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Summary. Based on Nessyahu and Tadmor’s nonoscillatory central differ-
ence schemes for one-dimensional hyperbolic conservation laws [16], for
higher dimensions several finite volume extensions and numerical results
on structured and unstructured grids have been presented. The experiments
show the wide applicability of these multidimensional schemes. The theo-
retical arguments which support this are some maximum-principles and a
convergence proof in the scalar linear case. A general proof of convergence,
as obtained for the original one-dimensional NT-schemes, does not exist
for any of the extensions to multidimensional nonlinear problems. For the
finite volume extension on two-dimensional unstructured grids introduced
by Arminjon and Viallon [3,4] we present a proof of convergence for the
first order scheme in case of a nonlinear scalar hyperbolic conservation law.

Mathematics Subject Classification (199&5M12

1. Introduction

The Nessyahu-Tadmor schemes, introduced in [16], are Godunov-type
schemes for hyperbolic conservation laws. Their characteristic property is
the use of two alternating staggered grids combined with MUSCL-type
linear reconstruction and a predictor step, which yield second order accu-
racy. Due to the staggering the need of solving local generalized Riemann-
problems at cell interfaces is bypassed. Easy application to systems of hy-
perbolic conservation laws is possible due to this. For these one-dimensional
schemes theoretical foundation was established by the proof of convergence
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to the unigue entropy solution for the scalar genuinely nonlinear case in the
introductory paper of Nessyahu and Tadmor. Some modifications of the
schemes have been proposed in [9,13,15].

The idea of the construction was extended to two-dimensional cartesian
grids by Arminjon, Stanescu, Viallon [2]. Discrete maximume-principles for
aslightly different extension were obtained by Jiang and Tadmor in the scalar
case [10], by Levy and Tadmor in case of the vorticity transport equation
for the2 D—incompressible Euler-system [14].

A formulation of the NT-schemes by Arminjon, Viallon for two-dimen-
sional unstructured grids was presented in [3,4] and convergence has been
proven for the case of a linear hyperbolic equation [5]. Recently an extension
of the scheme to three space dimensions has been proposed by Arminjon et
al. [1].

In this paper we consider the Cauchy-problem given by the full nonlinear
scalar conservation law with fluk= (f1, fo)* and initial valuesug

(1) ug + V- f(u) = 04in R?* x [0, 7],
(2) u(-,0) = ug in R?.

Our result is summed up in Theorem 4.1. We consider the basic first
order scheme as proposed by Arminjon and Viallon for unstructured grids,
which is the most simple NT-scheme, the staggered Lax-Friedrichs scheme.

We show that any sequence of discrete solutions defined by this stag-
gered Lax-Friedrichs scheme converges to the unique entropy solution of the
Cauchy-problem. For this we need regularity of the datafie.C* (R)?,
ug € L* (R?) N L> (R?), and a non-degeneracy condition on the underly-
ing sequence of refining space-time-grids. This is formulated by a CFL and
inverse CFL-condition for the time-discretizatiatv and by geometrical
bounds for the finite volume cells.

To obtain this result we make use of measure-valued solutions, par-
ticularly means of DiPerna [8], which have been applied in several other
convergence proofs, e.g. [11,7,12]. The plot of our proof is the follow-
ing: After collecting some results concerning measure-valued solutions in
Sect. 2, it just remains to show several properties of the sequence of nu-
merical solutions in Sect. 4. First we derive B¥*-bound for our sequence
of numerical solutions. We continue with two discrete entropy inequalities,
yielding uniform L!- and L?-stability. These inequalities are the crucial
point in the proof. By an estimate of the entropy-dissipation for a special
entropy-function, we obtain a kind of weak BV-estimate. This finally en-
ables to derive estimates of weak consistency in the conservation law and
the associated continuous entropy inequality, finishing the proof.
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2. Convergence framework

In this section basic notations and existing results concerning measure-
valued solutions are introduced. They are collected in a general convergence
Theorem 2.6 at the end of the section, which will be applied to show the con-
vergence of the staggered Lax-Friedrichs scheme. This will be formulated
in Theorem 4.1.

Notation 2.1. Let Prob(K ) denote the space of probability-measures on
the compact sek’ C R. For all g € C°(R), 1 € Prob(K) we denote

(1, 9) :z/Kgdu~

Definition 2.2. (Young-measure, emv-solutior) (uniformly bounded)
Young-measureis a mapy : R? x [0,T] — Prob(K) for some compact
K C R such that for allg € C°(R) the map(v, g)(z,t) := (v(x,t),g) is
measurable.

A Young-measure is anentropy measure-valued solutiorof the con-
servation law (1) if

T
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are satisfied for all entropy pair6U, F) (i.e. U € C?(R) strictly convex,
F' = U'f’)and allp € C°(R? x (0,T)), where in (4) we additionally
assumep > 0 . We used the notatiofy, f) := ((v, f1), (v, fo))T.

This notion of emv-solution naturally extends the well known notion of
weak entropy solution:

Remark 2.3.If an entropy measure-valued solutiers identical to a Dirac-
measurey,, of a functionu(x,t) almost everywhere, then the definition
exactly states that is an entropy solution of the conservation law.

