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Abstract. We construct, analyze, and implement a new nonoscillatory high-resolution scheme
for two-dimensional hyperbolic conservation laws. The scheme is a predictor-corrector method which
consists of two steps: starting with given cell averages, we first predict pointvalues which are based on
nonoscillatory piecewise-linear reconstructions from the given cell averages; at the second corrector
step, we use staggered averaging, together with the predicted midvalues, to realize the evolution of
these averages. This results in a second-order, nonoscillatory central scheme, a natural extension
of the one-dimensional second-order central scheme of Nessyahu and Tadmor [J. Comput. Phys., 87
(1990), pp. 408–448].

As in the one-dimensional case, the main feature of our two-dimensional scheme is simplicity.
In particular, this central scheme does not require the intricate and time-consuming (approximate)
Riemann solvers which are essential for the high-resolution upwind schemes; in fact, even the com-
putation of the exact Jacobians can be avoided. Moreover, the central scheme is “genuinely multidi-
mensional” in the sense that it does not necessitate dimensional splitting.

We prove that the scheme satisfies the scalar maximum principle, and in the more general context
of systems, our proof indicates that the scheme is positive (in the sense of Lax and Liu [CFD Journal,
5 (1996), pp. 1–24]). We demonstrate the application of our central scheme to several prototype two-
dimensional Euler problems. Our numerical experiments include the resolution of shocks oblique to
the computational grid; they show how our central scheme solves with high resolution the intricate
wave interactions in the so-called double Mach reflection problem [J. Comput. Phys., 54 (1988),
pp. 115–173] without following the characteristics; and finally we report on the accurate ray solutions
of a weakly hyperbolic system [J. Comput. Appl. Math., 74 (1996), pp. 175–192], rays which otherwise
are missed by the dimensional splitting approach. Thus, a considerable amount of simplicity and
robustness is gained while achieving stability and high resolution.
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1. Introduction. We study the approximation of two-dimensional conservation
laws by second-order accurate, nonoscillatory central difference schemes. The main
feature of our central schemes is simplicity: since no (approximate) Riemann solvers
and related characteristic decompositions are involved, we derive efficient, genuinely
multidimensional schemes, which are independent of dimensional splitting.

The construction of our central scheme in the prototype two-dimensional case is
carried out in section 2. It amounts to a simple two-step predictor-corrector method
outlined in (2.15)–(2.16) below. In section 3 we carry out the stability analysis which
proves that the two-dimensional scheme satisfies the scalar maximum principle. In
fact, our arguments indicate that in the more general context of multidimensional
systems, the central scheme satisfies the positivity condition of Liu and Lax [LL].
Finally, we implement the proposed central scheme for a variety of prototype two-
dimensional problems, whose results are reported in section 4. In particular, we
would like to highlight the following.

• Scalar equations. The nonoscillatory behavior of the scalar results is found
to be in agreement with the maximum principle indicated above.
• Two-dimensional systems. Three canonical problems are considered: the ro-

tated Riemann problem, the double Mach reflection problem, and a 2 × 2
weakly hyperbolic system introduced by Engquist and Runborg, which arises
in the macroscopic closure of a multiphase geometrical optics expansion [ER].
The numerical results demonstrate the nonoscillatory, high-resolution con-
tent of our proposed central schemes. It is in this context of systems of
conservation laws that the simplicity and flexibility of our central schemes
are translated into efficiency. Specifically, one can avoid the time-consuming
computation of (approximate) Riemann solver(s) and the related character-
istic decompositions; in fact, even the (exact) Jacobians associated with the
problem are not required for the computation! Moreover, this flexibility en-
ables us to implement the central scheme without dimensional splitting.

The motivation for our construction of the two-dimensional central scheme dis-
cussed in this paper originates with the one-dimensional central scheme introduced by
Nessyahu and Tadmor in [NT]. To begin with, we briefly recall this one-dimensional
setup. Starting with a piecewise-constant solution,

∑
w̄npχp(x), one reconstructs a

piecewise-linear approximation, w(x, tn) =
∑[

w̄np + w′p
(
x−xp
∆x

)]
χp(x). Here, χp(x)

is a characteristic function of the cell, Ip := {ξ
|ξ − xp| ≤ ∆x

2 }, centered around

xp = p∆x, and w′p abbreviates a first-order discrete slope which is reconstructed
from the neighboring cell averages {w̄nq }. Let {w(x, t), t ≥ tn} be the exact solution
of the conservation law wt + f(w)x = 0, subject to the reconstructed initial data at
t = tn; the distinctive feature of central schemes, in contrast to Godunov-type upwind
schemes, is that they realize this exact solution by its averages over staggered cells,
Ij+ 1

2
, centered around xj+ 1

2
=
(
j + 1

2

)
∆x. Let w̄j+ 1

2
(t) := 1

∆x

∫
I
j+ 1

2

w(ξ, t)dξ denote

these staggered averages. Integration over the control volume Ij+ 1
2
× [tn, tn+1] yields

(with the usual fixed mesh-ratio λ := ∆t
∆x )

w̄j+ 1
2
(tn+1) = w̄j+ 1

2
(tn)− λ

[
1

∆t

∫ tn+1

tn
f(wj+1(τ))dτ − 1

∆t

∫ tn+1

tn
f(wj(τ))dτ

]
.

The averaging of the piecewise-linear data reconstructed at t = tn yields w̄j+ 1
2
(tn) =

1
2 (wnj +wnj+1) + 1

8 (w′j −w′j+1). So far everything is exact. At this point the fluxes on
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the right are approximated by the midpoint rule, 1
∆t

∫ tn+1

tn
f(wj(τ))dτ ∼ f(wj(t

n+ 1
2 )).

The Conrant–Friedrichs–Levy (CFL) condition guarantees that the interface values,
wj(τ) = w(xj , τ), τ ∈ [tn, tn+1), are “secured” within a smooth region, so one may use

Taylor expansion to approximate the midvalue wj(t
n+ 1

2 ). We end up with a predictor
step for these midvalues,

w
n+ 1

2
j = w̄nj −

λ

2
(f(wj))

′,(1.1)

followed by the corrector step described above,

w̄n+1
j+ 1

2

=
1

2
(w̄nj + w̄nj+1) +

1

8
(w′j − w′j+1)− λ

[
f(w

n+ 1
2

j+1 )− f(w
n+ 1

2
j )

]
.(1.2)

Here, w′j , and likewise, f(wj)
′, denote spatial discrete slopes of the corresponding grid

functions. There is a variety of recipes for the construction of such slopes; see e.g.,
[Sw], [LO]. These discrete slopes involve nonlinear limiters, which guarantee that the
central scheme (1.1)–(1.2) is nonoscillatory in the sense described below.

1.1. One-dimensional epilogue: No characteristic decompositions. The
scalar central scheme (1.1)–(1.2) shares desirable nonoscillatory properties with the
scalar high-resolution upwind schemes. In this context we refer to proofs of total varia-
tion bounds (the total variation diminishing (TVD) property [Ha2]), entropy stability
(cell entropy inequality [OT]), maximum principle, etc.; consult [NT], [Hu], [LT]. The
distinctive advantage of the central schemes, however, is due to their nonoscillatory
behavior with systems of conservation laws. Specifically, the vector of discrete slopes
required in the corrector step (1.2), w′j , is now implemented using a straightforward
componentwise extension of the scalar recipes. In particular, for the discrete derivative
of the flux in the predictor step (1.1), we may use f(wj)

′ = A(wj)w
′
j ; alternatively, we

can proceed with a straightforward componentwise computation of f(wj)
′, which does

not even require the Jacobian, A = fw. In either case, intricate and time-consuming
characteristic decompositions of upwind differencing are avoided; a straightforward
componentwise approach will do for the central scheme (1.1)–(1.2).

