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Abstract. We present a new third-order, semidiscrete, central method for approximating so-
lutions to multidimensional systems of hyperbolic conservation laws, convection-diffusion equations,
and related problems. Our method is a high-order extension of the recently proposed second-order,
semidiscrete method in [A. Kurgonov and E. Tadmor, J. Comput Phys., 160 (2000) pp. 241–282].

The method is derived independently of the specific piecewise polynomial reconstruction which
is based on the previously computed cell-averages. We demonstrate our results by focusing on the
new third-order central weighted essentially nonoscillatory (CWENO) reconstruction presented in
[D. Levy, G. Puppo, and G. Russo, SIAM J. Sci. Comput., 21 (1999), pp. 294–322]. The numerical
results we present show the desired accuracy, high resolution, and robustness of our method.
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1. Introduction. Numerical methods for approximating solutions of hyperbolic
conservation laws,

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0,(1.1)

and of the related convection-diffusion equations,

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) =

∂

∂x
Q[u(x, t), ux(x, t)],(1.2)

have attracted much attention in recent years (see, e.g., [6, 35] and the references
therein). Here, u(x, t) is a conserved quantity, f(u) is a nonlinear convection flux, and
Q(u, ux) is a dissipation flux satisfying the (weak) parabolicity condition, ∂

∂sQ(u, s) ≥
0 ∀u, s. In the most general case u = (u1, . . . , un) is an n-vector in a d+1-dimensional
space, (x, t) = (x1, . . . , xd, t), and f and Q are vector-functions.

In this paper, we focus on the class of central schemes, all of which can be viewed
as an extension of the well-known Lax–Friedrichs (LxF) scheme [5]. The first-order
LxF method enjoys the major advantage of simplicity over the upwind schemes (e.g.,
the Godunov scheme [7]): no (approximate) Riemann solvers or characteristic decom-
positions are involved in its construction, and therefore, its realization for complicated
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multidimensional systems is rather simple. At the same time, the LxF scheme suf-
fers from excessive numerical dissipation, which causes a poor (smeared) resolution of
discontinuities and rarefaction waves.

A second-order, nonoscillatory central scheme was first introduced by Nessyahu
and Tadmor in [30]. Since then, the Nessyahu–Tadmor (NT) scheme was further
extended to higher orders of accuracy [28] (also see [3, 19]), as well as to the multi-
dimensional systems (1.1), in [1] and [12] (also see [18, 20, 21, 22]).

The main ingredient in the construction of the NT method is a second-order,
nonoscillatory, monotonic upstream schemes for conservation laws (MUSCL)-type
[17], piecewise linear interpolant (instead of the piecewise constant one employed
in the LxF scheme) in combination with the exact solver for the time evolution. This
approach allows us to significantly improve the resolution of nonsmooth solutions to
hyperbolic conservation laws, (1.1), while retaining the main advantage of the LxF
scheme—simplicity.

Unfortunately, applying the fully discrete NT scheme (or its higher-order exten-
sions) to the second-order convection-diffusion equations, (1.2), does not provide the
desired resolution of discontinuities (see, e.g., [14, 15, 16]). This loss of resolution
occurs due to the accumulation of excessive numerical dissipation, which is typical of
fully discrete central schemes with small time-steps ∆t ∼ (∆x)

2
(see [16] for details).

To circumvent this difficulty, a second-order semidiscrete central scheme was in-
troduced by Kurganov and Tadmor in [16]. This scheme has smaller dissipation than
the NT scheme and, unlike the fully discrete central schemes, it can be efficiently
used with time-steps as small as required by the CFL stability restriction due to the
diffusion term.

The basic idea in the construction of the second-order semidiscrete scheme was to
use more accurate information about the local speed of propagation of the disconti-
nuities. One was then able to derive a nonstaggered semidiscrete central method, by
first integrating over nonequally spaced control volumes, out of which a new piecewise
linear interpolant was reconstructed and finally projected on its cell-averages (without
evolving in time). The final step was first introduced in [10], in a somewhat different
context of transforming staggered methods into nonstaggered methods.

In this paper we extend the results of [16] by introducing a new third-order,
semidiscrete, central scheme. Our new scheme is derived in a general form which
is independent of the reconstruction step, as long as the reconstructed interpolant
is sufficiently accurate and nonoscillatory. In particular, we use the new third-order
central weighted essentially nonoscillatory (CWENO) reconstruction proposed in [21].
This reconstruction provides a third-order accurate interpolant which is built from
the given cell-averages such that it is nonoscillatory in the essentially nonoscillatory
(ENO) sense (see [9, 32]). This interpolant is written as a convex combination of
two one-sided linear functions and one centered parabola. In smooth regions this
convex combination guarantees the desired third-order accuracy. It automatically
switches to a second-order, one-sided, linear reconstruction in the presence of large
gradients. Such weighted essentially non-oscillatory (WENO) reconstructions were
first introduced in the upwind framework, [11, 27], after which they were extended to
the central framework [19, 20, 21, 22]. A different approach to creating a high-order
(ENO-type) method which does not require Riemann solvers was suggested in [26].

This paper is organized as follows. We start in section 2 with a brief overview
of central schemes for conservation laws. In particular we focus in section 2.1 on
the CWENO reconstruction which we use as the building block for our third-order
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method below.
We then proceed to construct our new third-order scheme. First, we deal with

the fully discrete, one-dimensional (1D) setup in section 3. This new fully discrete
scheme is sketched in (3.7). We give only the required details that are necessary to
fulfill our final goal, namely, to derive the semidiscrete scheme.

With the fully discrete scheme, (3.7), we are ready to approach the semidiscrete
limit in section 4.1. Our new third-order, one-dimensional, semidiscrete scheme is then
summarized in (4.5). This scheme is written in a general form which is independent
of the reconstruction step and can also be combined with any appropriate ODE solver
for carrying out the time evolution. In section 4.2 we then extend our semidiscrete
scheme to multidimensional hyperbolic and (degenerate) parabolic problems.

We end by presenting several numerical examples in section 5, in which we ap-
proximate solutions to hyperbolic conservation laws as well as to convection-diffusion
equations. Our new method is shown to enjoy the expected high accuracy as well as
the robustness and the simplicity of the entire family of central schemes.