We need several results from the theory of measure-valued solutions in
our proof, we list the most important ones. The first one is due to Tartar,
fitted to our needs, cf. [18,19].

Theorem 2.4. (Tartar)Let(uy), be asequence ib> (R? x [0, T]) which
is uniformly bounded by > 0. Then a subsequencey, ), and a Young-
measure exist, such that mapsR? x [0, T'| to Prob(K) with K = [~ B, B]
and for allg € C°(R) the sequencgy(uy,))icn cOnverges weak-towards
(v, g) in L>®(R? x [0, 7).
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We formulate a second theorem following DiPerna [8]. It states that a
Young-measure is identical to a Dirac-measure almost everywhere under
certain conditions.

Theorem 2.5. (DiPerna)Let f1, fo € C' (R), ug € L' (R?) N L> (R?).
Let us further assume the existence of a Young-measwith the following
properties:

a) the function(v, |id|) is in L ([0, 7], L* (R?)),
b) v is an entropy measure-valued solution to the conservation law (1),
c) v assumes the initial values in the sense that

1 .
lim / / (Vg.s, [1d — ug(x)|)dxds = 0.
t\0 t 0 JR2 ’

Thenv is a.e. identical to the Dirac-measudg, ;) associated to the unique
weak entropy solution(z, t) of the Cauchy-problem (1), (2), i.€4., id) =
(Ou(z,t),1d) = u(z,t) almost everywhere.

With these tools we formulate and prove a general convergence theorem.
This is not a new result, it simply collects sufficient conditions which allow
to apply the powerful tools mentioned above. By satisfying these conditions,
one can prove convergence of any sequence of functions (not necessarily
numerical solutions).

Theorem 2.6. (General convergencékt f1, fo € C* (R), up € L'(R?)
NL>(R?), T > 0, (u)ken be asequence of functionsiip,. (R* x [0, 77),
(hi)ren @ Sequence of nonnegative real numbers With), . hx = 0.

Let nonnegative constants;, Cs, , Cy,, Cy ., €Xist, such that for all
k € N the following conditions hold:

a) HUkHLoo(Rw[o,T}) <Ch,
b) [luk (- )l 1 g2y < Coforall t € (0,77,
c) forall p € C§° (R? x [0,7))

(5)

T
/ / (wnpr + £ (ug) Vi) + / wop(-,0)| < ChE,
0 R2 R2

d) forall ¢ € C5° (R? x (0,T)), ¢ > 0 and all entropy pair{U, F)

T
® [ [ W)+ Fw)Ve) > ~Cur i

e) forU(u) = $u? and allt € [0, 7]

/RQU(Uk(vt)) < /RQU(UO)'
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Then the sequencey,) . converges L) (R? x [0,7]) forall 1 < ¢ <

loc

oo strongly towards the unique entropy solution of the Cauchy-problem (1),

).

Proof. Because of assumption a) Thm.2.4 is applicable and we find a sub-
sequencéuy, ey and a Young-measurewhich describes weak-limits
of composition-sequencés (u, ));cy-

By proving the strong convergence for this subsequence, we immediately
gain strong convergence of the whole starting sequence. This follows from
the uniqueness of the weak entropy solution under the assumed regularities
of ug andf. Therefore we only deal with this subsequence and denote it as
(Uk)keN-

Further it suffices to show that Thm.2.5 is applicable téfter that we
know, that the values af are Dirac-measures,, ;) almost everywhere,
whereu denotes the unique weak entropy solution. This fact implies due to
[8, Cor. 2.1] the strong convergence of the sequéngi.y as we claimed.

So we prove that satisfies conditions a) to c) of Thm.2.5.

For Thm.2.5 a) it is necessary to prove

esssup [ (v fid) (1) < ol e
te[0,7] JR2

This follows from assumption 2.6 b) and the wealconvergence of
(luk|)ken towards(v, [id|), cf. [12, Thm. 7.1].

Thm.2.5 b) directly follows from assumptions 2.6 c) and d). By taking
¢ € Cg° (R? x (0,T)), we obtain byk — oo that the right-hand terms of
(5) and (6) disappear &g goesto zero and the left-hand sides also converge.
We directly end up with the inequalities (3), (4), stating thé an entropy
measure-valued solution.

Condition 2.5 c¢) can be proven identical to e.g. [11, 7].

3. Scheme

We introduce some notations needed for the definition of the scheme’s finite
volume cells. For illustration consider the figures below.

Notation 3.1. Let7 be a conform unstructured triangulation B#, that is
a partition in triangles, pairwise intersections of which are either empty, a
common vertex or a common edge.

— I denotes the set of verticesTn
— N, fori € I denotes the set @& neighbouring vertices,
— M;; denotes the midpoint of the edgejinwhich connects, j € 1,
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- G;;, (G;;) denotes the center of gravity of the unique triangl&iwhich
has vertices, j,k € I and for which this enumeration is positively
(negatively) oriented,

— C; for i € I denotes the dual cell aroungd that is the polygonal area
with boundary J; v G;;Mz-j UG My,

— L;jfori € 1,5 € N; denotes the quadrangular area given by the convex
hull of the vertices, G, j, G}/

These cellg”; are taken as finite volume cells for the first step of the scheme,
the cells;; are taken for the second step.