These advantages of the central framework were already borne out in several re-
lated works, e.g., [AV], [BS], [Er], [Hu], [LT], [NT], [SW], [Sa2], [TW]. Here we provide
one more simple demonstration of this point in the context of the one-dimensional,
constant-coefficients test system proposed to us by Engquist and Osher [EO],

ut + (Au)x = 0, A :=

(
0 1
1 0

)
,(1.3)

subject to discontinuous initial data (and periodic boundary conditions)

u1(x, 0) ≡ 1,

u2(x, 0) =

{
1, x < 0,
0, x > 0.

(1.4)

Careful numerical simulations are required to model the propagation of such initial
singularities. Let us recall that postprocessing and artificial compression of contact
discontinuities, e.g., [MO], [Ha1], are just two remedies to the spurious oscillations
which are formed in connection with the numerical simulations of such singularities.
Figure 1.1 compares the results of the central scheme (1.1)–(1.2) using the MinMod
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Fig. 1.1. The 2× 2 system (1.3)–(1.4) evaluated with N = 40 cells and CFL = 0.4 at t = 0.5.
Plotted are numerical and exact characteristic variables. Nessyahu–Tadmor scheme (1.1)–(1.2) with
MinMod limiter in (3.1′): (a) with MM1 limiter; (b) with MM2 limiter. Results are compared
with ENO-ROE scheme: (c) componentwise second-order ENO-ROE; (d) componentwise third-order
ENO-ROE.

limiter MMθ outlined in (3.1′), with those of the upwind ENO–ROE scheme outlined
in [JS]. Both schemes used componentwise reconstructions of pointvalues from cell
averages. Figures 1.1a,b demonstrate that the central scheme is able to perfectly
resolve the discontinuities carried by each of the characteristic variables, v1 := u1 +u2

and v2 := u1 − u2, without spurious oscillations in the other characteristic variable.
One can detect such oscillations, however, in the second-order upwind results of Figure
1.1c, oscillations which become more pronounced in the third-order results of Figure
1.1d. This type of behavior repeated itself in a variety of test cases we have tried with
different systems and stronger jump amplitudes.

2. The two-dimensional central scheme.
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2.1. A two-step predictor-corrector formulation. We consider the two-
dimensional system of conservation laws

ut + f(u)x + g(u)y = 0,(2.1)

subject to prescribed initial data, u(x, y, t = 0) = u0(x, y). To approximate (2.1) by a
central scheme, we begin with a piecewise constant solution of the form

∑
w̄npqχpq(x, y).

Here, w̄npq is the approximate cell average at t = tn, associated with the cell Cpq =
Ip × Jq centered around (xp = p∆x, yq = q∆y), i.e.,

Cpq :=

{
(ξ, η)

|ξ − xp| ≤ ∆x

2
, |η − yq| ≤ ∆y

2

}
.

As a first step, we reconstruct a piecewise-linear approximation of the form

w(x, y, tn) =
∑[

w̄npq + w′pq

(
x− xp

∆x

)
+ w8pq

(
y − yq

∆y

)]
χpq(x, y).(2.2)

Here, w′pq and w8pq are discrete slopes in the x- and y-directions, respectively, which
are reconstructed from the given cell averages. To guarantee second-order accuracy,
these slopes should approximate the corresponding derivatives,

w′pq ∼ ∆x · wx(xp, yq, t
n) +O(∆x)2,(2.3′)

w8pq ∼ ∆y · wy(xp, yq, t
n) +O(∆y)2.(2.38)

As in the one-dimensional framework, the construction of our central scheme proceeds
with a second step of an exact evolution followed by staggered averaging.

Let {w(x, y, t), t ≥ tn} be the exact solution of the conservation law (2.1),

wt + f(w)x + g(w)y = 0, t ≥ tn,(2.4)

subject to the reconstructed piecewise-linear data (2.2), w(x, y, tn), at t = tn. The
second (and distinctive) step is to realize this exact solution at the next time step
t = tn+1, by its averages over staggered cells, Cj+ 1

2 ,k+ 1
2

:= Ij+ 1
2
× Jk+ 1

2
, centered

around (xj+ 1
2
, yk+ 1

2
).

Let w̄j+ 1
2 ,k+ 1

2
(t) = −∫

C
j+ 1

2
,k+ 1

2

w(x, y, t)dxdy denote these staggered averages. (Here

and below we abbreviate −∫
B

:= 1
|B|
∫
B

to denote the normalized integral—normalized

over its length, area, etc.) Let λ := ∆t
∆x and µ := ∆t

∆y denote the fixed mesh-ratios.

Integration of (2.4) over Cj+ 1
2 ,k+ 1

2
× [tn, tn+1) yields
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Fig. 2.1. Floor plan of the staggered grid.

w̄j+ 1
2 ,k+ 1

2
(tn+1) = −

∫
C
j+ 1

2
,k+ 1

2

w(x, y, tn)dxdy

− λ
−
∫ tn+1

τ=tn
−
∫
y∈J

k+ 1
2

[f(w(xj+1, y, τ))− f(w(xj , y, τ))] dydτ


− µ

−
∫ tn+1

τ=tn
−
∫
x∈I

j+ 1
2

[g(w(x, yk+1, τ))− g(w(x, yk, τ))] dxdτ

 .(2.5)

We begin by evaluating the cell average, −∫
C
j+ 1

2
,k+ 1

2

w(x, y, tn)dxdy. It has contri-

butions from the four intersecting cells, Cjk, Cj+1,k, Cj+1,k+1, and Cj,k+1. Starting
with the intersecting cell Cjk at the southwest corner (consult Figure 2.1), CSW

j+ 1
2 ,k+ 1

2

:=

Cj+ 1
2 ,k+ 1

2
∩ Cjk, we find the average of the reconstructed polynomial in (2.2),

−
∫
CSW
j+ 1

2
,k+ 1

2

w(x, y, tn)dxdy

= −
∫ x

j+ 1
2

xj

−
∫ y

k+ 1
2

yk

[
w̄njk + w′jk

(
x− xj

∆x

)
+ w8jk

(
y − yk

∆y

)]
dxdy

=
1

4
w̄njk +

1

16
(w′jk + w8jk).(2.6)
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Continuing in a counterclockwise direction, we have

−
∫
CSE
j+ 1

2
,k+ 1

2

w(x, y, tn)dxdy =
1

4
w̄nj+1,k +

1

16
(−w′j+1,k + w8j+1,k),(2.7)

−
∫
CNE
j+ 1

2
,k+ 1

2

w(x, y, tn)dxdy =
1

4
w̄nj+1,k+1 −

1

16

(
w′j+1,k+1 + w8j+1,k+1

)
,(2.8)

−
∫
CNW
j+ 1

2
,k+ 1

2

w(x, y, tn)dxdy =
1

4
w̄nj,k+1 +

1

16

(
w′j,k+1 − w8j,k+1

)
.(2.9)

By adding the last four integrals we find the exact staggered averages of the recon-
structed solution at t = tn,

(2.10)

w̄nj+ 1
2 ,k+ 1

2
:= −
∫
C
j+ 1

2
,k+ 1

2

w(x, y, tn)dxdy

=
1

4
(w̄njk + w̄nj+1,k + w̄nj,k+1 + w̄nj+1,k+1)

+
1

16

{
(w′jk − w′j+1,k) + (w′j,k+1 − w′j+1,k+1)

+ (w8jk − w8j,k+1) + (w8j+1,k − w8j+1,k+1)
}
.

