8 =
∑
i,j,n

∆t

∫
Lij∩Ci

(
un+1
ij − uni

)
ϕnt

+
∑
i,j,n

∆t

∫
Lij∩Ci

un+1
ij

(
ϕn+1
t − ϕnt

)
=: T9 + T10.

Firstweobtainwith (7), theCFL-condition (12) and|un+1
ij −uni | ≤ |unj −uni |

from the maximum-principle (15)

|T9| ≤
∑
i,j,n

∆t · A (Lij ∩ Ci) ·
∣∣∣un+1
ij − uni

∣∣∣ · Cϕ

≤
∑
i,j,n

βh

L
· 1
3
bh2 · ∣∣unj − uni

∣∣ · Cϕ =
1

3L
βbCϕh

∑
i,j,n

h2 ∣∣unj − uni
∣∣ ,

where we can apply the weak BV-estimate (39) and conclude

|T9| ≤ 1
3L

βbCϕh · Ch− 1
2 = O

(
h

1
2

)
.

Second we obtain

|T10| ≤
∑
i,j,n

∆t · A (Lij ∩ Ci) · B · Cϕ · ∆t = O (h) ,

thusT8 in (46) shown to beO(h1/2). The main term isT7. With cellwise
midpoint-integration we continue with error-termsRni

T7 =
∑
i,n

2∆tuni

∫
Ci

ϕnt =
∑
i,n

2∆tuni ϕ
n
t (Si)A (Ci) +

∑
i,n

2∆tuni R
n
i

=: T11 + T12.

EveryRni is bounded byCh4 for a common constantC, thereforeT12 =
O (

h2
)
. By Taylor-expansion we getϕnt (Si) =

(
ϕni − ϕn−2

i

)
/ (2∆t) +

O (∆t). This yields

T11 =
∑
i,n

2∆tuni A (Ci)
ϕni − ϕn−2

i

2∆t
+ O (∆t) .
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Let the dominating addend on the right hand of this equation be denoted by
T13. A reformulation ofT13, shows that it is equal to the main term of the
right hand of (44) plus two small terms:

T13 =
∑
i,n

2∆tA (Ci)un+2
i

ϕn+2
i − ϕni

2∆t
+

∑
i

2∆tu0
iA (Ci)

ϕ0
i − ϕ−2

i

2∆t

−
∑
i

2∆tuN+2
i A (Ci)

ϕN+2
i − ϕNi

2∆t
.

The two last terms have order of magnitudeO (h) because the fractions are
bounded. This finishes the proof of (44) and herewith a).

Proof of b). It is sufficient to prove∑
i,n

A (Ci)
(
un+2
i − uni

)
ϕni

=
∑
i,n

2∆t

∫
Ci

f (uni )∇ϕn + O
(
h

1
2

)
(47)

and ∫
R+

∫
R2

f (uh)∇ϕ =
∑
i,n

2∆t

∫
Ci

f (uni )ϕ
n + O

(
h

1
2

)
.(48)

Equation (48) can be proven similar to (44). Startingwith the left hand, again
pointwise discretization of the time-integral is applied and the remaining
terms are estimated using Lipschitz-bounds off , the discrete maximum
principle and the weak BV-estimate.

Proof of (47): We first rewrite both sides. The left hand contains terms
A (Ci) (un+2

i −uni ). Theseare rewritten insertingboth stepsof thenumerical
scheme (9) and (10).

A (Ci)
(
un+2
i − uni

)
(49)

= A (Ci)


 ∑
j∈Ni

(
riju

n+1
ij − ∆t

A (Ci)
f
(
un+1
ij

)
θij

)
− uni




=
∑
j∈Ni

rijA (Ci)
(
un+1
ij − uni

)
− ∆t

∑
j∈Ni

f
(
un+1
ij

)
θij =: Tni − Tni1.

Tni can be further decomposed

Tni =
∑
j∈Ni

1
2
A (Lij)

(
unj − uni

2
− ∆t

A (Lij)
(
f
(
unj

) − f (uni )
)
θij

)
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=
∑
j∈Ni

1
4
A (Lij)

(
unj − uni

) − ∆t
∑
j∈Ni

1
2

(
f
(
unj

) − f (uni )
)
θij

=: Tni2 − Tni3.(50)

This decompositionA (Ci)
(
un+2
i − uni

)
= Tni2 − Tni3 − Tni1 is inserted in

the left hand of (47).

LH of (47)=
∑
i,j,n

1
4
A (Lij)

(
unj − uni

)
ϕni

−
∑
i,j,n

1
2
∆t

(
f
(
unj

) − f (uni )
)
θijϕ

n
i

−
∑
i,j,n

∆tf
(
un+1
ij

)
θijϕ

n
i =: T1 − T2 − T3.