FV cellsC; for first step FV ceIIsLij for second step

Fig. 1.

We need some further notations whetéP) denotes the area of the
PolygonP c R2.

Notation 3.2. Forall i € I,j € N; we define

- 775; (n,;) := outer scaled normal af; for the edgeMwG (MijGi‘j>,

(that mean#nij ’M G,
- 0ij:=mn;; +n,;,

. ALgNGy)
— 7’7“7 = A(Cz) .

Remark 3.3.With these notations for alle I, j € N; hold
Mij:Mji’ GZ:G;W jEN, — iGNj,
A(Lij N C;) = A(Li; N Cj) = A(Lij) /2,
Lij=Lji, m;j =-ny, 0ij=-0j,
rij = A(Lij) [QA(Cs)),  Yjen,miz =1 and 3 .oy 055 =0.

For our convergence proof we need a nondegeneracy-condition on the
triangulation.
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Fig. 2. Normals toC; and L;

Definition 3.4. A conform unstructured triangulatiof will be called an
(a,b)-nondegenerate triangulation if the length of its edges are bounded,
i.e. the supremurh of these exists, and the areas of all triangles 7 are
bounded by

ah® < A(D) < bh*.

From these bounds we gain some geometrical estimates.

Lemma 3.5. Let 7 be an(a, b)-nondegenerate triangulation. Then for all
1 € 1,j € N;thefollowing geometrical estimates hold, whéiem denotes
the diameter of a polygon:

2
(7) a) ah2 < A(Lij) < gth,
1 P! 2
b) |m;; Sgha B §§h> !0¢j\§§h,

¢) diam (Cy) < h and A(C)<g7rh2.

The proofs are trivial remembering tm’}(g resp.G;;; are centers of gravity.

Finally we define the discrete solution obtained by the staggered Lax-
Friedrichs scheme. In [3,4] these formulas are obtained by applying evolu-
tion-projection ideas on the finite volume cellsandL;;.

Definition 3.6. (StgLxF-schemel.et7 be an(a, b)-nondegenerate trian-
gulation, At > 0. We define foralf € I,j € N;,n € 2N

1
® W=y L
1 A
9) uptt = 3 (uf +u) — A(Ltz'j) (f (uf) — £ (u)) 04,

(10) u?+2 — Z rij :L]+1 ( n+1>

JEN;

~
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These values define the numerical solution

u'  for (x,t) € C? x [nAt, (n+ 1)At)

n+1 o .
wrt for (z,t) € LY x [(n+ 1)At, (n +2)At)

up(w,t) == {
(11)

4. Convergence

We formulate the main result of this paper.
Theorem 4.1. (Convergence of StgLxF-schemedt f1, f> € C* (R),ug €
L' (R?) n L™ (R?) with B := [Jug|| .~ andT > 0. We define

— /
L= ue[—g%fi:m | Fi(w)]-

Let further(7}), .y be a sequence of uniformly, b)-nondegenerate trian-
gulations in the sense of Def.34 4 independent of) with

lim Ay, = 0.

k—o0

Let 3, be constants with the relatidh< v < 3 < §. Let(Aty),y be a
sequence of timesteps, such that forkaét N the CFL-condition

(12) Ay < g
hy,
and the lower bound
(13) Y < kg
R,

hold. (up, ),y denotes the associated sequence of numerical solutions de-
fined by the StgLxF-scheme (8)—(11).

Then the sequence,, )en convergesin}  (R? x [0,77]) forall 1 <
q < oo strongly towards the unique weak entropy solution of the Cauchy-
problem (1) and (2).

Remark 4.2.Although Theorem 4.1 is restricted to pure convergence we
stress that an a—priori error estimate of the type- uy ||, < Ch'/* can be
achieved easily following the lines of Bouchut-Perthame [6], for instance.
Furthermore, generalizations of 4.1 to higher-order schemes as in [12] or to
the case of weakly coupled systems[17] can be realized. We believe that the
proof can also be extended to the three-dimensional scheme on unstructured
grids recently presented by Arminjon [1].



Convergence of a staggered Lax-Friedrichs scheme 467

This formulation of convergence allows the existence of 0 just in
the case of. > 0, which meang”’ # (0,0)". For the trivial casd, = 0
the proof is identical after choosing arbitraky > 0. The proof of Thm.
4.1 consists of showing that the conditions 2.6 a) to e) are satisfied by the
sequencéuy, )xen. This will be done in the sequel. In particular a) will be
proven by Prop. 4.3, b) is obtained by Prop. 4.6, c) and d) are the statement
of Prop. 4.10 and e) is a consequence of Prop. 4.7.

Proposition 4.3. (L°°-bound)Let the assumptions of Thm.4.1 be valig,
be an element of the sequence of numerical solutions. Then we have for all
neNjiel jeN;

(14) uf| < B,

(15) min {u},uf } < u"+1 < max {u,uf },
n+1 n+2 n+1

(16) ?61}\1[1 {uw } <yt < %z}vx{ i } ,

and therefore condition 2.6 a) is satisfied®@y := B

Proof. (14) follows directly from the definition of.{ as average of the
functionug, which is bounded ir.*>° by B.
(16) needs some calculations: First we obtain with (10) for an arbitrary
€ [-B, B]

A
vt =y Z Pt — (éi) Z _f (u%+1> 0;;.