So far everything is exact. We now turn to approximating the four fluxes on
the right of (2.5), starting with the one along the east face (consult Figure 2.2),

−∫ tn+1

tn
−∫
J
k+ 1

2

f(w(xj+1, y, τ))dydτ . We use the midpoint quadrature rule for second-

order approximation of the temporal integral, −∫
y∈J

k+ 1
2

f(w(xj+1, y, t
n+ 1

2 ))dy; and, for

reasons to be clarified below, we use the second-order rectangular quadrature rule for
the spatial integration across the y-axis, yielding

−
∫ tn+1

tn
−
∫
y∈J

k+ 1
2

f(w(xj+1, y, τ))dydτ ∼ 1

2

[
f(w

n+ 1
2

j+1,k) + f(w
n+ 1

2

j+1,k+1)
]
.(2.11)

In a similar manner we approximate the remaining fluxes,

−
∫ tn+1

tn
−
∫
x∈I

j+ 1
2

g(w(x, yk+1, τ))dxdτ ∼ 1

2

[
g(w

n+ 1
2

j,k+1) + g(w
n+ 1

2

j+1,k+1)
]
,(2.12)

−
∫ tn+1

tn
−
∫
y∈J

k+ 1
2

f(w(xj , y, τ))dydτ ∼ 1

2

[
f(w

n+ 1
2

jk ) + f(w
n+ 1

2

j,k+1)
]
,(2.13)

−
∫ tn+1

tn
−
∫
x∈I

j+ 1
2

g(w(x, yk, τ))dxdτ ∼ 1

2

[
g(w

n+ 1
2

jk ) + g(w
n+ 1

2

j+1,k)
]
.(2.14)

The approximate fluxes in (2.11)–(2.14) make use of the midpoint values, w
n+ 1

2

jk ≡
w(xj , yk, t

n+ 1
2 ), and it is here that we take advantage of utilizing these midvalues

for the spatial integration by the rectangular rule. Namely, since these midvalues
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Fig. 2.2. The central, staggered stencil.

are secured at the smooth center of their cells, Cjk, bounded away from the jump

discontinuities along the edges, we may use Taylor expansion, w(xj , yk, t
n+ 1

2 ) = w̄njk+
∆t
2 wt(xj , yk, t

n) + O(∆t)2. Finally, we use the conservation law (2.4) to express the
time derivative, wt, in terms of the spatial derivatives, f(w)′ and g(w)8,

w
n+ 1

2

jk = w̄njk −
λ

2
f(w)′jk −

µ

2
g(w)8jk.(2.15)

Here, f(w)′jk ∼ ∆x · f(w(xj , yk, t
n))x and g(w)8jk ∼ ∆y · g(w(xj , yk, t

n))y are one-
dimensional discrete slopes in the x- and y-directions, of the type reconstructed in
(2.3′); for example, multiplication of (2.3′)–(2.38) by the corresponding Jacobians A
and B yields

f(w)′jk = A(w̄njk)w′jk, g(w)8jk = B(w̄njk)w8jk.

Equipped with the midvalues (2.15), we can now evaluate the approximate fluxes
(2.11)–(2.14). Inserting these values, together with the staggered average computed
in (2.11), into (2.5), we conclude with new staggered averages at t = tn+1, given by

w̄n+1
j+ 1

2 ,k+ 1
2

=
1

4
(w̄njk + w̄nj+1,k + w̄nj,k+1 + w̄nj+1,k+1)(2.16)

+
1

16
(w′jk − w′j+1,k)− λ

2

[
f(w

n+ 1
2

j+1,k)− f(w
n+ 1

2

j,k )
]
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+
1

16
(w′j,k+1 − w′j+1,k+1)− λ

2

[
f(w

n+ 1
2

j+1,k+1)− f(w
n+ 1

2

j,k+1)
]

+
1

16
(w8jk − w8j,k+1)− µ

2

[
g(w

n+ 1
2

j,k+1)− g(w
n+ 1

2

j,k )
]

+
1

16
(w8j+1,k − w8j+1,k+1)− µ

2

[
g(w

n+ 1
2

j+1,k+1)− g(w
n+ 1

2

j+1,k)
]
.

In summary, we end up with a simple two-step predictor-corrector scheme (2.15)–
(2.16). Starting with the cell averages, w̄njk, we use the first-order predictor (2.15) for

the evaluation of the midpoint values, w
n+ 1

2

jk , which is followed by the second-order

corrector (2.16) for the computation of the new cell averages, w̄n+1
jk . This results

in a second-order accurate nonoscillatory scheme. As in the one-dimensional case—
no (approximate) Riemann solvers are involved—the nonoscillatory behavior of the
scheme hinges on the reconstructed discrete slopes, w′, w8, f(w)′, and g(w)8.

2.2. A one-dimensional-like formulation revisited. The corrector step (2.16)
bears a close similarity with the one-dimensional corrector formula (1.2). Indeed, let
us introduce the notation for staggered averaging in the x- and y-directions,

〈ωj,·〉k+ 1
2

:=
1

2
(ωjk + ωj,k+1), 〈ω·,k〉j+ 1

2
:=

1

2
(ωjk + ωj+1,k).

Then (2.16) takes the simple one-dimensional-like form (compare the one-dimensional
corrector in (1.2))

w̄n+1
j+ 1

2 ,k+ 1
2

=

〈
1

4
(w̄nj,· + w̄nj+1,·) +

1

8
(w′j,· − w′j+1,·)− λ[f(w

n+ 1
2

j+1,·)− f(w
n+ 1

2
j,· )]

〉
k+ 1

2

+

〈
1

4
(w̄n·,k + w̄n·,k+1) +

1

8
(w8·,k − w8·,k+1)− µ[g(w

n+ 1
2

·,k+1)− g(w
n+ 1

2

·,k )]

〉
j+ 1

2

.

3. The maximum principle for scalar approximations. It is well known
that the exact entropy solution of the scalar conservation law (2.1) satisfies a maximum
principle. In this section we prove that under an appropriate CFL condition, our
central scheme (2.15)–(2.16) satisfies the same maximum principle. To this end, it is
essential to reconstruct the discrete slopes, w′ and w8, with built-in limiters, which
we now briefly describe in the context of the prototype example

w′jk = MM

{
θ(w̄nj+1,k − w̄nj,k),

1

2
(w̄nj+1,k − w̄nj−1,k), θ(w̄nj,k − w̄nj−1,k)

}
,(3.1′)

w8jk = MM

{
θ(w̄nj,k+1 − w̄nj,k),

1

2
(w̄nj,k+1 − w̄nj,k−1), θ(w̄nj,k − w̄nj,k−1)

}
.(3.18)

Here, the choice θ = 1 coincides with the “classical” so-called MinMod limiter,
e.g., [Ha1], [Sw]; it guarantees that the corresponding piecewise-linear reconstruc-
tion in (2.2), w(x, y, tn), is co-monotone with the underlying piecewise-constant ap-
proximation,

∑
w̄npqχpq. The range of θ’s, 1 ≤ θ ≤ 2, allows for a further variety

of accurate reconstructions which satisfy the maximum principle, ‖w(·, tn)‖L∞ ≤
‖∑ w̄npqχpq(·)‖L∞ . The essential feature in the definition of these discrete slopes,
however, is due to the MinMod function: its output equals the input variable with
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minimal modules among all its input variables, unless the latter disagree in sign, in
which case MM = 0,

MM{v1, v2, . . .} =

 minp {vp} if vp > 0 ∀p,
maxp {vp} if vp < 0 ∀p,
0 otherwise.