2. Central schemes for conservation laws. We briefly overview the frame-
work of central schemes for conservation laws. Consider the 1D system (1.1). To
approximate its solutions, we introduce a spatial scale, ∆x, and integrate over the
cell I(x) := {ξ | |ξ − x| ≤ ∆x/2},

ūt +
1

∆x

[
f

((
x+

∆x

2
, t

))
+ f

(
u

(
x− ∆x

2
, t

))]
= 0.(2.1)

Here and below, ū denotes the average of u over I,

ū(x, t) :=
1

∆x

∫
I(x)

u(ξ, t)dξ.

Introducing a time scale, ∆t, integrating in time from t to t+ ∆t, and sampling
(2.1) at the cells [xj , xj+1], we obtain

ūn+1
j+1/2 = ūnj+1/2 −

1

∆x

∫ tn+1

τ=tn
[f(u(xj+1, τ)) − f(u(xj , τ))] dτ,(2.2)

where xj := j∆x, tn := n∆t, unj := u(xj , t
n), and ūnj := ū(xj , t

n). Assuming that at
time t = tn we have computed the cell-averages of the approximate solution, {ūnj },
we would like to utilize (2.2) to compute the cell-averages at the next time level,
tn+1 = tn + ∆t. To that extent, we introduce a piecewise-polynomial reconstruction,

u(x, tn) ≈
∑
j

Pj(x)χj(x),(2.3)

where χj(x) is the characteristic function of the cell Ij := I(xj), and Pj(x) is a
polynomial which is reconstructed from the computed cell-averages, {ūnj }. The degree
of the polynomial depends on the desired order of accuracy of the method. Having
such an approximation to u(x, tn), (2.3), we can easily compute the right-hand side
(RHS) of (2.2). The first term, ūnj+1/2, equals

ūnj+1/2 =

∫ xj+1/2

xj

Pj(x)dx+

∫ xj+1

xj+1/2

Pj+1(x)dx.
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For a sufficiently small time-step, ∆t, the solution of (1.1) subject to the initial data
(2.3), prescribed at time t = tn, will remain smooth at some neighborhood of the
grid points xj for t ∈ [tn, tn+1]. Hence, the integrals on the RHS of (2.2) can be
approximated using a sufficiently accurate quadrature, which is determined by the
overall desired accuracy of the method. The values at the intermediate times which
will be required in the quadrature can be predicted either by a Taylor expansion or
using a Runge–Kutta method (consult [3, 19, 28, 30]).

For example, a piecewise-constant reconstruction, Pj(x) = ūnj , and a first-order
quadrature, ∫ tn+1

tn
f(u(t))dt ∼ ∆tf(ūn),

will result in the staggered-LxF scheme (with λ := ∆t/∆x denoting the mesh ratio),

ūn+1
j+1/2 =

ūnj+1 + ūnj
2

− λ(f(ūnj+1) − f(ūnj )).

A piecewise linear reconstruction, Pj(x) = ūnj + (ux)
n
j (x − xj), with a second-order

quadrature in time (such as the midpoint rule), results in the NT scheme. Applying
nonlinear limiters on the discrete slopes, (ux)

n
j , will prevent oscillations (for details,

see [30]).
To obtain a third-order central scheme, one should use a third-order, piecewise

parabolic reconstruction together with a more accurate quadrature in time, e.g., Simp-
son’s quadrature rule (see [28] for details).

Remarks.
1. Robustness. In order to reconstruct a nonoscillatory interpolant, one typically

is required to use nonlinear limiters. These limiters decrease the order of accuracy of
the method at extrema and by that they play a stabilizing role (e.g., see [17, 28, 30,
35]).

2. Numerical dissipation and time step. When using fully discrete central schemes
to approximate solutions of convection-diffusion equations, (1.2), the stability restric-

tion enforces small time-steps, ∆t ∼ (∆x)
2
. That is why the numerical dissipation

is accumulated and we do not obtain high resolution of discontinuities (see [16] for
details).

This problem can be avoided by using semidiscrete schemes instead of the fully-
discrete schemes. Such a second-order, central, semidiscrete scheme was introduced in
[16]. In this paper we develop a third-order, central, semidiscrete scheme with small
numerical dissipation, which can be used efficiently with the small time-steps required
due to the second-order operators.

3. Upwind schemes. Sampling (2.1) at the cells Ij will result in upwind schemes.
Here, one remains with the discontinuities along the interfaces and is bound to solve
the Riemann problems there, or at least to approximate their solutions. In the scalar,
1D case this can be easily accomplished, but the Riemann problem has no known
solution in the general case of systems and/or several space dimensions.

This is the reason why central schemes can be considered as universal methods
for solving hyperbolic conservation laws: Riemann solvers are not involved in their
construction and, moreover, since (2.2) can be carried out componentwise, no char-
acteristic decomposition is required.

2.1. CWENO reconstruction. The first 1D, third-order central scheme in [28]
implemented the nonoscillatory piecewise parabolic reconstruction proposed by Liu
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and Osher in [25]. Since then, a variety of simpler reconstructions has appeared in the
literature. Among these, we would like to mention the central-ENO reconstruction
in [3] and the central-WENO (CWENO) reconstruction in [19] and [21], which was
extended to the two-dimensional (2D) setup in [20] and [22].

Our new third-order semidiscrete method which we develop in section 3 and sec-
tion 4 below can be integrated with any third-order, nonoscillatory reconstruction.
In our numerical simulations presented in section 5, we will use the method recently
presented in [21], of which we will now give a brief overview.

In each cell Ij we reconstruct a quadratic polynomial as a convex combination of
three polynomials PL(x), PR(x), and PC(x),

Pj(x) = wLPL(x) + wRPR(x) + wCPC(x),(2.4)

with positive weights wi ≥ 0∀i ∈ {C, R, L} and
∑

i wi = 1. The polynomials PL(x), PR(x)
correspond to left and right one-sided linear reconstructions, respectively, while PC(x)
is a parabola, centered around xj .

The linear functions, PR(x) and PL(x), are uniquely determined by requiring them
to conserve the one-sided cell-averages (ūnj , ū

n
j+1 and ūnj , ū

n
j−1, respectively) as

PR(x) = ūnj +
ūnj+1 − ūnj

∆x
(x− xj), PL(x) = ūnj +

ūnj − ūnj−1

∆x
(x− xj).(2.5)

The centered parabola, PC(x), is chosen so as to satisfy

PEXACT(x) = cLPL(x) + cRPR(x) + (1 − cL − cR)PC(x)(2.6)

with constants ci’s. Here, PEXACT(x) is the unique parabola that conserves the three-
cell-averages, ūnj−1, ū

n
j , and ūnj+1, which is given by

PEXACT(x) = unj + u′j(x− xj) +
1

2
u′′j (x− xj)2.(2.7)

The approximations to the point-values of u(xj , t
n), ux(xj , t

n), and uxx(xj , t
n) are

denoted by unj , u
′
j , u

′′
j and are given by

unj = ūnj − 1

24
(ūnj+1 − 2ūnj + ūnj−1),

u′j =
ūnj+1 − ūnj−1

2∆x
, u′′j =

ūnj−1 − 2ūnj + ūnj+1

∆x2
.