JEN; JEN;

As) ey, iy = 1land) ..y 6;; = 0 we caninsert terms dependentof
in both sums. Therefore the right hand is equivalent to

> (0-) = 1t 32 (01 (5) o

JEN;
B L At fr(o) = filul )N
g]; i ( ug ) A(Cy) gz%- <f2 (v) = fa(u ”H)) Oi

For somet;1, ;2 betweerv, u;’ 1 we continue with

n A iy
—zw@wﬂ>ma§&wfwﬂ$>

JEN;

We conclude with an equivalence for anye [—B, B] with appropriate
i1,&52 € [ B, BI:

@ v = 5 (o) o= o (1162 0]

JEN;
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For (16) it is sufficient to prove

(18) max {u%ﬂ} —ut? >0 and
JEN;
(19) ?el}? {u?jﬂ} )

For (18) it is withv := maxjen,{u};"'} in (17) sufficient to prove,
that all addends on the right are positive. We already have fgr allV;:
v — u?j“ > 0, therefore the first factor in the sum is positive. It remains to
show that the factor in angular brackets is also positive.

For (19) we have withy := minjey, {u;"'} that for allj € N; holds:
v — uﬁ“ < 0, such that the first factor in the sum of (17) is negative.
Sufficient for the inequality in question is again that the factor in angular
brackets is positive.

This follows from geometrical estimates, the Lipschitz-bound ahd

the CFL-condition (12), as for argy, &; € [—B, B] holds

AlLy) At (f{(&))’ <o A o2
ACy) Ay |\ |10 =2 2 2h gt
(20) < 27‘2']' : 2,8 < Tij.

Equation (15) can be proven analogously.

To verify conditions 2.6 b) to e) we first need two discrete entropy in-
equalities.

Proposition 4.4. (Discrete entropy inequalitiespet the assumptions of Thm.
4.1 be validu), be an element of the sequence of numerical solutions. Then
foralln € N,i € I,5 € N; and entropy pairgU, F) hold

U (ut) < 5 (U @) +U ()

At
(21) —A(Lij) (F (u}) —F (u})) 04,
U (U?+2) S Z TijU (u%+1>
JEN;
At .
(22) TAG) jg F (") 00

This Proposition turns out to be the most important point in the proof, as
itis fundamental for all further results. The problem of the initially unknown
structure of the entropy inequalities turns out to be perfectly solved by the
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inequalities (21),(22): first these inequalities are actually satisfied by the
scheme and secondly they allow to derive the further properties which are
sufficient for convergence of the scheme.

Proof. We just prove the second inequality, as the proof for the first one is
similar. Let (U, F) be an entropy pain € 2N, € I fixed. We sort and
enumerate the sét.};"'} jc v, by size.

For this we taken := |V;|. Leta : {1,...,m} — N; be a bijection,
such that withy; := “Z;Ezl) holds

(23) U <ug < ... < Up.

This mapa also induces an enumerationgpandé;;. For the second step
of the scheme (10) we obtain the alternative representation

S At
(24) ut? = (ru —f(u)@).
lz; YA R

The inequality in question is written accordingly

(25) U@t <Y <nU () — A?Ct,i)F (w) 0,) .

=1

To reformulate this once more, we define

“ At
q(t1, ..., tym) = ; <’I“ltl — mf(tl) 91) and
p(tl,.. . ,tm) = U(q(tl,... ,tm)) — i T’lU<tl> — At F(tl)Ol .
— A(C;
This impliesg (u1, - . ., u) = u}" 2, compare (24). Thus (25) is equivalent
to the statement
(26) Uty i) <0,

This will be proven in the following.
As p is differentiable it is sufficient for (26) to find poinf3,, ..., P, €
R™ such that

i) p(P) =0, i) Pn=(ut,...,um)’,
iiiy forall k=2,...,m andall Pec P, 1P. holds

Vplp - (Px — Pi—1) <0.
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These conditions are satisfied by the choice

Pl — (ula 7“1)T
Py = (u1,uz,...,uz)"
T
Pm—l = (u17 o 7um—17um—1)
Py, = (uq,... ,um)T.

It remains to check the conditions i) and iii) because ii) holds trivially. Proof
of i): We obtain with Remark 3.3

This is used in the definition gf and we obtain with Remark 3.3
p(Pl) :p(ulv"'vul)

=U(q(uy,...,u Z (rlU uy) A?CZ)F (u1) 91>

=1
= U(Ul) — U(ul) = 0.

Itremainsto proveiii). Choosec {2,...,m}, P € P,_1 P, thatmeans
27) P=(u1,...,ug_1,u,... ,u)T for some u € [ug_1,ug| .