In particular, the so-called clipping phenomena may occur, due to the reconstruc-
tion of zero discrete slopes at extrema cells (where forward and backward differences
change signs). The clipping limiter feature is clearly necessary to retain the maximum
principle at the reconstruction step. It implies that the neighboring discrete slopes
cannot have opposite signs, and in particular,

|w′j+1,k − w′j,k| ≤ max(|w′j+1,k|, |w′j,k|) ≤ θ|w̄j+1,k − w̄j,k|, 1 ≤ θ < 2,(3.2)

|w8j,k+1 − w8j,k| ≤ max(|w8j,k+1|, |w8j,k|) ≤ θ|w̄j,k+1 − w̄j,k|, 1 ≤ θ < 2.(3.3)

Similar estimates apply to the reconstructed discrete slopes for the flux; for example,

|f(w)′j+1,k − f(w)′jk| ≤ max(|f(w)′j+1,k|, |f(w)′jk|) ≤ θ|f(w̄nj+1,k)− f(w̄njk)|.(3.4)

Theorem 1. Consider the two-dimensional scalar scheme (2.15)–(2.16). Assume
that the discrete slopes, w′ and w8, satisfy the (θ-dependent) limiter property (3.2)–
(3.3), and likewise for f(w)′ and g(w)8 (e.g., the MinMod limiter (3.1′)–(3.18)). Then
for any θ < 2 there exists a sufficiently small CFL number, Cθ (e.g., C1 = (

√
7 −

2)/6 ∼ 0.1), such that if the CFL condition is fulfilled,

max(λ ·max
u
|fu(u)|, µ ·max

u
|gu(u)|) ≤ Cθ,

then the following local maximum principle holds:

min
|p−(j+ 1

2 )|= 1
2

|q−(k+ 1
2 )|= 1

2

{w̄np,q} ≤ w̄n+1
j+ 1

2 ,k+ 1
2

≤ max
|p−(j+ 1

2 )|= 1
2

|q−(k+ 1
2 )|= 1

2

{w̄np,q}.(3.5)

Proof. Our key observation is to rewrite the new value computed in (2.16),
w̄n+1
j+ 1

2 ,k+ 1
2

, as the average of four distinctive terms,

w̄n+1
j+ 1

2 ,k+ 1
2

=
1

4

×
{1

2

(
w̄njk + w̄nj+1,k

)
+

1

4

(
w′jk − w′j+1,k

)− 2λ
(
f
n+ 1

2

j+1,k − f
n+ 1

2

j,k

)
+

1

2

(
w̄nj,k+1 + w̄nj+1,k+1

)
+

1

4

(
w′j,k+1 − w′j+1,k+1

)− 2λ
(
f
n+ 1

2

j+1,k+1 − f
n+ 1

2

j,k+1

)
+

1

2

(
w̄njk + w̄nj,k+1

)
+

1

4

(
w8jk − w8j,k+1

)− 2µ
(
g
n+ 1

2

j,k+1 − g
n+ 1

2

jk

)
(3.6)

+
1

2

(
w̄nj+1,k + w̄nj+1,k+1

)
+

1

4

(
w8j+1,k − w8j+1,k+1

)− 2µ
(
g
n+ 1

2

j+1,k+1 − g
n+ 1

2

j+1,k

)}
=:

1

4
× {I1 + I2 + I3 + I4} .

Here and below we abbreviate f
n+ 1

2

jk = f(w̄
n+ 1

2

jk ).



1902 GUANG-SHAN JIANG AND EITAN TADMOR

We will show that each of these four terms, Ij , can be written as an appropriate
sum of the cell averages at tn, {w̄njk, w̄nj+1,k, w̄

n
j,k+1, w̄

n
j+1,k+1}, so that w̄n+1

j+ 1
2 ,k+ 1

2

can

be expressed as a convex combination of these averages. This implies, in particular,
that the local maximum principle (3.5) holds.

We begin by estimating the difference between two neighboring midvalues, say

w
n+ 1

2

j+1,k − w
n+ 1

2

jk , evaluated in the predictor step (2.15)

w
n+ 1

2

j+1,k − w
n+ 1

2

jk = w̄nj+1,k − w̄njk(3.7)

− λ

2
[f(w)′j+1,k − f(w)′jk]− µ

2
[g(w)8j+1,k − g(w)8jk].

Since by (3.4), f(w)′j+1,k and f(w)′jk cannot have opposite signs, their differences on
the right of (3.7) do not exceed

|f(w)′j+1,k − f(w)′jk| ≤ θ|f(w̄nj+1,k)− f(w̄njk)| ≤ θa|w̄nj+1,k − w̄njk|.(3.8)

Here and below, a := maxu|fu(u)| and b := maxu|gu(u)| denote the maximal speeds in
the x- and y-directions. The third difference on the right of (3.7), g(w)8j+1,k− g(w)8jk,
represents a “mixed” derivative (which allows for opposite signs); here we use the
straightforward (3.18):

|g(w)8j+1,k − g(w)8jk| ≤ |g(w)8j+1,k|+ |g(w)8jk|(3.9)

≤ θ [|g(w̄nj+1,k+1)− g(w̄nj+1,k)|+ |g(w̄nj,k+1)− g(w̄njk)|]
≤ θb

[|w̄nj,k+1 − w̄njk|+ |w̄nj+1,k+1 − w̄nj+1,k|
]
.

Using (3.8) and (3.9) we obtain an upper bound on the midvalues difference in (3.7),
which in turn enables us to upperbound the corresponding flux difference

λ|fn+ 1
2

j+1,k − f
n+ 1

2

jk | ≤ λa|wn+ 1
2

j+1,k − w
n+ 1

2

jk |(3.10)

≤ 1

2
λa(2 + θ · λa)|w̄nj+1,k − w̄njk|

+
1

2
θ · λa · µb

[|w̄nj,k+1 − w̄njk|+ |w̄nj+1,k+1 − w̄nj+1,k|
]
.

We now return to the first term, I1, in (3.6): by (3.2) and (3.10), it does not exceed

I1 ≤ 1

2
(w̄njk + w̄nj+1,k) +

(
θ

4
+ λa (2 + θ · λa)

)
|w̄nj+1,k − w̄njk|

+ θ · λa · µb|w̄nj,k+1 − w̄njk|+ θ · λa · µb|w̄nj+1,k+1 − w̄nj+1,k|.