In [21] it was shown that every symmetric selection of the constants ci’s in (2.6)
will provide the desired third-order accuracy. For example, by taking cL = cR = 1/4,
(2.5)–(2.7) yield

PC(x) = ūnj − 1

12
(ūnj+1 − 2ūnj + ūnj−1)

+
ūnj+1 − ūnj−1

2∆x
(x− xj) +

ūnj+1 − 2ūnj + ūnj−1

∆x2
(x− xj)2.

In smooth regions, the coefficients wi of the convex combination in (2.4) are chosen
to guarantee the maximum order of accuracy (in this particular case, order three),
but in the presence of a discontinuity they are automatically switched to the best
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one-sided stencil (which generates the least oscillatory reconstruction). The weights
are taken as

wi =
αi∑

m
αm

, where αi =
ci

(ε+ ISi)p
, i,m ∈ {C, R, L},

(2.8)
cL = cR = 1/4, cC = 1/2.

The constant ε guarantees that the denominator does not vanish and is taken as
ε = 10−6. The value of p may be chosen to provide the highest accuracy in smooth
areas and to ensure the nonoscillatory nature of the solution near the discontinuities
(consult [11]; see also [19, 21]). In [11] the value p = 2 was empirically selected,
and here we use the same p in most of the examples presented below. Finally, the
smoothness indicators, ISi, are defined as

ISi =

2∑
l=1

∫ xj+1/2

xj−1/2

(∆x)
2l−1

(P
(l)
i (x))2dx.

A direct computation then results in

ISL = (ūnj − ūnj−1)
2, ISR = (ūnj+1 − ūnj )2,

(2.9)

ISC =
13

3
(ūnj+1 − 2ūnj + ūnj−1)

2 +
1

4
(ūnj+1 − ūnj−1)

2.

It is easy to see that in the presence of large gradients, this reconstruction switches to
one of the second-order one-sided linear reconstructions, PR or PL. For more details
we refer to [21].

3. The fully discrete one-dimensional construction. In this section we
present the new third-order method in the fully discrete framework. Since we are
mainly interested in deriving the semidiscrete scheme, we will concentrate only on the
details which are required for that task. The scheme we derive here is a third-order
extension of the fully discrete second-order scheme presented in [16].

Following [16], we would like to augment the integration over the Riemann fans
by more accurate information about the local speed of wave propagation. We start
by assuming that in every cell, Ij , we have reconstructed a piecewise polynomial
interpolant, Pj(x, t

n), from the previously computed cell-averages, {ūnj }. Then, an
upper bound on the speed of propagation of discontinuities at the cell boundaries,
xj+1/2, is given by

anj+1/2 = max
u∈C(u−

j+1/2
,u+

j+1/2
)
ρ
(∂f
∂u

(u)
)
,(3.1)

where ρ(A) denotes the spectral radius of a matrix A, i.e., ρ(A) := maxi |λi(A)|
with λi(A) being its eigenvalues. We denote by u+

j+1/2 and u−j+1/2 the left and right

intermediate values of u(x, tn) at xj+1/2, i.e.,

u+
j+1/2 := Pj+1(xj+1/2, t

n), u−j+1/2 := Pj(xj+1/2, t
n),

and by C(u−j+1/2, u
+
j+1/2) a curve in phase space that connects u−j+1/2 and u+

j+1/2 via

the Riemann fan.
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x j-1 jx

x j+3/2,l
n

n
j+1u

n+1
j+1/2w

n+1
j+1w

n
u j

n+1
jw

n+1
u j

j-1
n+1

w

j-1/2
n+1

w

x
n
j-1/2,l

x
x x x xj+1/2j-1/2 j+1 j+3/2

x x x xj+1/2,l j+1/2,r
n n n n

n
u

j-1/2,rj-3/2,r

j-1

Fig. 3.1. Modified central differencing.

Remark. In most practical applications, these local maximal speeds can be easily
evaluated. For example, in the genuinely nonlinear or linearly degenerate case one
finds that (3.1) reduces to

anj+1/2 := max

{
ρ
(∂f
∂u

(u−j+1/2)
)
, ρ
(∂f
∂u

(u+
j+1/2)

)}
.(3.2)

Given the piecewise polynomial interpolant at time tn, {Pj(x, t
n)}, and the local

speeds of propagation, {anj+1/2}, we construct the fully discrete, central method in
two steps, which are schematically described in Figure 3.1. First, we integrate over
the control volumes, [xnj−1/2,l, x

n
j−1/2,r]× [tn, tn+1], [xnj−1/2,r, x

n
j+1/2,l]× [tn, tn+1], and

[xnj+1/2,l, x
n
j+1/2,r]× [tn, tn+1], obtaining w̄n+1

j−1/2, w̄
n+1
j , and w̄n+1

j+1/2, respectively. Due

to the finite speed of propagation, the points xnj+1/2,l and xnj+1/2,r,

xnj+1/2,l := xj+1/2 − anj+1/2∆t, xnj+1/2,r := xj+1/2 + anj+1/2∆t,

separate between smooth and nonsmooth regions. That is, the solution of (1.1) subject
to the piecewise polynomial initial data prescribed at time t = tn may be nonsmooth
only inside the intervals [xnj+1/2,l , x

n
j+1/2,r] for t ∈ [tn, tn+1).

In the second step, we repeat the nonoscillatory reconstruction (this time on a
nonuniformly spaced grid) and project the obtained reconstruction on the original,
uniform grid, ending up with the cell-averages at the next time level tn+1, {ūn+1

j }.
This last step does not involve time integration and was introduced in the context of
changing staggered methods into nonstaggered methods in [10].