We reformulate the inequality of iii) using the notatienfor the I-th unit-
vector ofR™. This yields for the difference-vector

Py — Pioy = (ur —uk-1) Y e,
1=k

and herewith

NE

Vplp - (Pr— Pr—1) = (uk —up—1) Y Vplp-e

I=k

9

= (up — ug—1) a1,

p

NE

1 P

I
=
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As the first factor is nonnegative due to (23), it is sufficient to show that

<0.

P
Let! € {k,...,m} be fixed. We obtain by definition of

(28) forall I=k%,...,m holds gp
oty

3 . 9
gt tm) = U @ (b1, tm)) i (11, )

(0 () - ¥ 1)

From the definition ofy we obtain

Ly At
ot A(Cy)

This yields together with’'(¢) = U’ (¢)f'(¢) in the partial derivative op

f/ (tl) 0,.

tlv"'atm):’rl_

0
aitlp(thatm)

— U (gt tm)) (m _ A?éi)f’ (tl)9,> -

<rlU’ (t1) — A(A(?,;)U/ () £ (1) 01)

= (U’ (q(t1,. .., tm)) = U (tl)> <rl - A?é)f’ (tz)01> .

There exists somgbetweeny (¢4, . . ., t,,) andt;, such that

At
(ip (tl, - ,tm> =U" (f) (q (tl, - ,tm) — tl) (7’[ — mf’ (tl) 0[) .
(29)
The first factor is positive with convexity @f, the last one is positive with
the calculations in (20). Therefore it is sufficient to prove that the middle
factor is negative if evaluated iR. With definition ofg we rewrite it again

m At
q(h,---,tm)—tz:;<7"jtj_A(C,»)f(tj)0j>_tl
m At
-3 (135~ 10— s (2~ £ @),
Y I W
o =St (- () o)



472 B. Haasdonk et al.

for certaing;1, ;2 betweent; andt;. Evaluation inP yields ¢;|, = u; or
uwandt|, = u with (27). Therefore we obtain by (20) again that the last
factors in (30) are positive if evaluatedih The first factors seperate in two
cases:

If j <k—1wehavet; —t|p = uj —u < u; —up—1 < 0dueto (27) and
(23).

If j > k we havet; — ;| , = u —u = 0. Thus (28) holds and herewith the
proposition.

Notation 4.5. Let D C R? be a disc. We denotk, := I N D as the set

of vertices inD. Leta, b, hy be nonnegative constants. Then there exists
a constantCp, such that for all(a, b)-nondegenerate triangulations with

h < hg holds (cf. Not. 3.1)

1
(31) Z |IV;| < Cpﬁ-

i€lp
Regarding the geometrical estimates of Lemma 3.5 the proof is obvious.
From the entropy inequalities now follows the unifoim-stability.

Proposition 4.6. (Uniform L!-stability) Let the assumptions of Thm. 4.1
be valid,u;, be an element of the sequence of numerical solutions. Then for
allneN,iel,je N;hold

(32) ZA(Cz') ‘U?‘ < HUOHLl(R?)z

el

(33) 3 %A (L))

a3 A(C)

iel jEN; iel
1
(34) Y AC) [T < Y 5 A (Lig) Uzﬂ‘
iel il jEN;

and therefore condition 2.6 b) is satisfied ®y := [|uo | 11 (g2)-

Proof. (32) again follows directly from the definition of the initial-values
(8).

Proof of (33): Let(U,,,)m>1 be a sequence of nonnegative convex func-
tions with Lipschitz-bound 1 and which approximate from below with
0 < |u] = Un(u) < 1/mforall u € R. For such entropy/,,, and entropy
flux F,,,, we multiply the first discrete entropy inequality (21) wiliL;;) /2
and sumitovei € I,j € N;. This yields

S ALy Un ()

i€l,jEN;
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< Y Ay <§Um<u?>+;Um(u?>)

i€l,jEN;

1
— Y S (F () ~ F () 0
iGI,jENi
(35) = T1 - TQ.

We restrict the sum on the left handie Ip for an arbitrary disd with
radiusR and use the properties bf,,:

> AT U () 2 Y SAEy) Un ()

i€l,jEN; i€lp,jEN;

=Y %A(Lz’j)

i€lp,jeEN;

1 1
- Y gALy) —=Ts—Th.

i€lp,jeEN;

u

n+1
(]

We obtain with (35)
Ty — Ty <T1 — To.

The terms on the right hand are absolutely convergent, which can proven
easily with the help of_,.; A(C;) |u}'| < oo. Rewriting the sums i}
andT5, by swapping, j directly yields

Ty <> AC) |uf], Tp=0.
iel
In the limitm — oo, T4 disappears, thus; is bounded independent &f
by 7. By the limit R — oo we obtain (33). (34) can be proven analogously.

Proposition 4.7. (L?-stability) Let the assumptions of Thm.4.1 be valig,
be an element of the sequence of numerical solutiGfg) = u2/2. Then

1U (un (-, 0))[| 1 rey < 1U(wo))ll ey < 00
andforall0 <t <ty <T

1U (un (5 t2)) [ 1 g2y < U (un (e 80)) | 21 gy
hold. Therefore condition 2.6 e) is valid.