Thus

I1 ≤ I11 + I12 + I13 + I14,(3.11)

where

I11 =
1

2
(w̄njk + w̄nj+1,k), I12 = αλa|w̄nj+1,k − w̄njk|, αλa :=

θ

4
+ λa (2 + θ · λa) ,

I13 = β|w̄nj,k+1 − w̄njk|, I14 = β|w̄nj+1,k+1 − w̄nj+1,k|, β := θ · λa · µb.
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In a similar manner we obtain

I2 ≤ 1

2
(w̄nj,k+1 + w̄nj+1,k+1) + αλa|w̄nj+1,k+1 − w̄nj,k+1|(3.12)

+ β|w̄nj,k+1 − w̄njk|+ β|w̄nj+1,k+1 − w̄nj+1,k| =: I21 + I22 + I23 + I24;

|I3| ≤ 1

2
(wnjk + w̄nj,k+1) + αµb|w̄nj,k+1 − w̄njk|(3.13)

+ β|w̄nj+1,k − w̄njk|+ β|w̄nj+1,k+1 − w̄nj,k+1| =: I31 + I32 + I33 + I34,

and finally

|I4| ≤ 1

2
(w̄nj+1,k + w̄nj+1,k+1) + αµb|w̄nj+1,k+1 − w̄nj+1,k|(3.14)

+ β|w̄nj+1,k − w̄nj,k|+ β|w̄nj+1,k+1 − w̄nj,k+1| =: I41 + I42 + I43 + I44.

We now conclude by regrouping similar terms in the last four bounds; specifically, we
rearrange the summation of the last four bounds in (3.11)–(3.14),

4∑
j=1

Ij = (I11 + I12 + I33 + I43) + (I21 + I22 + I34 + I44) + · · · ,

and we obtain

w̄n+1
j+ 1

2 ,k+ 1
2

=
1

4

4∑
j=1

Ij ≤ 1

4

×
{1

2
(w̄njk + w̄nj+1,k) + (αλa + 2β)|w̄nj+1,k − w̄njk|

+
1

2
(w̄nj,k+1 + w̄nj+1,k+1) + (αλa + 2β)|w̄nj+1,k+1 − w̄nj,k+1|

+
1

2
(w̄njk + w̄nj,k+1) + (αµb + 2β)|w̄nj,k+1 − w̄njk|

+
1

2
(w̄nj+1,k + w̄nj+1,k+1) + (αµb + 2β)|w̄nj+1,k+1 − w̄nj+1,k|

}
.

Our assertion concerning the convex combination, and hence the local maximum
principle, follows, provided the following inequalities hold:

αλa + 2β ≡ θ

4
+ λa (2 + θ · λa + 2θ · µb) ≤ 1

2
,(3.15)

αµb + 2β ≡ θ

4
+ µb (2 + θ · µb + 2θ · λa) ≤ 1

2
.(3.16)

Clearly, for any θ < 2, these inequalities are satisfied for a sufficiently small CFL
number, λa + µb. For example, for the “canonical” MinMod limiter (with θ = 1), we
find that (3.15)–(3.16) hold provided max(λa, µb) does not exceed the largest root of
12κ2 + 8κ− 1 = 0, which yields (3.5).

4. Numerical experiments. Two-dimensional high resolution.

4.1. Scalar numerical results. Theorem 1 does not indicate the optimal CFL
limitation. By measuring the wave propagation of the two-dimensional Riemann fan
from the cell center at (xj+ 1

2
, yk+ 1

2
, tn) into the boundaries of that cell (consult Figure

1.1), we find the more realistic geometric CFL restriction max(λa, µb) ≤ 1
2 . This is
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Table 4.1
Second-order central approximation of ut + ux + uy = 0 subject to u0(x, y) = sin(π(x+ y)).

Limiter N L∞ error L∞ order L1 error L1 order
CFL = 0.200

40 4.91e-2 - 1.93e-2 -
MM1 80 2.12e-2 1.21 5.70e-3 1.76

160 8.90e-3 1.25 1.55e-3 1.88
320 3.70e-3 1.27 4.14e-4 1.90
40 1.06e-2 - 6.79e-3 -

MM2 80 2.73e-3 1.96 1.81e-3 1.91
160 6.86e-4 1.99 4.66e-4 1.96
320 2.35e-4 1.55 1.17e-4 1.99
40 1.08e-2 - 6.89e-3 -

UNO 80 2.73e-3 1.98 1.74e-3 1.99
160 6.86e-4 1.99 4.37e-4 1.99
320 1.72e-4 2.00 1.09e-4 2.00

CFL = 0.475
40 4.53e-2 - 1.18e-2 -

MM1 80 2.48e-2 0.87 6.40e-3 0.88
160 1.92e-2 0.37 4.33e-3 0.56
320 1.26e-1 -2.71 1.49e-2 -1.78
40 1.34e-2 - 5.83e-3 -

MM2 80 4.82e-3 1.48 1.74e-3 1.74
160 1.41e-3 1.77 4.16e-4 2.06
320 5.07e-4 1.48 1.29e-4 1.69
40 9.08e-3 - 5.80e-3 -

UNO 80 2.74e-3 1.73 1.74e-3 1.74
160 6.46e-4 2.08 4.11e-4 2.08
320 1.48e-4 2.16 9.41e-5 2.13

confirmed by the results quoted in Table 4.1, where we record the test results with
simple linear oblique advection, ut + ux + uy = 0.

Here and below, we report the numerical results of the central scheme (2.15)–
(2.16) with the MMθ limiters in (3.1′)–(3.18); both θ = 1 and θ = 2 were used. We
also tested the Harten–Osher UNO limiter [HO]

w′jk = MM
{

∆w̄nj− 1
2 ,k

+
1

2
MM(∆2w̄nj−1,k,∆

2w̄njk),∆w̄nj+ 1
2 ,k
−1

2
MM(∆2w̄njk,∆

2w̄nj+1,k)
}
.

(4.1)

Second-order accuracy, measured in L1- and L∞-norms, is detected for both CFLs 0.2
and .475. As expected, the second-order accuracy with the MinMod limiters MM1

and MM2 deteriorated due to the clipping phenomena. The fully second-order UNO
limiter, however, retains the full L1 second-order accuracy.

Next we turn to the two-dimensional Burgers equation:

ut +
1

2
(u2)x +

1

2
(u2)y = 0,(4.2)

subject to “oblique” initial data,

u0(x, y) =


−1.0, x > 0, y > 0,
−0.2, x < 0, y > 0,

0.5, x < 0, y < 0,
0.8, x > 0, y < 0.



CENTRAL SCHEMES FOR MULTIDIMENSIONAL CONSERVATION LAWS 1905

The nonoscillatory behavior of the computed solution with CFL = .475 is demon-
strated in Figure 4.1. In particular, no spurious oscillations are formed, in agreement
with the maximum principle proved in section 3.

4.2. Efficiency and high resolution with hyperbolic systems. The pro-
posed central scheme based on the predictor-corrector steps (2.15)–(2.16) offers a
simple and robust general-purpose approximation for two-dimensional systems of hy-
perbolic conservation laws. In this subsection we highlight these advantages in the
context of three prototype numerical experiments, governed by the two-dimensional
Euler equations

ρ
ρu
ρv
E


t

+


ρu

ρu2 + p
ρuv

u(E + p)


x

+


ρv
ρuv

ρv2 + p
v(E + p)


y

= 0,(4.3)

expressed in terms of the usual density ρ, x- and y-velocities u and v, total energy E,
and pressure p := (γ − 1)(E − 1

2ρ(u2 + v2)).