We now turn to the detailed description of this algorithm. Assume that the
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piecewise polynomial reconstruction in cell Ij at time tn is of the form

Pj(x, t
n) = Aj +Bj(x− xj) +

1

2
Cj(x− xj)2.(3.3)

Then a direct computation of the integrals over the control volumes, [xnj+1/2,l, x
n
j+1/2,r]×

[tn, tn+1] and [xnj−1/2,r, x
n
j+1/2,l] × [tn, tn+1], yields

w̄n+1
j+1/2 =

Aj +Aj+1

2
+

∆x− anj+1/2∆t

4
(Bj −Bj+1)

+

(
∆x2

16
−
anj+1/2∆t∆x

8
+

(anj+1/2∆t)
2

12

)
(Cj + Cj+1)(3.4)

− 1

2anj+1/2∆t

{∫ tn+1

tn

[
f(u(xnj+1/2,r, t))dt− f(u(xnj+1/2,l, t))

]
dt

}
,

and

w̄n+1
j = Aj +

∆t

2
(anj−1/2 − anj+1/2)Bj

+

[
(∆x)2

24
− ∆t∆x

12
(anj−1/2 + anj+1/2)

+
(∆t)2

6

(
(anj−1/2)

2 − anj−1/2a
n
j+1/2 + (anj+1/2)

2
)]
Cj(3.5)

− 1

∆x− ∆t(anj−1/2 + anj+1/2)

{∫ tn+1

tn

[
f(u(xnj+1/2,l, t))dt

− f(u(xnj−1/2,r, t))
]
dt

}
,

respectively. To complete these computations, one should approximate the flux inte-
grals on the RHS of (3.4) and (3.5) using, e.g., Simpson’s quadrature as described in
section 2.

At this stage, the approximate cell-averages, {w̄n+1
j+ 1

2

, w̄n+1
j }, realize the solution

at t = tn+1 over a nonuniform grid, which is oversampled by twice the number of the
original cells at t = tn. To convert these nonuniform averages back into the original
grid, we proceed along the lines of [10].

First, from the cell-averages, w̄n+1
j+ 1

2

, w̄n+1
j , given by (3.4)–(3.5), we reconstruct

a third-order, piecewise polynomial, nonoscillatory interpolant (e.g., the CWENO
interpolant described in section 2.1), which we will denote by w̃n+1

j+1/2(x) and w̃n+1
j (x),

respectively. In fact, we do not need any high-order reconstruction w̃n+1
j (x) since it

will be averaged out (consult Figure 3.1).
We note in passing that even for a nonuniform grid data, the CWENO interpolant

can be written explicitly (in the spirit of section 2.1), but these details are irrelevant
for the semidiscrete scheme, which will be described in section 4. At that point, all
we need is to assume that such a reconstruction exists and that for all j it takes the
form

w̃n+1
j+1/2(x) = Ãj+1/2 + B̃j+1/2(x− xj+1/2) +

1

2
C̃j+1/2(x− xj+1/2)

2,

w̃n+1
j (x) = w̄n+1

j ,

(3.6)
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in the nonsmooth region (xnj+1/2,l, x
n
j+1/2,r) and in the smooth region (xnj−1/2,r, x

n
j+1/2,l),

respectively. Given (3.4), (3.5), and (3.6), we conclude by computing the new cell-
averages at time tn+1 according to

ūn+1
j =

1

∆x

[∫ xn
j−1/2,r

xj−1/2

w̃n+1
j−1/2(x)dx+

∫ xn
j+1/2,l

xn
j−1/2,r

w̃n+1
j (x)dx+

∫ xj+1/2

xn
j+1/2,l

w̃n+1
j+1/2(x)dx

]

= λanj−1/2Ãj−1/2 +
[
1 − λ(anj−1/2 + anj+1/2)

]
w̄n+1

j + λanj+1/2Ãj+1/2

+
λ∆t

2

(
(anj−1/2)

2
B̃j−1/2 − (anj+1/2)

2
B̃j+1/2

)
(3.7)

+
λ(∆t)2

6

(
(anj−1/2)

3
C̃j−1/2 + (anj+1/2)

3
C̃j+1/2

)
.

Remark. The third-order reconstruction (3.6) is necessary in order to guarantee
the overall third-order accuracy, since simple averaging over [xj− 1

2
, xj+ 1

2
] (without

reconstruction) reduces the order of the resulting scheme (see [10]).

4. The semidiscrete scheme. We are now ready to derive our main result,
which is the new third-order, semidiscrete, central scheme. First, we describe our
ideas in the 1D framework and then we extend them to multidimensional problems.

4.1. 1D problems. We start with the derivation of the third-order semidiscrete
scheme for 1D (systems of) hyperbolic conservation laws. Using the fully discrete
scheme obtained in section 3, the semidiscrete approximation can be directly written
as the limit

d

dt
ūj(t) = lim

∆t→0

ūn+1
j − ūnj

∆t
.(4.1)

Substituting (3.7) into (4.1) results in

dūj
dt

= lim
∆t→0

{
1

∆x
anj−1/2Ãj−1/2 − 1

∆x
(anj−1/2 + anj+1/2)w̄

n+1
j

(4.2)

+
1

∆x
anj+1/2Ãj+1/2 +

1

∆t
(w̄n+1

j − ūnj )

}
.

In the limit as ∆t→ 0, all the Riemann fans have zero widths and therefore,

Ãj+1/2 = w̄n+1
j+1/2, Ãj−1/2 = w̄n+1

j−1/2.(4.3)

Using (3.3) we can also obtain

u(xnj+1/2,r, t) → Pj+1(xj+1/2, t)

= Aj+1 − ∆x

2
Bj+1 +

(∆x)
2

8
Cj+1 =: u+

j+1/2(t),
(4.4)

u(xnj+1/2,l, t) → Pj(xj+1/2, t)

= Aj +
∆x

2
Bj +

(∆x)
2

8
Cj =: u−j+1/2(t).

Finally, plugging (3.4), (3.5), and (4.3) into (4.2) we compute the time limit explicitly,
ending up with our new semidiscrete scheme,

dūj
dt

= − 1

2∆x

[
f(u+

j+1/2(t)) + f(u−j+1/2(t)) − f(u+
j−1/2(t)) − f(u−j−1/2(t))

]
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(4.5)

+
aj+1/2(t)

2∆x

[
u+
j+1/2(t) − u−j+1/2(t)

]
− aj−1/2(t)

2∆x

[
u+
j−1/2(t) − u−j−1/2(t)

]
,

with local speeds aj+1/2(t), e.g.,

aj+1/2(t) := max

{
ρ
(∂f
∂u

(u−j+1/2(t))
)
, ρ
(∂f
∂u

(u+
j+1/2(t))

)}
.