Proof. The first statement follows from the definition of the initial values
and the relatiorﬂuOH%g(Rg) < [luoll 1 (r2) l[uoll 1 - The second statement
follows identical to the proof of the previous proposition: We obtain (35)
containingU (u) = u?/2 instead ofU,,,. Again absolute convergence Bf
andT; can be proven and rearranging the sums yields the result for the first
step of the scheme. The second step follows similarly.
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For the proof of the remaining conditions 2.6 ¢) and d) we need a weak
BV-estimate. This is based on a more accurate estimate of the entropy dis-
sipation for a quadratic entropy.

Lemma 4.8. (Entropy dissipationl.et the assumptions of Thm.4.1 be valid.
Then there exists a nonnegative const@hsuch that for all numerical
solutionsu, of the sequence, all € N,i € I,j € N; and entropy pairs
(U, F) with U (u) = u?/2 holds

A

(36) < —C (uf —ul)?.

The constant might be chosen@s= C (a,3) = % (5 — 2 )2.

a

Proof. We define similar as in the proof of Prop. 4.4

ot =5 (0 +12) = o (6(a) — £(1)) B
pltr, 2 =U (a(ts, 1) = 5 (U(01) + U(12)
i F )~ F0) 0y,
Further calculation yields a representation similar to (29), (30)
o) = (5 = (006, ) U7 (Ot
& (a4 iz (1168) %)

for certaing, &1, & betweent; andts. With r(ty, 1) := —C(t; — t2)? itis
sufficient to show thab (1, t2) < r(t1,t2). Asp andr are identical zero for
to = t1, this is equivalent to proving

0 0
(38) (t1 — tz)@]?(ﬁiﬂ > (t1 — t2)6727"(t17t2)

for all t1,t2 € [—B, B]. We rewrite the left hand with (37). Using (20)
we see that the first and last factor in (37) are greater or eq@H@%ﬁ.
Therefore we obtain with/” = 1 andC'

0
(t1 — t2)§p(t1>t2) > 2C(t; — t2)*.
2

This is exactly the statement of (38).
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Using this estimate, we now derive a weak BV-estimate. This kind of
estimate is weaker than a BV-estimate, but strong enough to obtain conver-
gence. A similar estimate was derived in the proof for the case of the linear
equation [5], called an estimate on the weighted total variation.

Proposition 4.9. (Weak BV-estimate) et the assumptions of Thm. 4.1 be
valid, D c R? be a disc. Then there exists a constahtsuch that for
all numerical solutionau;, of the sequence and correspondibgA¢ with

N :=maz{n € 2N|nAt < T} holds

(39) ST R|ul | < Ch7s.

i€lp,jeEN;
ne2Nn<N

Proof. For everyn € 2N andC as given in Lemma 4.8

C Y ALy (uf — )’

i€lp,jEN;
1 2
(40) < 2 gty (- ().
i€l,jEN;
2
(41) o< 3 ;A<Lm>((u§3-“) —(u?“f)
iEI,jENZ‘

hold. (40) follows by multiplying (36) withA(L;;) and summing ovei €
1,7 € N;. The sum ove(u?)2 is rewritten as sum ovew?)? by swapping
i, j, the sum over the entropy fluxes equals zero and the sum of the squares
of the differences is restricted icc Ip,j € N;.

Equation (41) follows by multiplying the second entropy inequality (22)
by2A(C’z), USingU(u) = u2/2, TUA(CZ) = A(LZ])/Q andzjeNi Tij = 1.
This is summed up over alle I, the sum over the fluxes again cancels after
splitting and swapping, j, as@;; = —0;:

Z 2AtF (u%H) 0;; = Z AtF (u?fl) 0;;

i€l,jEN; i€l,jEN;

+ Z AtF(u%ﬂ)Bﬁ.

i€l,jEN;

Let Zi’jm denote the sum over alle Ip,j € N;,n € 2N,n < N and
>, denote the sum over theseWe sum the inequalities (40) and (41) over
all n € 2N, n < N, by this the right hand simplifies as the addends cancel
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pairwise except two remaining terms

O A(Ly) (uff —u)’

©,J,m
(42) < D %A(Lm ((u?f - (uiV“)Q)
iel,jeN;

Let us denote the term on the right hand By{, the left hand byLH.
Proposition 4.3 and 4.6 yield an upper bound R :

1 2
RH< > oA (Lij) (u?)” < Bllun(- 0)ll 1 g2y < Blluoll 1 ge) -
iel,jeN;

Further the left hand can be estimated from below using (7):
C- az h2 u —uj < LH.
7‘7 n
We conclude with a new constafit
(43) Z h? (ul! — u;‘)2 < C.
©,7,1
The statement of the proposition follows easily by using the Cauchy-Schwarz
inequality:

Zh2‘u?—uﬂ< /Zh2\/2h2 u? —u)Q.
©,7,m 1,5,m i,J,m

The last factor can be bounded with help of (43)\3¢/, the first one can
be estimated with assumptiovi < 7'/ At, the inverse CFL-property (13)
LAt/h > 7, (31) andhg := maxgen hi

N
z: 2 : 2 2 : 2 _
n lEID’JGN
TL  hg TL 1
< = —_— —_— =
<27h+ h>CD <2’y+h0>CDh C

This yields the statement of the proposition

Zh2 |u —uﬂ < \/C”Ch_%,

Z,],?’L

a
=

as bothC' andC’ are independent of the choicewf.