For the reader’s convenience, we enclose an Appendix with our central scheme
code for the two-dimensional Euler system (4.3): the user supplies the number and
size of spatial cells, the CFL number, the numerical solution at initial time t = 0,
and the choice of a limiter: MMθ, UNO, etc. (The code contains self-explanatory
comments.) The code then evolves this solution up to the final time, tf , using a two
time-step cycle: regular cell −→ staggered cell −→ regular cell. For simplicity, the
code is complemented with periodic boundary conditions in both x- and y-directions.

We begin with the oblique Sod’s problem. Here we test the capability of our
central scheme to resolve waves which are oblique to the computational domain. Fol-
lowing [JS] we initiate the two-dimensional Euler equations (4.3), with the standard
one-dimensional Sod’s Riemann data [So], whose initial jump discontinuity located
at (x, y) = (2.25, 0) was rotated to make an angle φ with the x-axis; consult [JS,
section 8.3] for details. Figure 4.2 shows that the density at t = 1.2 is well resolved by
the central scheme based on a computational grid of 192× 32 cells and CFL = 0.475.
Figure 4.3 compares the fully two-dimensional computation vs. the rotated results of
the one-dimensional one; thus, the errors are “purely” due to the oblique nature of
the computational waves. As is [JS], the deviations are negligible.

Our next example is the double Mach reflection problem [WC]. The two-dimension-
al Euler equations (4.3) are initiated with a right-moving Mach 10 shock positioned at
(x, y) = (1/6, 0), and makes a 60◦ angle with the x-axis.1 The computational domain
consists of the box [0, 4]× [0, 1]. Boundary conditions: the bottom boundary consists
of the exact postshock conditions at [0, 1/6] followed by reflective boundary conditions
for the rest; at the top boundary, the flow values are set to describe the exact motion
of the Mach 10 shock. We refer to [WC] for a detailed description of this problem.

Figures 4.4–4.6 show the numerical results of the central scheme (2.15)–(2.16),
using the MinMod and UNO limiters. It is remarkable that such a simple “two-
lines” algorithm, with no characteristic decompositions and no dimensional splitting,
approximates the rather complicated double Mach reflection problem with such high
resolution. This should be compared, for example, with the higher (fourth and fifth
orders) (W)ENO schemes in [JS, section 8.3]. A couple of remarks are in order.

1For simplicity, the initial cell averages were taken as the initial pointvalues at the midcells.
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(a)

X Y

Z

(b)

X Y

Z

(c)

X Y

Z

Fig. 4.1. The central scheme results for the Burgers equation (4.2) evaluated with 80× 80 cells
and CFL = 0.475 at t = 1. (a) with MM1 limiter; (b) with MM2 limiter; (c) with UNO limiter.
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(a) 0 1 2 3 4 5 60.0

0.5

1.0

(b) 0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

MM1

MM2

UNO

Fig. 4.2. Oblique Sod’s problem computed with the central scheme: (a) density contours com-
puted with MM2 limiter for initial data rotated with angle φ = arctan 1. (b) Density at y = 0 with
rotated initial data, φ = arctan 1.

• The two-dimensional computation is more sensitive to the type of limiter than
in the one-dimensional framework [NT]. In the context of the double Mach
reflection problem, the MM2 seems to yield the sharper results.

• No effort was made to optimize the boundary treatment. The staggered
stencils require a different treatment for even-odd cells intersecting with the
boundaries. A more careful treatment is now studied in [TW]. The lack of
boundary resolution could be observed at the bottom of the two Mach stems.

A key feature of our central scheme is its efficiency, due to the fact that all the
central computations reported below are free of the time-consuming characteristic
decompositions and dimensional splitting. This, in turn, is translated into the fast,
simple, “two-lines” algorithm summarized in (2.15)–(2.16).

Table 4.2 quotes the CPU time, in seconds, for the computation of the two-
dimensional Euler equations (4.3) subject to initial “sine” density wave:

(ρ0, u0, v0, p0) = (1 + 0.2 sin(π(x+ y)), 1,−0.5, 1).

We record the timing for two versions of the central scheme. The Jacobian-free ver-
sion employs a straightforward componentwise computation of the discrete derivatives
f(w)′ and g(w)8, and we compare it with the other version which utilizes the Jacobians
A = fw and B = gw to compute the discrete derivatives of the fluxes f(w)′ = Aw′

and g(w)8 = Bw8. We should emphasize that both versions yield comparable results,
although, as expected, the latter version using the explicit Jacobians performs with
slightly better resolution. Which of the two versions is preferable depends on several
factors:

• Whether the exact Jacobians are available. For example, the gas-dynamics
equation with tabulated pressure yields tabulated pointvalues of the flux (or
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(c) 0 1 2 3 4 5 6
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(d) 0 1 2 3 4 5 6
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arctan 4

(e) 0 1 2 3 4 5 6
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Fig. 4.3. Figures 4.2a, b and (c) in this figure compare the two-dimensional oblique computation
of the density, ρφ, vs. the rotated one-dimensional computation, ρ1D, at y = 0; ρφ − ρ1D computed
with (c) MM1 limiter, (d) MM2 limiter, (e) UNO limiter.

requires an implicit computation of such); its Jacobians could only be inter-
polated.
• The specific hardware configuration. In this context we note that the Jacobian-

free version requires, instead, additional computation of limiters (of the fluxes
evaluated at the midvalues). Associated with these limiters are switches
whose speed is configuration-dependent.
• The size of the computed system. Thus, for example, the computations of

the larger 7 × 7 MHD systems reported in [TW] perform much faster with
the Jacobian-free version.
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0.5
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0.5

(e) 1 2

0.5

Fig. 4.4. Double Mach reflection problem computed with the central scheme using MM1 limiter
with 960 × 240 cells and CFL = 0.475 at t = 0.2. (a) density, (b) x-velocity, (c) y-velocity, (d)
pressure, (e) entropy.
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(a)
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(c)
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0.5

Fig. 4.5. Double Mach reflection problem computed with the central scheme using MM2 limiter
with CFL = 0.475 at t = 0.2: (a) density computed with 480× 120 cells, (b) density computed with
960× 240 cells, (c) x-velocity computed with 960× 240 cells.
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0.5

Fig. 4.5. (Cont’d.) Double Mach reflection problem computed with the central scheme using
MM2 limiter with 960 × 240 cells and CFL = 0.475 at t = 0.2: (d) y-velocity, (e) pressure, (f)
entropy.
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(a) 1 2

0.5

(b) 1 2

0.5

(c) 1 2

0.5

(d) 1 2

0.5

(e) 1 2

0.5

Fig. 4.6. Double Mach reflection problem computed with the central scheme using UNO limiter
with CFL = 0.475 at t = 0.2: (a) density, (b) x-velocity, (c) y-velocity, (d) pressure, (e) entropy.
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Table 4.2
CPU time in seconds for the central computation of the two-dimensional Euler system, with

Ns cells in each spatial dimension and Nt temporal iterations, using various limiters.