The dominating term on the right hand of (47) is rewritten with the diver-
gence theorem and edgewisemidpoint-integration.We use the notationϕn+ij
(ϕn−
ij ) for the evaluation ofϕ in the midpoint of the edge belonging toη +

ij

(η −
ij ) at timen∆t, cf. Figures on page 465, andn denotes the outer normal

of Ci.∑
i,n

2∆t

∫
Ci

f (uni )∇ϕn = 2
∑
i,n

∆t

∫
∂Ci

(f (uni )ϕ
n) dn

= 2
∑
i,n

∆t
∑
j∈Ni

f (uni )

×
(
ϕn−
ij η −

ij + ϕn+ij η +
ij

)
+ O (h)

=: 2T4 + O (h) .

With these notations the statement (47) reads

T1 − T2 − T3 = 2T4 + O
(
h

1
2

)
.

This will be proven in 3 steps:

T1 = O
(
h

1
2

)
,(51)

T2 + T4 = O
(
h

1
2

)
,(52)

T3 − T2 = O
(
h

1
2

)
.(53)

Proof of (51):T1 can bemade symmetric by splitting the sum, swappingi, j
in one of the two parts and merging them again. This procedure is allowed
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although the summation range is not symmetric ini, j, as the boundary terms
vanish due to the assumption onD. We obtain

T1 =
∑
i,j,n

1
8
A (Lij)

(
unj − uni

) (
ϕni − ϕnj

)
.

The Lipschitz-bound ofϕ, the area-bound (7) and the weak BV-estimate
(39) yield exactly (51):

|T1| ≤ Ch
∑
i,j,n

h2 ∣∣unj − uni
∣∣ = O

(
h

1
2

)
.

For (52) we rewriteT2 with θij = η +
ij + η −

ij , T4 is symmetrized as
described above. We obtain the representations

T2 =
∑
i,j,n

1
2
∆t

(
f
(
unj

) − f (uni )
) (

η +
ij ϕ

n
i + η −

ij ϕ
n
i

)
,

T4 =
∑
i,j,n

1
2
∆t

(
f (uni ) − f

(
unj

)) (
ϕn−
ij η −

ij + ϕn+ij η +
ij

)
,

asϕn−
ij η −

ij + ϕn+ij η +
ij = −ϕn−

ji η −
ji − ϕn+ji η +

ji . This yields

T2 + T4 =
∑
i,j,n

1
2
∆t

(
f
(
unj

) − f (uni )
)

×
(
η +
ij

(
ϕni − ϕn+ij

)
+ η −

ij

(
ϕni − ϕn−

ij

))
.(54)

The absolute values of the single differences appearing in this term can be
estimated using Lipschitz-properties ofϕ andf . With 3.5 b) and the weak
BV-estimate we conclude with statement (52)

|T2 + T4| ≤ C∆t
∑
i,j,n

∣∣unj − uni
∣∣ · h2 = O

(
h

1
2

)
.

Proof of (53): FirstT2 is rewritten by changing the sign of the second
flux contribution. This is allowed as this term vanishes in the sum overj.

T2 =
∑
i,j,n

1
2
∆t

(
f
(
unj

)
+ f (uni )

)
θijϕ

n
i ,

We subtractT3 andT2, the result is made symmetric resulting in

T3 − T2

=
∑
i,j,n

∆t
1
2

(
−f (uni ) + 2f

(
un+1
ij

)
− f

(
unj

))
ϕni θij
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=
∑
i,j,n

1
4
∆t

(
−f (uni ) + 2f

(
un+1
ij

)
− f

(
unj

)) (
ϕni − ϕnj

)
θij

=
∑
i,j,n

1
4
∆t

(
f
(
un+1
ij

)
− f

(
unj

)) (
ϕni − ϕnj

)
θij

+
∑
i,j,n

∆t
1
4

(
f
(
un+1
ij

)
− f (uni )

) (
ϕni − ϕnj

)
θij =: T5 + T6.

Both sums can be estimated similar to (54) additionally using the discrete
maximum-principle. Both termsT5 andT6 turn out to have order of mag-
nitudeO(h1/2), thus the last relation (53) is shown to be valid, herewith
(47).

c) and d) can be proven in a similar manner since their structure agrees
with the structure of a) resp. b). This finishes the proof of Proposition 4.10.
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11. Kröner, D., Rokyta, M., Convergence of upwind finite volume schemes for scalar
conservation laws in two dimensions. SIAM J. Numer. Anal.31, (2) 324–343 (1994)
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