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Abstract

We propose and study a new variant of the Burgers equation with dissipation fluxes that saturate
as the gradients become unbounded. If the upstream-downstream transition is above a critical
threshold, the corresponding Riemann problem admits a weak solution wherein part of the
transit is accomplished by a jump. It is shown that the solution to a Cauchy problem with
sufficiently small compact or periodic initial data preserves its initial smoothness.c© 1997 John
Wiley & Sons, Inc.

1 Introduction

The model problem studied in this work,

ut + f(u)x = νQ(ux)x , ν > 0 ,(1.1)

is an attempt to advance our understanding of the interaction between non-
linear convection and nonlinear diffusion with a saturating dissipation flux.
The model problem (1.1) extends the Burgers equation in two ways;f(u) is
assumed to be an arbitrary smooth function and the flux functionQ(s) satisfies

|Q(s)| ≤ 1 , Q′(s) > 0 for all s; Q′(s)→ 0 as |s| → ∞ .(1.2)

Recall that in the Burgers equation, a toy model of the Navier-Stokes equa-
tions, the flux function is linear in gradients so that the response to a sharp
interface may become unbounded and fail to represent the physical reality. The
same difficulty occurs in the Navier-Stokes equations. The failure of a typical
continuum equation to describe faithfully high-gradient phenomena is due to
the fact that the derivation of a continuum model from a microscopic system
is based very explicitly on the assumption of small gradients. This is a typical
state of affairs in many equations of mathematical physics. Exactly when dif-
fusion is needed to counterbalance the steepening due to convection, diffusion
is least capable of reacting properly. The excessive amount of diffusion avail-
able at high gradients is an accidental by-product of the expansion in small
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gradients and bears no resemblance to the behavior of the original system in
the ultraviolet regime. The high-gradients falsetto is a direct consequence of
truncation that turns functional expansions into polynomials, and this brings
in the disastrous behavior at infinity. Clearly, postponing the truncation one
more order, as is so often done by physicists, not only does not improve the
overall response of the system, but in many cases replaces a poor model with
an ill-posed problem! In addition, a local expansion in gradients tends to elim-
inate important global constraints embedded in the original problem such as
the Hamiltonian structure or an upper bound on the speed of propagation.

When diffusion is based on linear flux-gradient relations, there is an im-
mediate response to a sharp interface accompanied by an infinite flux. It is
physically clear that the rate of growth of the flux function must be finite.
Depending on the problem at hand, different strategies have to be utilized to
achieve this goal. For instance, in dilute gases governed by the Boltzmann
equation, the moment (Chapman-Enskog) expansion, instead of being trun-
cated, is resumed approximately. In the resulting system transport coefficients
become wavelength dependent with heat and momentum fluxes that saturate at
short wavelengths [8]. In fast processes the conventional ordering that begets
the Navier-Stokes equations is replaced with a new ordering that places tem-
poral and spatial changes on an equal footing. This leads to a hyperbolic
diffusion with acoustic speed serving as a natural upper bound that tempers
the response of the system to large gradients.

The convection-dissipation model [10] studied in the present work is an
extension of the dissipation flux model proposed and analyzed in [9, 11]. A
typical flux function was found to be [9]

Q(s) =
s√

1 + s2
.

Equilibrium states constructed on the basis of such dissipation fluxes support
discontinuous interfaces [9]. It was found in [11] that it takes a finite time for
such a flux to resolve an initially imposed, perfectly sharp interface.

The model equation (1.1) is thus a natural candidate for studying the in-
teraction between saturating dissipation and convection. In particular, we ex-
amine when this interaction generates smooth patterns. It is demonstrated
in Section 2 that if the downstream state is below a critical threshold, the
upstream-downstream transition is smooth. However, above this threshold part
of the upstream-downstream transition must be accomplished via a discontinu-
ous jump. Such states will be referred to assupercritical. The critical threshold
is determined by the saturation level of the particular dissipation flux. We also
demonstrate numerically that both the continuous and discontinuous kink so-
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lutions are attractors. Kinklike initial states are seen to converge in time to
a kink solution. Its nature depends solely on the total upstream-downstream
disparity of the initial state.

In Section 3 and Section 4 we introduce a weak solution and consider
the Cauchy problem associated with (1.1) subject to periodic or compactly
supported initial datum

u(x, 0) = u0(x) .(1.3)

In Section 3 we prove the existence of the solution to the problem (1.1),
(1.3) by the vanishing viscosity method; that is, we consider the equation

uδt + f(uδ)x = νQ(uδx)x + δuδxx , δ > 0 ,(1.4)

with the same initial data (1.3). Its smooth solution depends on the (small)
parameterδ, and the solution of (1.1),(1.3) will be obtained as a limit ofuδ

by letting δ ↓ 0. This approach provides a convenient way to define weak
solutions to equation (1.1).