With this weak BV-estimate we can prove a last proposition, which com-
pletes the convergence proof.
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Proposition 4.10. (Weak consistencyl)et the assumptions of Thm. 4.1 be

valid, ¢ € C5° (R? x [0,T)). Then nonnegative constartts, and Cy
exist, such that for alk € N the numerical solution;,, satisfies

T 1
| [t 2@ Vo) + [ uop0) < Coni,
0 R2 R2

and for all entropy pairgU, F), ¢ with ¢(z,0) = 0, ¢ > 0 holds

1

T
| L@ )+ F () V) = ~Cumohi.

Thus conditions 2.6 c) and d) are satisfiedy= 1/2.

Proof. Letw, be an element of the sequence of numerical solutidn')
be an arbitrary entropy pair. We first give some notations which will be used
in the proof.

— Let N be defined as in Prop. 4.9] := max {n € 2N |nAt < T}.

— Lethg := mMaxgeN hp.

— Let D C R? be a disc, which covers the support pf-, ) for all ¢
and is large enough, thatvanishes on all boundary-cells of the set
{Ci}ier, forall t € [0, 7] and all triangulationg™ from the sequence
(Tk) ken-

— LetC, be anL>-bound ofy and all of its derivatives up to degree 2.

— We denotep™ := ¢(-,nAt), ¢} = pi(-,nAt).

— S; denotes the center of gravity of cél} for all i € I.

— Lety] := " (S5;) foralln € 2N, i € I.

— The frequently used sums are abbreviatedddy = >, oy <y
Do = Dielpy Duim = Dui danr Diy t= i Dojen, andd i =
Zi,j Zn

With these notations the statement of the proposition follows from

UTH-Q —un

% T n

oAt D0

:/ / uhSOH-/ uog00+(9<h%),
R+ JR2 R2
b) > A(C) (U?+2_U?)s0?=—/W/sz(uh)vgwr(’)(hé),

U (uft?) = U (ul)

7 7

2At

=A+AQU(Uh)wt+0(h5),

a) — ) 2AtA(Cy)

0) -3 2414(Cy) o



478 B. Haasdonk et al.

d) — ZA U (u}*?) = U (u})) @7

—/R+/RQF(uh)ch+(’)(h5>.

This is obvious as the left hand of a) and b) resp. ¢) and d) are identical.
Proof of a). For technical reasons, we extendn the domaiR? x R,
such thatp(-,¢) = 0 for ¢ > T', ¢ and its derivatives still can be estimated
by C,, andy € Cg° (R? x R). This is obviously possible.

Rewriting of the left hand by partial summation yields

QO . S071-&-2
LH of a) = Z 2AtA (C :LHZthZ

+ZA ’LL % ZA N+2 N+2

The last term disappears @s-, (N + 2) At) = 0. Thus for a) is sufficient
to prove two relations:

n+2

_ ) n+2(pz _30? 1
(44) /R+/2uhcpt—Z2AtA(Cl By +O<h2)
(45) and/ Uop —ZA D udp? + O (h).

(45) follows from elementary calculations remembering the definition of
the initial values (8), the Lipschitz-bound@fand using that the integration-
error of the midpoint-rule on polygons with diameter®h?) has order of
magnitudeO (h*).

Proof of (44): Starting with the left hand we successively cut off terms
which are small, that means of magnitu@¢h'/?). First we discretize the
time integrals pointwise with errag(z)

T (N+2)At
[ [
0 R2 i, L’U nC; JO

— Z/ ZAt us +u"+1<p?+1>
i, L;;NC; n
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We obtainTs = O (k) as|R(z)| < C,T At for all x € R?. T5 is rewritten

as
Ts = ZAt/ 2ut o +2At/ ( n+1(’0?+1 u?@?)
i4,n ﬂCl i4,n LijﬁC‘
(46) =: T7 + Ts.

Ty again is small, as further decomposition yields
Ty = Y At / (ugﬂ ;L) o7
Li;NC;

2,3,M

+2At/ n+l (QO?—H 90?)

1,7,M nC;
=: Ty + T1p.

Firstwe obtain with (7), the CFL-condition (12) ahd;"" —u| < |u}} —u}’
from the maximum-principle (15)

Ty| <Y At-A(LiynCy) - ufstt —uf| - Cy
4,4,
Z lth [ut —uf| - C - Lo hY b’
©,7,M ’ ' ’ 3L ’ ©,7,M

where we can apply the weak BV-estimate (39) and conclude
1 1 1
< = -Ch™2 = 2
(Ty] < 57 BbCh-Ch™2 = O (hz) .
Second we obtain
Tl <> At-A(LyNCi)-B-Cp- At =0 (h),
7,7,

thus T in (46) shown to be?(h'/?). The main term i€y, With cellwise
midpoint-integration we continue with error-terrig

T; = ZQAtuZ- / op = ZQAW@ o (S:) A(Ch) + Z2Atu?R?

n
=: T + Tio.