Ns Nt MM1 limiter MM2 limiter UNO limiter MM1 limiter+
artificial compression

CRAY C-90, with default compiler flags

f(w)′ = Aw′, g(w)8 = Bw8
200 100 2.69 3.22 3.43 4.06
400 200 20.38 24.76 26.47 32.44

f(w)′ and g(w)8 are obtained by componentwise limiters
200 100 2.99 4.02 4.50 4.33

SUN Sparc20 (60MHz, SuperSparc), compiled with “-r8 -fast -O3”

f(w)′ = Aw′, g(w)8 = Bw8
100 50 10.79 14.29 16.28 18.30
200 100 92.27 119.13 136.98 159.26

f(w)′ and g(w)8 are obtained by componentwise limiters
200 100 133.93 188.88 223.49 203.34

4.3. Two-dimensional prologue: No dimensional splitting. Dimensional
splitting (see, e.g., [RM]) is an effective, widely used tool for solving multidimensional
problems by piecing them from one-dimensional problems—one dimension at a time.
Still, in the context of nonlinear conservation laws, dimensional splitting encounters
several limitations; we refer, for example, to the important results of Crandall and
Majda in [CM].

In this subsection we provide one more piece of numerical evidence for the difficul-
ties encountered with dimensional splitting, and with this we highlight the advantage
of our “genuinely” multidimensional central scheme (2.15)–(2.16) in circumventing
these difficulties. We consider the 2× 2 system

(
u1

u2

)
t

+

 u2
1√

u2
1+u2

2
u1u2√
u2

1+u2
2


x

+

 u1u2√
u2

1+u2
2

u2
2√

u2
1+u2

2


y

= 0.(4.4)

The system (4.4) was introduced by Engquist and Runborg [ER] as part of a whole
family of multiphase modeling for geometrical optics expansions. The first member of
this family, (4.4), represents a one-phase solution consisting of a single ray of strength
g(r, t) :=

√
u2

1 + u2
2, located at a distance r ≡ r(x, y) and an angle θ(x, y, t) :=

arctan(u2/u1) relative to the (single) point source. We note that the system (4.4)
is only weakly hyperbolic in the sense that its linearized symbol contains a 2 × 2
Jordan block; this seems to play an essential role in the difficulties associated with
the computation of this system by dimensional splitting methods.

Following [ER], the system (4.4) is solved over the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,
subject to zero initial conditions (to avoid overflow, we initialize u1 = u2|t=0 ≡ 10−12).
The system is then activated by exact inflow boundary conditions along the left bound-
ary, x = 0: in this case, these boundary values were taken from an exact point source
solution, g(r, t) = max(0, (t− r)3)/r, located at (−0.2, 1).

In Table 4.3 we quote the numerical results from [ER]: the (fully) two-dimensional
Lax–Friedrichs scheme vs. the splitted versions based on the one-dimensional Lax–
Friedrichs scheme [La], Godunov scheme [Go], and Nessyahu–Tadmor scheme (1.1)–
(1.2), which were complemented with dimensional splitting. The best results were ob-
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Table 4.3
Accuracy of Lax–Friedrichs, Godunov, and Nessyahu–Tadmor (1.1)–(1.2) schemes (with and

without dimensional splitting) for the one-phase geometric optics problem (4.4) at t = 0.85.

∆x Lax–Friedrichs Godunov Nessyahu–Tadmor
unsplitted splitted splitted splitted

L1 results: Error Order Error Order Error Order Error Order
1/10 0.0778 - 0.01268 - 0.1130 - 0.048 -
1/20 0.0433 0.85 0.01543 -0.28 0.065 0.8 0.0357 0.43
1/40 0.0229 0.92 0.01226 0.33 0.0404 0.69 0.0181 0.98
1/80 0.0118 0.96 0.0079 0.63 0.0235 0.78 0.00839 1.11
1/160 0.00599 0.98 0.00454 0.8 0.013 0.85 0.0039 1.11

L∞ results: Error Order Error Order Error Order Error Order
1/10 0.949 - 0.0662 - 3.038 - 0.278 -
1/20 0.397 1.26 0.07 -0.79 2.911 0.062 0.235 0.25
1/40 0.171 1.21 0.056 0.32 2.867 0.022 0.191 0.3
1/80 0.0771 1.15 0.0369 0.6 2.834 0.017 0.0857 1.15
1/160 0.0363 1.09 0.0215 0.78 2.815 0.01 0.0589 0.54

Table 4.4
Accuracy of the central approximation for the one-phase geometric optics problem (4.4) with

MM2 limiter.

Discrete derivatives N L∞ error L∞ order L1 error L1 order
20 2.27e-2 - 6.19e-4 -

f(w)′ = Aw′ 40 8.12e-3 1.48 2.14e-4 1.53
g(w)8 = Bw8 80 2.97e-3 1.45 7.38e-5 1.54

160 1.10e-3 1.43 1.97e-5 1.91
20 2.83e-2 - 8.74e-4 -

Componentwise 40 1.13e-2 1.32 2.89e-4 1.60
80 4.51e-3 1.33 1.03e-4 1.49
160 1.68e-3 1.42 2.86e-5 1.85

tained with the two-dimensional Lax–Friedrichs scheme, the forerunner for all central
schemes: the unsplitted version achieves (close to) the expected first-order accuracy
in both L1- and L∞-norms. The following three “splitted” versions which employ di-
mensional splitting yield less accurate results. Indeed, a considerable loss of accuracy
is observed with the splitted version of the Lax–Friedrichs scheme.2 The first-order
upwind Godunov scheme, the forerunner for all upwind schemes, yields better L1

errors; yet, measuring the L∞ errors and consideration of the contour plots in [ER]
shows that the splitted version of the Godunov scheme also fails to capture the full
strength of the underlying computed rays. The same failure occurs with the splitted
version of the second-order Nessyahu–Tadmor scheme: dimensional splitting causes
the first-order L1 errors and further loss of accuracy in terms of the L∞ errors. In all
three cases, this failure is attributed to the dimensional splitting.

These results should be contrasted with Table 4.4, where we quote the numerical
results of the “genuinely” two-dimensional central scheme (2.15)–(2.16) using the
MinMod limiter, MM2. Both versions, with and without the exact Jacobians, achieve
close to the expected second-order accuracy. Figure 4.7 confirms the high resolution
of our central scheme.

2We thank Olof Runborg for these results.
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Fig. 4.7. One-phase geometrical optics problem (4.4), computed by the two-dimensional central
scheme with 40 × 80 cells and CFL = 0.475 at t = 0.85. Ray strength of exact solution in (a) is
compared with central scheme computation with MM2 limiter in (b) and with UNO limiter in (c).
Exact contour plot in (d) is compared with MM2 and UNO limiter computations in (e) and (f),
respectively. (g) and (h) are vertical cuts at x = 0.2 computed with MM2 and UNO limiters.