We also prove the uniqueness (Section 3) and the existence (Section 5)
of the smooth (classical) solution of (1.1) with a sufficiently small, smooth
initial datum. In this context it is necessary to call attention to a gap in our
understanding of the Cauchy problem, namely, while for a sufficiently small
and smooth initial datum we can ascertain the existence of a classical solution,
if condition (3.5) is violated, it is unclear whether the solution remains smooth
or steepens and breaks down within a finite or infinite time. This open status
of the Cauchy problem should be contrasted with our understanding of the
Riemann problem, where numerical experiments clearly indicate the emergence
of sub- and supercritical states (see Section 2). A complete proof of this fact
is still not available.

In Section 4 we consider equation (1.1) withν assumed to be a small
parameter,

uνt + f(uν)x = νQ(uνx)x , ν > 0 .(1.5)

We study the behavior of solutionsuν(x, t) of (1.5),(1.3) asν ↓ 0. We prove
that in this caseuν(x, t) converges to the entropy solution of the scalar con-
servation law

ut + f(u)x = 0(1.6)

with initial data (1.3). The proof is straightforward: We obtain an error es-
timate in theW−1(L∞)-norm, which also allows one to estimate the rate of
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convergence in theLp-norms. For2 ≤ p <∞ these estimates are better than
the estimates that were obtained for the standard vanishing viscosity approxi-
mation of (1.6),

ut + f(u)x = εuxx(1.7)

(see [12]). Thus if one considers (1.5) as a differential approximation of (1.6),
it is better than the usual vanishing viscosity approach. This is quantified more
precisely in Section 4.

2 Traveling Waves

Study of traveling waves provides perhaps the simplest way to examine the
convective-dissipative interaction. Throughout this section we letν = 1 and
f(u) = u2, and we begin withQ(s) = s/

√
1 + s2, that is,

ut + (u2)x =

[
ux√

1 + u2
x

]
x

,(2.1)

TheQ(s) used in (2.1) is typical of the flux functions we shall consider and
serves as a motivation to study the general case. Letu = 0 andu = u1 be the
upstream and downstream values, respectively, and letz = x− λt; then one
integration yields

−λu+ u2 =
uz√

1 + u2
z

,(2.2)

anduz vanishes atu = 0. For uz to vanish atu1 we needu1 = λ as well,
which relates the downstream amplitude with the speedλ of the wave. We
now re-express equation (2.2) in terms ofuz to obtain

u2
z =

u2(u− u1)2

1− u2(u− u1)2 .(2.3)

Equation (2.3) contains the needed information, for as long as the denominator
does not vanish, there is a continuous trajectory connecting upstream with
downstream. At the critical value ofλ = 2, the denominator vanishes atu = 1
and the profile has a vertical slope at this point. Forλ > 2, no continuous
upstream-downstream transit is possible; part of it must be accomplished via
a discontinuous jump. This is a genuine subshock layer. In this region, other
physical mechanisms that may otherwise be negligible become crucial. A
typical solution with a discontinuous jump is displayed in Figure 2.1.
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Figure 2.1. A supercritical downstream converges in time to a discontinuous kink. For com-
parison, a solution to the corresponding Burgers equation is also shown.

The total amount of the jump across the subshock is easily calculated and
found to be

[u] =
√
u2

1 − 4 .(2.4)

For downstream states close to the critical value, the subshock is weak but may
become arbitrarily large with a further increase in the value of the downstream
state.

Since in the purely diffusive problem (i.e.,f(u) = 0) the rate of saturation
was found to determine whether an initial discontinuity can be sustained for a
finite time [11], it is also of interest to examine the interaction between inertia
and an arbitrary saturating functionQ. To this end we reconsider problem (2.1)
using an arbitraryQ limited only by (1.2) and takef(u) = u2. As before, we
seek steadily progressing waves with upstream and downstream states being
u = 0 andu = u1, respectively. Againu1 = λ, but instead of (2.2), we obtain

−λu+ u2 = Q(uz) .(2.5)

To find the highest permissible speed that supports a continuous trajectory,
we note that the dissipative fluxQ is bounded, while the inertial flux (the LHS
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of (2.5)) is not. Balancing the two fluxes determines the largest permissible
wave speed. In equation (2.5) both fluxes assume a negative value; therefore
we compare their corresponding minima attained whenQ = Q0 andu = λ/2.
Consequently,−λ2/4 = Q0 implies

λ =
√
−4Q0 ,(2.6)

which provides the upper bound on the speed of continuous, progressing waves.
The actual amount of the jump in a supercritical state depends, of course, on
the particular choice ofQ.