Every R? is bounded byCh* for a common constar, thereforeT;, =
O (h?). By Taylor-expansion we getl! (S;) = (¢ — ¢ ?) / (2At) +
O (At). This yields
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Let the dominating addend on the right hand of this equation be denoted by
T13. A reformulation of7Ty3, shows that it is equal to the main term of the
right hand of (44) plus two small terms:

n 0_ -2
Tig =) 24tA (Ci)u; e il 21 +3 24004 (Cp) T2

2At 2At

i,n
N+2

- ZzAtuN+2A () %.

The two last terms have order of magnitufi¢h) because the fractions are
bounded. This finishes the proof of (44) and herewith a).
Proof of b). It is sufficient to prove

ZA upt —uft) o}
(47) - Z2At/ ") V" 4+ O (h%)

and

(48) /R+/ (up) Vip = ZQAt/ cp—i—(’)(hZ).

Equation (48) can be proven similar to (44). Starting with the left hand, again
pointwise discretization of the time-integral is applied and the remaining
terms are estimated using Lipschitz-boundsf othe discrete maximum
principle and the weak BV-estimate.

Proof of (47): We first rewrite both sides. The left hand contains terms
A (C;) (u? —u?). These are rewritten inserting both steps of the numerical
scheme (9) and (10).

(49)  A(C) (uf? — uf)
=A(G) (Z (TUU:}H ic ( n+1> ) ?)
JEN;
= > A (C) (u! — ) - 4 ( 5) 6 = T - T
JEN;

T7* can be further decomposed

uy —ug A . .
- Z %A(Lij) ( J T A(Iij) (f (u]) —f (u})) 0ij>

JEN;
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1 n n 1 n n
JEN; JEN;
(50) =T —T3.
This decompositiomt (C;) (u*? —ul) = T3 — Tj3 — T7% is inserted in
the left hand of (47).

1
LHof (47)= ) 1A L) (uf — ') o}

2,J,m
1
=D FA(E () — £ (u])) O3s7
1,7,
Y (u;;“) 0,07 =Ty — Ty — Ts.
©,4,m

The dominating term on the right hand of (47) is rewritten with the diver-
gence theorem and edgewise midpoint-integration. We use the no,b%t”ron

(3 ) for the evaluation of in the midpoint of the edge belonging trg

(m}) at timenAt, cf. Figures on page 465, amddenotes the outer normal
of C;.

%}2At/€if(u?) Ve = 2%;&/8& (f (ui") ¢") dn
=2) At Y f(u])

in  jEN;
X (90%7771'; + SDZJF"?;;) + O (h)
With these notations the statement (47) reads

Tl—TQ—T3:2T4+(9(h%).

This will be proven in 3 steps:

(51) T =0 (h%> ,
(52) Ty +Ty=0O (h%) :
(53) T —Th=0 (h%) .

Proof of (51):77 can be made symmetric by splitting the sum, swappirng
in one of the two parts and merging them again. This procedure is allowed
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although the summation range is not symmetrig jipas the boundary terms
vanish due to the assumption éh We obtain

1
Ti= 3" SA(Ly) (f — ) (97 = })
2,7,1

The Lipschitz-bound ofp, the area-bound (7) and the weak BV-estimate
(39) yield exactly (51):

Ty < ORY_R2 ul —uf| = O (h%) .
%,7,m

For (52) we rewritel, with 6;; = n;]f +n,;, Ta is symmetrized as
described above. We obtain the representations

=3 0 (£ () — £ ) (mel +mel)
©,7,M

To= 30 5 A () — £ () (9 n; + el ).
4,J,m

asely My + ¢y mi; =~y i — @y m;;- This yields

1
Ty+Ty= S A(f (uf) — £ ()
©,7,m
(54) x (ng (@? - wl}*) +m;; (@? - w%‘)) :
The absolute values of the single differences appearing in this term can be

estimated using Lipschitz-propertiespfandf. With 3.5 b) and the weak
BV-estimate we conclude with statement (52)

Ty + T < CALY [ul —ul|-h® =0 (h%) .
©,7,m
Proof of (53): Firstl3 is rewritten by changing the sign of the second
flux contribution. This is allowed as this term vanishes in the sum pver

Z SAL(F (uf) + £ (u])) 8ij07,

7‘7n

We subtractls andT5, the result is made symmetric resulting in

:ZAt%(—f( 1)+ 2f () — £ (uf) ) 216
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= im (_f (u?) + 2f (u;;.“) —f (u?)) (¥} —¥}) 04

©,7,m
— Z iAt <f (uyjH) _f (u;‘)) (o1 — ©7) 65
,7,n
+ Z At% (f (u%—H) —f (U?)) (90? — 90?) 0;; =15+ 1T;.
2,J,m

Both sums can be estimated similar to (54) additionally using the discrete
maximume-principle. Both term$; andTg turn out to have order of mag-
nitude O(h'/2), thus the last relation (53) is shown to be valid, herewith
47).

¢) and d) can be proven in a similar manner since their structure agrees

with the structure of a) resp. b). This finishes the proof of Proposition 4.10.
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