Remarks.
1. We would like to emphasize that the scheme (4.5) was derived independently

of any specific piecewise-quadratic reconstruction. If one wants, e.g., to use the
CWENO reconstruction described in section 2.1, then the values of Aj , Bj , and Cj in
(4.4) are

Aj = ūnj − wC

12
(ūnj+1 − 2ūnj + ūnj−1),

Bj =
1

∆x

[
wR(ūnj+1 − ūnj ) + wC

ūnj+1 − ūnj−1

2
+ wL(ū

n
j − ūnj−1)

]
,

Cj = 2wC

ūnj−1 − 2ūnj + ūnj+1

∆x2
,

where wL, wC, and wR are defined in (2.8).
2. Our third-order scheme, (4.5), admits the conservative form

dūj
dt

= −Hj+1/2(t) −Hj−1/2(t)

∆x
,(4.6)

with the numerical flux

Hj+1/2(t) :=
f(u+

j+1/2(t)) + f(u−j+1/2(t))

2
(4.7)

−aj+1/2(t)

2

[
u+
j+1/2(t) − u−j+1/2(t)

]
.

This scheme is a natural generalization of the second-order semidiscrete scheme from
[16]. Moreover, the second-order scheme has exactly the same form, (4.6)–(4.7); the
only difference is in the more accurate computation of the intermediate value u+

j+1/2(t)

and u−j+1/2(t). It is interesting to note that also the fully discrete, staggered, second-

and third-order central schemes have the same structure (see [28]).
3. Similar to the case of the second-order scheme [16], the nonoscillatory prop-

erty of the piecewise parabolic reconstruction, (3.3), will guarantee the nonoscillatory
nature of our semidiscrete scheme. But unlike the piecewise linear reconstruction
utilized in the second-order method, a piecewise parabolic reconstruction can be only
essentially nonoscillatory. This means that, in principle, such a reconstruction may
increase the total variation of the computed piecewise constant solution. Our nu-
merical examples, however, demonstrate that the growth of the total variation is
always bounded. Such desirable behavior of bounded total variation in the context of
central-WENO schemes was already observed in [23].

4. We would like to stress once again the simplicity of our new method, which
does not require any (approximate) Riemann solver or any use of the characteristic
variables—the reconstruction of piecewise polynomial interpolant, (3.3), is carried
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out componentwise. In particular, unlike the standard central schemes, but similar to
the second-order semidiscrete method in [16], our method is based on one grid (and
not on staggering between two grids). This can be a big advantage (compared with
the traditional central schemes) when dealing with boundary conditions and complex
geometries.

5. Finally, similar to the second-order semidiscrete scheme [16], the third-order
scheme, (4.6)–(4.7), boils down in the scalar linear case to an upwind scheme. In the
nonlinear, scalar, case, this is a finite volume scheme based on a local LxF (Rusanov)
monotone flux. Since we derived our method as a central Godunov-type scheme, our
result also naturally holds for systems (including multi-dimensional systems as shown
below).

Next, let us consider the general convection-diffusion equation, (1.2). Similar to
the case of the second-order semidiscrete scheme [16], operator splitting is not needed.
We can apply our third-order semidiscrete scheme, (4.6)–(4.7), to the (degenerate)
parabolic equation, (1.2), in a straightforward manner. This results in the scheme

dūj
dt

= −Hj+1/2(t) −Hj−1/2(t)

∆x
+Qj(t).(4.8)

Here, Hj+1/2(t) is our numerical convection flux, (4.7), and Qj(t) is a high-order
approximation to the diffusion term, Q(u, ux)x. In the examples below we use the
fourth-order central differencing of the form

Qj(t) =
1

12∆x

[
−Q(uj+2(t), (ux)j+2,j) + 8Q(uj+1(t), (ux)j+1,j)

−8Q(uj−1(t), (ux)j−1,j) +Q(uj−2(t), (ux)j−2,j)
]
,(4.9)

where

(ux)j+2,j :=
1

12∆x

[
25uj+2(t) − 48uj+1(t) + 36uj − 16uj−1(t) + 3uj−2(t)

]
,

(ux)j+1,j :=
1

12∆x

[
3uj+2(t) + 10uj+1(t) − 18uj + 6uj−1(t) − uj−2(t)

]
,

(4.10)

(ux)j−1,j :=
1

12∆x

[
uj+2(t) − 6uj+1(t) + 18uj − 10uj−1(t) − 3uj−2(t)

]
,

(ux)j−2,j :=
1

12∆x

[
−3uj+2(t) + 16uj+1(t) − 36uj + 48uj−1(t) − 25uj−2(t)

]
,

and {uj(t)} are point-values of the reconstructed polynomials, (3.3), i.e., uj(t) =
Pj(xj , t).

4.2. Multidimensional extensions. Without loss of generality, let us consider
the 2D (system of) convection-diffusion equations,

ut + f(u)x + g(u)y = Qx(u, ux, uy)x +Qy(u, ux, uy)y,(4.11)

where the case Qx ≡ Qy ≡ 0 corresponds to the 2D pure hyperbolic problem.
Suppose that we have computed an approximate solution to (4.11) at some time

t and have reconstructed a 2D piecewise polynomial, third-order, ENO interpolant
over the uniform spatial grid, (xj , yk) = (j∆x, k∆y).
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Following [16], the 2D extension of our third-order semidiscrete scheme, (4.8),(4.7),
can be written in the following form:

dūj,k
dt

= −
Hx

j+1/2,k(t) −Hx
j−1/2,k(t)

∆x
−
Hy

j,k+1/2(t) −Hy
j,k−1/2(t)

∆y
(4.12)

+Qx
j,k(t) +Qy

j,k(t).

Here, Hx
j+1/2,k(t) and Hy

j,k+1/2(t) are x- and y-numerical convection fluxes, respec-

tively (they can be viewed as a generalization of the 1D flux, (4.7)),

Hx
j+1/2,k(t) :=

f(u+
j+1/2,k(t)) + f(u−j+1/2,k(t))

2

−
axj+1/2,k(t)

2

[
u+
j+1/2,k(t) − u−j+1/2,k(t)

]
,

(4.13)

Hy
j,k+1/2(t) :=

g(u+
j,k+1/2(t)) + g(u−j,k+1/2(t))

2

−
ayj,k+1/2(t)

2

[
u+
j,k+1/2(t) − u−j,k+1/2(t)

]
.