Thus it is the saturation level of the flux function that matters most, with
the saturation details being of lesser importance. Note, however, that we also
need the flux function to be monotone to ensure stability. For if anywhere
Q′(s) < 0, convexity of the elliptic part is lost and instability may set in. This
depends on the details of the flux function [3].

We conclude this section with a number of numerical experiments intended
to demonstrate the role of the traveling solutions as attractors. It is convenient
to impose symmetric upstream-downstream states atu = ±u1 so that the
resulting traveling wave becomes stationary and thus easily traced numerically.
In Figures 2.1 and 2.2 we consider the supercritical and subcritical cases,
respectively, and demonstrate how the kink solution is approached in time by
an initially imposed kink. The supercritical and subcritical downstream states
in the figures are

√
5 and

√
5/10, respectively.

The same procedure is used in Figures 2.3 and 2.4, but now the initial datum
takes the form of a step function. The symmetric choice of the upstream and
downstream states dictates that instead of (2.4) the jump condition should be

[u] = 2
√
u2

1 − 1 .

On the basis of the examples above and many others, one concludes that
the ultimate outcome of the evolution depends only on whether the upstream-
downstream disparity of initial data is sub- or supercritical. Although we lack
a rigorous proof to quantify the supercritical affairs, numerical experiments
demonstrate very clearly that both subcritical and supercritical solutions emerge
as global attractors to wide classes of initial data. For comparison, we also
display the kink form of the analogous Burgers equation. The shape of the
resulting profile is very similar to the shape of the subcritical kink.

Remark. For the numerical studies of the subcritical cases we have used
a simple first-order Lax-Friedrichs-type difference scheme. However, in the
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Figure 2.2. A subcritical downstream state is shown to converge in time to a smooth kink
solution that for all practical purposes is indistinguishable from the solution of the corresponding
Burgers equation.
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Figure 2.3. The same as in Figure 2.1 but with a discontinuous initial datum.
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Figure 2.4. The same as in Figure 2.2 but with a discontinuous initial datum.

presence of the discontinuity, the first-order scheme does not provide sufficient
resolution of the shock. Therefore, in the supercritical case the numerical
solution was obtained using a second-order scheme based on a nonoscillatory
central difference scheme due to Nessyahu and Tadmor [6].

3 Weak and Classical Solutions

To define a weak solution of equation (1.1), we consider itsδ-regularization
(1.4). This is a strictly parabolic regularization (δ > 0) and consequently,
by standard arguments (which we omit), problem (1.4),(1.3) admits a unique
global classical solution. This brings us to the following definition:

DEFINITION 3.1 Letuδ be a solution of the regularized problem (1.4),(1.3).
Then we define aweak solutionof the problem (1.1),(1.3) aslimδ↓0 u

δ; that
is,

uδ
L1
−→ u asδ ↓ 0 .(3.1)

To validate this definition it is necessary to prove the existence of the limit
(3.1).
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THEOREM 3.2 Consider equation(1.4)subject toW 1(L1)-initial data, (1.3),
and assume that condition(1.2) holds. Then there exists a sequenceδn such
that δn ↓ 0 anduδn converges in theL1-norm asn→∞.

PROOF: We differentiate (1.4) with respect tox, then multiply bysgn(uδx)
and integrate over thex-domain. We obtain the following equation:∫

x

|uδx|tdx+
∫
x

f(uδ)xx sgn(uδx)dx

= ν

∫
x

Q(uδx)xx sgn(uδx)dx+ δ

∫
x

uδxxx sgn(uδx)dx .
(3.2)

The second term in the LHS of (3.2) is equal to zero, and its RHS is nonpositive
due to assumption (1.2). Hence,

‖uδx(·, t)‖L1 ≤ ||u′0(·)||L1 for all t > 0 .(3.3)

This means thatuδ ∈ W 1(L1(x)), which is compactly imbedded inL1(x).
Therefore Theorem 3.2 follows from compactness arguments.

Remark. Note that one can relax the assumption on the initial datum and
assume only itsL∞-boundedness.

We now study the question of existence and uniqueness of the smooth
(classical) solution of (1.1),(1.3). Uniqueness of the weak solution of (1.1),(1.3)
will be presented shortly.

THEOREM 3.3 Consider the problem(1.1),(1.3)with Q satisfying(1.2). Let
the range ofQ(s) be denoted by

Q : < −→ [a, b] ,(3.4)

wherea < 0 and b > 0. If u0(x) ∈ C3, and if it is sufficiently small so that

ν||Q(u′0)||L∞ + 2||f(u0)||L∞ ≤ α < ν ·min(−a, b) ,(3.5)

then there exists a unique global classical solution of(1.1),(1.3), u(x, t) ∈
C2,1(x, t).