1916 GUANG-SHAN JIANG AND EITAN TADMOR

5. Appendix. A central code for two-dimensional Euler equations.

subroutine EULER2D(nx,ny,dx,dy,cfl,gamma,theta,tf,u)
******************************************************************
* INPUT   nx, ny:  # of cells in x-, y-direction
*         dx, dy:  step sizes in x-, y-direction
*         cfl:  CFL #          gamma:  adiabatic constant of gas
*         tf:  final time
*         theta=1: MM1 limiter; =2: MM2 limiter; >2: UNO limiter.
*         u:  initial cell averages of conservative variables. 
*             Supply entries of u((md+1):(nx+md),(md+1):(ny+md),4)
* OUTPUT  u:  cell averages at final time "tf"
* REMARK  1. Reset "nxd","nyd" to adjust array dimensions.
*         2. Padded to each side of the computational domain are
*            "md" ghost cells, average values on which are
*            assigned by boundary conditions.
******************************************************************

parameter(md=3, nxd=400+2*md, nyd=400+2*md, mn=4)
real u(nxd,nyd,mn), ux(nxd,nyd,mn), uy(nxd,nyd,mn)
real f(nxd,nyd,mn), fx(nxd,nyd,mn)
real g(nxd,nyd,mn), gy(nxd,nyd,mn)
real v(nxd,nyd), du(nxd,2), df(nxd,2)

xmin(a,b) = 0.5*(sign(1.,a)+sign(1.,b))*min(abs(a),abs(b))
xmic(z,a,b) = xmin( z*xmin(a,b), 0.5*(a+b) )

gm1 = gamma - 1.0
tc = 0.0
istop = 0

do 1000 nt = 1, 10000
do  999 io = 0, 1

* Periodic boundary condition in both x- & y-direction
do 101 m = 1, mn
do 100 i = 1, md
do 100 j = md + 1, ny + md

u(i,    j,m) = u(nx+i,j,m)
u(nx + md+i,j,m) = u(md+i,j,m)

100 continue
do 101 j = 1, md
do 101 i = 1, nx + 2*md

u(i,j,    m) = u(i,ny+j,m)
u(i,ny + md+j,m) = u(i,md+j,m)

101 continue

* Compute f & g and maximum wave speeds "em_x, em_y".
* See (2.1) & (4.3).

em_x = 1.e-15
em_y = 1.e-15

do 200 j = 1, ny + 2*md
do 200 i = 1, nx + 2*md

den = u(i,j,1)
vex = u(i,j,2) / den
vey = u(i,j,3) / den
eng = u(i,j,4)
pre = gm1 * ( eng - .5*den*( vex*vex + vey*vey ) )
cvel = sqrt( gamma * pre / den )
em_x = max( em_x, abs(vex) + cvel )
em_y = max( em_y, abs(vey) + cvel )

f(i,j,1) = den * vex
f(i,j,2) = den * vex**2 + pre
f(i,j,3) = den * vex * vey
f(i,j,4) = vex * ( pre + eng )
g(i,j,1) = den * vey
g(i,j,2) = den * vex * vey
g(i,j,3) = den * vey**2 + pre
g(i,j,4) = vey * ( pre + eng )

200 continue

* Compute numerical derivatives "ux", "uy", "fx", "gy".
* See (3.1) & (4.1)

do 330 m = 1, mn
do 310 j = 3, ny + 2*md - 2

do 301 i = 1, nx + 2*md - 1
du(i,1) = u(i+1,j,m) - u(i,j,m)

301           df(i,1) = f(i+1,j,m) - f(i,j,m)
do 302 i = 1, nx + 2*md - 2

du(i,2) = du(i+1,1) - du(i,1)
302           df(i,2) = df(i+1,1) - df(i,1)

if( theta .lt. 2.5 ) then
do 303 i = 3, nx + 2*md - 2

ux(i,j,m) = xmic( theta, du(i-1,1), du(i,1) )
303           fx(i,j,m) = xmic( theta, df(i-1,1), df(i,1) )

else
do 304 i = 3, nx + 2*md - 2
ux(i,j,m)=xmin(du(i-1,1)+.5*xmin(du(i-2,2),du(i-1,2)),

&                     du(i,  1)-.5*xmin(du(i-1,2),du(i,  2)))
fx(i,j,m)=xmin(df(i-1,1)+.5*xmin(df(i-2,2),df(i-1,2)),

&                     df(i,  1)-.5*xmin(df(i-1,2),df(i,  2)))
304 continue

endif
310 continue

do 320 i = 3, nx + 2*md - 2
do 311 j = 1, ny + 2*md - 1

du(j,1) = u(i,j+1,m) - u(i,j,m)
311           df(j,1) = g(i,j+1,m) - g(i,j,m)

do 312 j = 1, ny + 2*md - 2
du(j,2) = du(j+1,1) - du(j,1)

312           df(j,2) = df(j+1,1) - df(j,1)
if( theta .lt. 2.5 ) then
do 313 j = 3, ny + 2*md - 2

uy(i,j,m) = xmic( theta, du(j-1,1), du(j,1) )
313           gy(i,j,m) = xmic( theta, df(j-1,1), df(j,1) )

else
do 314 j = 3, ny + 2*md - 2
uy(i,j,m)=xmin(du(j-1,1)+.5*xmin(du(j-2,2),du(j-1,2)),

&                     du(j,  1)-.5*xmin(du(j-1,2),du(j,  2)))
gy(i,j,m)=xmin(df(j-1,1)+.5*xmin(df(j-2,2),df(j-1,2)),

&                     df(j,  1)-.5*xmin(df(j-1,2),df(j,  2)))
314 continue

endif
320 continue
330 continue

* Compute time step size according to the input CFL #.
if(io.eq.0) then

dt = cfl / max( em_x/dx, em_y/dy )
if( ( tc + 2.*dt ) .ge. tf ) then

dt = 0.5 * ( tf - tc )
istop = 1

endif
endif
dtcdx2 = 0.5 * dt / dx
dtcdy2 = 0.5 * dt / dy

* Compute the flux values of f & g at half time step. 
* See (2.15) & (2.16).

do 400 j = 3, ny + 2*md - 2
do 400 i = 3, nx + 2*md - 2

den = u(i,j,1) - dtcdx2*fx(i,j,1) - dtcdy2*gy(i,j,1)
xmt = u(i,j,2) - dtcdx2*fx(i,j,2) - dtcdy2*gy(i,j,2)
ymt = u(i,j,3) - dtcdx2*fx(i,j,3) - dtcdy2*gy(i,j,3)
eng = u(i,j,4) - dtcdx2*fx(i,j,4) - dtcdy2*gy(i,j,4)
pre = gm1 * ( eng - .5 * ( xmt*xmt + ymt*ymt ) / den )
f(i,j,1) = xmt
f(i,j,2) = xmt * xmt / den + pre
f(i,j,3) = xmt * ymt / den
f(i,j,4) = xmt / den * ( pre + eng )
g(i,j,1) = ymt
g(i,j,2) = xmt * ymt / den
g(i,j,3) = ymt * ymt / den + pre
g(i,j,4) = ymt / den * ( pre + eng )

400 continue

* Compute the values of "u" at the next time level. See (2.16). 
do 510 m = 1, mn
do 501 j = md + 1 - io, ny + md - io
do 501 i = md + 1 - io, nx + md - io

v(i,j) =   0.25 * (  u(i,j,  m) +  u(i+1,j,  m)
&                        +  u(i,j+1,m) +  u(i+1,j+1,m) )
&             + 0.0625 * ( ux(i,j,  m) - ux(i+1,j,  m)
&                        + ux(i,j+1,m) - ux(i+1,j+1,m)
&                        + uy(i,j,  m) + uy(i+1,j,  m)
&                        - uy(i,j+1,m) - uy(i+1,j+1,m) )
&             + dtcdx2 * (  f(i,j,  m) -  f(i+1,j,  m)
&                        +  f(i,j+1,m) -  f(i+1,j+1,m) )
&             + dtcdy2 * (  g(i,j,  m) +  g(i+1,j,  m)
&                        -  g(i,j+1,m) -  g(i+1,j+1,m) )

501 continue
do 502 j = md + 1, ny + md
do 502 i = md + 1, nx + md

502 u(i,j,m) = v(i-io,j-io)
510 continue

tc = tc + dt
999 continue

if(istop.eq.1 ) goto 1001
1000 continue

1001    return
end
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