The numerical fluxes, (4.13), are expressed in terms of the intermediate values, u±j+1/2,k(t),

u±j,k+1/2(t), which are obtained from the piecewise polynomial reconstruction. The

local speeds, axj+1/2,k(t) and ayj,k+1/2(t), are computed, e.g., by

axj+1/2,k(t) := max

{
ρ
(∂f
∂u

(u−j+1/2,k(t))
)
, ρ
(∂f
∂u

(u+
j+1/2,k(t))

)}
,

(4.14)

ayj,k+1/2(t) := max

{
ρ
(∂g
∂u

(u−j,k+1/2(t))
)
, ρ
(∂g
∂u

(u+
j,k+1/2(t))

)}
.

Finally, Qx
j,k(t) and Qy

j,k(t) are high-order, central differencing approximations to the
diffusion terms Qx(u, ux, uy)x and Qy(u, ux, uy)y.

Remarks.
1. We would like to emphasize that the problem of constructing a 2D, third-

order, nonoscillatory interpolant is highly nontrivial. Several essentially 2D recon-
structions were proposed in [20, 21, 22]. Alternatively, one can use 1D CWENO
reconstruction, direction by direction, in order to compute the intermediate values
u±j+1/2,k(t) and u±j,k+1/2(t).

Following is the recipe for the computation of u−j+1/2,k (the computation of other

intermediate values can be carried out in a similar way):

u−j+1/2,k = wLP
k
L (xj+1/2) + wRP

k
R (xj+1/2) + wCP

k
C (xj+1/2),(4.15)

where the P ’s are the polynomials introduced in section 2.1,

P k
R (x) = ūj,k +

ūj+1,k − ūj,k
∆x

(x− xj),

P k
L (x) = ūj,k +

ūj,k − ūj−1,k

∆x
(x− xj),
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(4.16)

P k
C (x) = ūj,k − 1

12
(ūj+1,k − 2ūj,k + ūj−1,k)

− 1

12
(ūj,k+1 − 2ūj,k + ūj,k−1) +

ūj+1,k − ūj−1,k

2∆x
(x− xj)

+
ūj+1,k − 2ūj,k + ūj−1,k

∆x2
(x− xj)2.

The weights, wL, wR, wC, which are given by (2.8), are based on the smoothness indi-
cators in (2.9).

Note that the only difference between this reconstruction and the 1D reconstruc-
tion, (2.4)–(2.9), is an additional term in P k

C (x), − 1
12 (ūj,k+1 − 2ūj,k + ūj,k−1), which

corresponds to the second derivative in the y direction and guarantees the third-
order accuracy of the computed intermediate values. This “dimension by dimension”
approach was implemented in Example 5 below.

2. It is straightforward to extend the 2D scheme, (4.12), to more space di-
mensions. In particular, the dimension-by-dimension approach is a very simple and
promising approach for multidimensional problems.

5. Numerical examples. We conclude the paper with a number of numerical
examples. Here, in order to retain the overall high accuracy, the semidiscrete scheme
is combined with a high-order, stable ODE solver to complete the spatio-temporal
discretization. Numerically, we observed that a variety of explicit methods provides
satisfactory results in the context of our semidiscrete scheme.

For the inviscid problems (Examples 1, 2, 3, and 5), we used the third-order
total variation diminishing (TVD) Runge–Kutta-type method introduced by Shu and
Osher in [33]. However, if we apply this time-integration method or any other standard
Runge–Kutta-type method to (degenerate) parabolic problems, the time-step can be
very small due to their strict stability restrictions.

To overcome this difficulty, we used (in Examples 4 and 5) the third-order ODE
solver (called DUMKA3) by Medovikov [29]. This explicit method has larger stability
domains (compared with the standard Runge–Kutta methods), which allow larger
time-steps. In practice, DUMKA3 works as fast as implicit methods (see [29] for
details).

We abbreviate our third-order semidiscrete scheme by SD3, which will be com-
bined with the third-order TVD Runge–Kutta-type method (RK3) or with DUMKA3.

Example 1: Linear accuracy test. Consider the scalar linear hyperbolic equa-
tion

ut + ux = 0, x ∈ [0, 2π],(5.1)

augmented with the smooth initial data, u(x, 0) = sinx, and periodic boundary con-
ditions. This simple problem admits a global classical solution, which was computed
at time T = 1 with a varying number of grid points, N .

In Table 5.1 we check the accuracy of our third-order semidiscrete scheme, SD3,
coupled with the RK3 ODE solver. Clearly, this is a high-order method. The asymp-
totic convergence rate seems to be better than three, which is similar to the super-
convergence observed in [27].

The error is measured in terms of the pointwise values,

‖ũ− u‖L1 := ∆x
∑
j

|ũj(T ) − u(xj , T )|, ‖ũ− u‖L∞ := max
j

|ũj(T ) − u(xj , T )|.
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Table 5.1
Accuracy test for the linear advection problem (5.1); the errors at T = 1.

N L1-error Rate L∞-error Rate

40 4.492e-02 – 2.822e-02 –
80 1.092e-02 2.04 1.065e-02 1.41
160 2.162e-03 2.34 3.426e-03 1.64
320 1.811e-04 3.58 4.705e-04 2.86
640 9.267e-06 4.29 2.267e-05 4.38
1280 5.409e-07 4.10 1.171e-06 4.27

Table 5.2
Accuracy test for the Burgers equation, (5.2); the pre-shock errors.

N L1-error Rate L∞-error Rate

40 2.370e-02 – 2.225e-02 –
80 5.759e-03 2.04 9.053e-03 1.30
160 1.161e-03 2.31 2.921e-03 1.63
320 9.541e-05 3.61 3.926e-04 2.90
640 4.882e-06 4.29 1.778e-05 4.46
1280 3.044e-07 4.00 5.732e-07 4.96

Here, ũ is an approximate solution, which is realized by its values at the grid points,
xj ,

ũj(T ) = Pj(xj , T ),

where the Pj ’s are the piecewise parabolic interpolants, (3.3), constructed at the final
time t = T .

Example 2: The Burgers equation. In this example we approximate solutions
to the inviscid Burgers equation,

ut +

(
u2

2

)
x

= 0, x ∈ [0, 2π],(5.2)

augmented with the smooth initial data, u(x, 0) = 0.5 + sinx, and periodic boundary
conditions.

The unique entropy solution of (5.2) develops a shock discontinuity at the critical
time Tc = 1. Table 5.2 shows the L1- and L∞-norms of the errors at the preshock
time T = 0.5, when the solution is still smooth. Once again, our results indicate that
the method is a high-order method also when implemented for nonlinear problems.

In Figures 5.1 and 5.2 we present the approximate solutions at the postshock time
T = 2, when the shock is well developed. The essentially nonoscillatory nature of our
scheme can be clearly observed.



THIRD-ORDER SEMIDISCRETE CENTRAL SCHEME 1475

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7

EXACT
SD3 + RK3

Fig. 5.1. The Burgers equation, (5.2); T = 2, N = 40.
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Fig. 5.2. The Burgers equation, (5.2); T = 2, N = 80.

Example 3: Euler equations of gas dynamics. Let us consider the 1D Euler
system

∂

∂t


 ρ
m
E


+

∂

∂x


 m

ρu2 + p
u(E + p)


 = 0, p = (γ − 1) ·

(
E − ρ

2
u2
)
,

where ρ, u, m = ρu, p , and E are the density, velocity, momentum, pressure, and
total energy, respectively. We solve this system subject to Sod’s Riemann initial data,
proposed in [34],

+u(x, 0) =

{
+uL = (1, 0, 2.5)

T
, x < 0,

+uR = (0.125, 0, 0.25)
T
, x > 0.

The approximations to the density, velocity, and pressure obtained by the SD3
scheme with the RK3 time discretization are presented in Figures 5.3–5.8. The coef-
ficient p in the smoothness indicator, (2.8)–(2.9), was taken as 0.6, which seems to be
the optimal value in this specific example. WENO-type schemes do require a param-
eter tuning in order to reduce the amplitude of the oscillations. Formally, this does
not affect the order of accuracy of the method (in certain ranges of the parameters).
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Fig. 5.3. Sod problem—density. N = 200, T = 0.1644.
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Fig. 5.4. Sod problem—density. N = 400, T = 0.1644.

We would like to stress again that our SD3 scheme does not employ the charac-
teristic decomposition. To improve the resolution of the contact discontinuity, which
is always smeared while the solution to the system of Euler equations is computed
by the central method, we implemented the artificial compression method (ACM) by
Harten [8]. In the context of central schemes, the ACM can be implemented as a
corrector step to the componentwise approach (see [30] for details).

Example 4: Convection-diffusion equations—the Buckley–Leverett
model. In this example we solve the 1D Buckley–Leverett equation,

ut + f(u)x = ε(ν(u)ux)x, εν(u) ≥ 0,(5.3)

which can be viewed as a prototype model for the two-phase flow in oil reservoirs.
Typically, ν(u) vanishes at some values of u, and thus (5.3) is a degenerate parabolic
equation. Specifically, we take

f(u) =
u2

u2 + (1 − u)2 , ν(u) = 4u(1 − u), ε = 0.01,
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Fig. 5.5. Sod problem—velocity. N = 200, T = 0.1644.
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Fig. 5.6. Sod problem—velocity. N = 400, T = 0.1644.
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Fig. 5.7. Sod problem—pressure. N = 200, T = 0.1644.

and consider the initial value problem with the Riemann initial data,

u(x, 0) =




0, 0 ≤ x < 1 − 1√
2
,

1, 1 − 1√
2
≤ x ≤ 1.

(5.4)
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Fig. 5.8. Sod problem—pressure. N = 400, T = 0.1644.
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Fig. 5.9. Buckley–Leverett model, (5.3)–(5.4). T = 0.2.

The numerical solution to this problem, obtained by the SD3 scheme augmented with
the DUMKA3 ODE solver, is presented in Figure 5.9.

The model, (5.3), becomes more complicated by adding the effects of gravitation.
These effects can be obtained, e.g., by taking

f(u) =
u2

u2 + (1 − u)2 (1 − 5(1 − u)2),(5.5)

which is nonmonotone on the interval u ∈ [0, 1].
The numerical solution to this initial value problem is shown in Figure 5.10. Note

that the exact solution to problem (5.3)–(5.4) is not available, but our solutions seem
to converge to the physically relevant solutions in both cases—with gravitation and
without it.

Example 5: Incompressible Euler and Navier–Stokes equations. In this
example we consider 2D viscous and inviscid incompressible flow governed by the
Navier–Stokes (ν > 0) and Euler (ν = 0) equations,

+ut + (+u · ∇)+u+ ∇p = ν∆+u.(5.6)
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Fig. 5.10. Buckley–Leverett model, (5.3)–(5.4), including the gravitational effect, (5.5). T = 0.2.

Here, p denotes the pressure, and +u = (u, v) is the two-component divergence-free
velocity field satisfying

ux + vy = 0.(5.7)

In the 2D case (5.6) admits an equivalent scalar formulation in terms of the vorticity,

ωt + (uω)x + (vω)y = ν∆ω,(5.8)

where ω := vx − uy. The incompressibility, (5.7), implies that (5.8) can be written in
an equivalent conservative form,

ωt + f(ω)x + g(ω)y = ν∆ω,(5.9)

with a global convection flux, (f, g) := (uω, vω). A second-order, fully discrete, stag-
gered, central scheme was used to solve the 2D vorticity equations in [24]. This scheme
was proved to satisfy a maximum principle for the vorticity. (For an equivalent scheme
in the velocity formulation, see [13].)

When applied to (5.9), our 2D, third-order, semidiscrete scheme, (4.12)–(4.14),
takes the form

dω̄j,k

dt
= −

Hx
j+1/2,k(t) −Hx

j−1/2,k(t)

∆x
(5.10)

−
Hy

j,k+1/2(t) −Hy
j,k−1/2(t)

∆y
+ νQj,k(t),

with the numerical convection fluxes,

Hx
j+1/2,k(t) =

uj+1/2,k(t)

2

[
ω+
j+1/2,k(t) + ω−

j+1/2,k(t)
]

−
axj+1/2,k(t)

2

[
ω+
j+1/2,k(t) − ω−

j+1/2,k(t)
]
,

(5.11)

Hy
j,k+1/2(t) =

vj,k+1/2(t)

2

[
ω+
j,k+1/2(t) + ω−

j,k+1/2(t)
]

−
ayj,k+1/2(t)

2

[
ω+
j,k+1/2(t) − ω−

j,k+1/2(t)
]
,
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x

y

Fig. 5.11. Incompressible Euler equations; third-order method; T = 4, 64 × 64 grid.

x

y

Fig. 5.12. Incompressible Euler equations; third-order method; T = 4, 128 × 128 grid.

and the local speeds,

axj+1/2,k(t) := |uj+1/2,k(t)|, ayj,k+1/2(t) := |vj,k+1/2(t)|.(5.12)

To approximate the linear viscosity, ∆ω, we used the fourth-order central differencing,
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x

y

Fig. 5.13. Incompressible Euler equations; third-order method; T = 6, 64 × 64 grid.

x

y

Fig. 5.14. Incompressible Euler equations; third-order method; T = 6, 128 × 128 grid.

Qj,k(t) =
−ωj+2,k(t) + 16ωj+1,k(t) − 30ωj,k(t) + 16ωj−1,k(t) − ωj−2,k(t)

12∆x2

(5.13)

+
−ωj,k+2(t) + 16ωj,k+1(t) − 30ωj,k(t) + 16ωj,k−1(t) − ωj,k−2(t)

12∆y2 .

To compute the intermediate values of the vorticity, we use the “dimension by dimen-
sion” approach described in section 4.2: we reconstruct the corresponding CWENO
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x

y

Fig. 5.15. Incompressible Euler equations; third-order method; T = 10, 64 × 64 grid.

x

y

Fig. 5.16. Incompressible Euler equations; third-order method; T = 10, 128 × 128 grid.

interpolants in the x- and y-directions to obtain the values of ω±
j+1/2,k and ω±

j,k+1/2.

Another important point in the incompressible computations is that in every
time-step one has to recover the velocities, {uj,k, vj,k}, from the known values of the
vorticity, {ωj,k}. This can be done in many different ways (consult, e.g., [24] and the
references therein). Here we have used a stream-function, ψ, such that �ψ = −ω,
which is obtained by solving the nine-points Laplacian, �ψj,k = −ωj,k(t). This
provides the values of the stream-function with fourth-order accuracy. Its gradient,
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x

y

Fig. 5.17. Incompressible Euler equations; second-order method; T = 10, 64 × 64 grid.

x

y

Fig. 5.18. Incompressible Euler equations; second-order method; T = 10, 128 × 128 grid.

∇ψ, then recovers the velocity field,

uj,k(t) =
−ψj,k+2 + 8ψj,k+1 − 8ψj,k−1 + ψj,k−2

12∆y
,

(5.14)

vj,k(t) =
ψj+2,k − 8ψj+1,k + 8ψj−1,k − ψj−2,k

12∆x
.

Remarks.
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Fig. 5.19. Incompressible Euler equations; third-order method; T = 10, 64 × 64 grid.
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Fig. 5.20. Incompressible Euler equations; third-order method; T = 10, 128 × 128 grid.

1. Observe that in this way we retain the discrete incompressibility, namely, the
discrete velocities computed in (5.14) satisfy

−uj+2,k + 8uj+1,k − 8uj−1,k + uj−2,k

12∆x
+

−vj,k+2 + 8vj,k+1 − 8vj,k−1 + vj,k−2

12∆y
= 0.

2. The point-values of the vorticity, which are required for using the nine-points
Laplacian, were computed from its cell-averages using the “dimension by dimension”
recipe, (4.15)–(4.16).

Finally, the intermediate values of velocities can be computed, e.g., using fourth-
order averaging,

uj+1/2,k(t) =
−uj+2,k(t) + 9uj+1,k(t) + 9uj,k(t) − uj−1,k(t)

16
,

(5.15)

vj,k+1/2(t) =
−vj,k+2(t) + 9vj,k+1(t) + 9vj,k(t) − vj,k−1(t)

16
.
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x

y

Fig. 5.21. Incompressible Navier–Stokes equations; third-order method; T = 10, 64 × 64 grid.

x

y

Fig. 5.22. Incompressible Navier–Stokes equations; third-order method; T = 10, 128 × 128 grid.

We start our numerical experiments by checking the accuracy of our scheme,
(5.10)–(5.15), augmented with the DUMKA3 time discretization. We consider the
Navier–Stokes equations, (5.6)–(5.7) with ν = 0.05, subject to the smooth periodic
initial data (taken from [4]),

u(x, y, 0) = − cos(x) sin(y), v(x, y, 0) = sin(x) cos(y).(5.16)

The exact solution to this problem is simply an exponential decay of the initial data,
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Table 5.3
Accuracy test for the Navier–Stokes equations. (5.6)–(5.7), (5.16), ν = 0.05. Errors at T = 2.

Nx×Ny L∞-error Rate L1-error Rate L2-error Rate

32 × 32 2.429e-02 – 1.791e-01 – 4.559e-02 –
64 × 64 4.571e-03 2.41 2.814e-02 2.67 7.635e-03 2.58

128 × 128 8.342e-04 2.45 3.869e-03 2.86 1.146e-03 2.74
256 × 256 1.208e-04 2.79 4.966e-04 2.96 1.502e-04 2.93

given by

u(x, y, t) = − cos(x) sin(y)e−2νt, v(x, y, t) = sin(x) cos(y)e−2νt.

The approximate solution with a different number of grid points was computed at
time t = 2. The errors, measured in terms of vorticity in the L∞-, L1-, and L2-norms
are shown in Table 5.3.

Next, the third-order semidiscrete scheme, (5.10)–(5.15), was implemented for the
periodic double shear-layer model problem taken from [2]. First, we solve the Euler
equations, (5.6)–(5.7) with ν = 0, subject to the (2π, 2π)-periodic initial data,

u(x, y, 0) =




tanh( 1
ρ (y − π/2)), y ≤ π,

tanh( 1
ρ (3π/2 − y)), y > π,

v(x, y, 0) = δ · sin(x).(5.17)

Here, the “thick” shear-layer width parameter, ρ, is taken as π
15 and the perturbation

parameter δ = 0.05.
The numerical results at times T = 4, 6, 10 with N=64×64 and N=128×128 grid

points are presented in Figures 5.11 through 5.16 and 5.19 through 5.20. In order to
compare the quality of the results obtained with our new method to previous results,
we plot in Figures 5.17 and 5.18 the results obtained for the same double shear-
layer problem with the second-order central scheme proposed in [24]. Compared
with the second-order method, the new third-order method can resolve the large
gradients better. Since we are using only an essentially nonoscillatory reconstruction,
some oscillations are created with the third-order method (and not with the “fully”
nonoscillatory second-order method).

Finally, we solve the Navier–Stokes equations, (5.6)–(5.7) with ν = 0.01, aug-
mented with the “thick” shear-layer periodic initial data, (5.17).

The numerical results at time T = 10 with N =64 × 64 and N =128 × 128 grid
points are presented in Figures 5.21–5.24.

Acknowledgment. The authors would like to thank Professors S. Karni and R.
S. Krasny for helpful comments.
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Fig. 5.23. Incompressible Navier–Stokes equations; third-order method; T = 10, 64 × 64 grid.
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Fig. 5.24. Incompressible Navier–Stokes equations; third-order method; T = 10, 128 × 128 grid.
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