Remark. It is a challenging task to understand what happens if condition
(3.5) does not hold. Let us rewrite equation (1.1) in the following nondivergent
form:

ut + f(u)x = νQ′(ux)uxx .(3.6)
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Recall thatQ′(s) > 0 for all s, andQ′(s) → 0 as |s| → ∞. Thus the
RHS of (3.6) is “almost" viscous, because it vanishes only as|ux| → ∞. To
understand the difficulty in analyzing the problem, we note that in our problem
the competition between dissipation and convection is far more intricate than,
say, the classical Burgers equation. The nonlinearity of the dissipative part
tends to induce a cascading effect; if, for any reason, convection is enhanced,
the resulting increase in gradients depresses dissipation, which in turn causes
a further increase of the gradients. Will smoothness be ultimately lost? And
if it is, will it occur in finite time?

PROOF: The existence of the classical solution will be shown in Section
5. We now turn to the uniqueness part of the theorem. Letu1(x, t) andu2(x, t)
be two classical solutions of equation (1.1) with the same initial data (1.3),
that is,

u1
t + f(u1)x = νQ(u1

x)x , u1(x, 0) = u0(x) ;(3.7)

u2
t + f(u2)x = νQ(u2

x)x , u2(x, 0) = u0(x) .(3.8)

Subtracting (3.8) from (3.7), we obtain thatu1(x, t) − u2(x, t) satisfies the
following equation:

(u1 − u2)t +
[
f(u1)− f(u2)

]
x

= ν
[
Q′(ξ) · (u1 − u2)x

]
x
,(3.9)

where

u1(x, 0)− u2(x, 0) ≡ 0(3.10)

and ξ = ξ(x, t) is betweenu1(x, t) andu2(x, t). Next we multiply (3.9) by
sgn(u1 − u2) and integrate overx. Then the positivity ofQ′ implies that for
all t

d

dt
||u1(·, t)− u2(·, t)||L1 ≤ 0 ,(3.11)

which in turn yields theL1-contraction of the solution operator for (1.1):

||u1(·, t)− u2(·, t)||L1 ≤ ||u1(·, 0)− u2(·, 0)||L1 .(3.12)

Hence, since by (3.10)u1(x, t) ≡ u2(x, t), the proof of Theorem 3.3 is com-
plete.

Remark. To prove (3.12) we used the technique established by Quinn [7].
In the same way theL1-contraction of the solution operator can be proved for
the regularized equation, (1.4).
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Finally, we return to the question of uniqueness of the weak solution of
(1.1),(1.3).

THEOREM 3.4 Assume that condition(1.2) holds. Then for allW 1(L∞)-
initial data (1.3) that satisfy(3.5), the weak solution of(1.1) is unique.

PROOF: We have defined the weak solution of (1.1),(1.3) as a limit of
uδn(x, t) asδn ↓ 0, whereuδn(x, t) are the solutions to the problem (1.4),(1.3)
with δ = δn.

Let us consider a smoothed initial datumu(x, 0) = uε0(x) where

uε0(x) ≡ u0 ∗ φε(x) .(3.13)

Hereφε(x) is a standard mollifier satisfying the following conditions:

φ ∈ C∞0 ; φ(x) > 0;
∫ 1

−1
φ(x)dx = 1 ;

suppφ ⊂ [−1, 1] ; φε(x) ≡ 1
ε
φ

(
x

ε

)
.

Note that theL∞-norms of bothu0(x) andu′0(x) do not increase after smooth-
ing. Therefore, by Theorem 3.3 there exists a unique classical solution of (1.4)
with theC∞ initial datum (3.13). We denote this solution byuε,δn . Obviously,
uε,δn → uε pointwise asδn ↓ 0. Hereuε is the solution of (1.1),(3.13).

Therefore, to conclude our proof it suffices to show that

||uδn − uε||L1 → 0 asε ↓ 0, δn ↓ 0 .(3.14)

We have

‖uδn − uε‖L1 = ‖uδn − uε,δn + uε,δn − uε‖L1

≤ ‖uδn − uε,δn‖L1 + ‖uε,δn − uε‖L1 .
(3.15)

The second term in the RHS of (3.15) converges to zero asδn ↓ 0, while the
first term, due to theL1-contraction of the solution operator of equation (1.4),
can be bounded as follows:

‖uδn − uε,δn‖L1 ≤ ‖u0 − uε0‖L1 = O(ε) .(3.16)

Hence we have shown that all converging sequencesuδn(x, t) tend to
the same limit,u(x, t), which is the unique weak solution of the problem
(1.1),(1.3).
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4 Convergence asν ↓ 0

As we mentioned earlier, the solution operator of equation (1.5) is anL1-
contraction and is thus monotone [1, lemma 3.2] andBV bounded; that is,

‖uν(·, t)‖BV ≤ ‖uν(·, 0)‖BV .(4.1)

THEOREM 4.1 Let condition (1.2) hold and letuν be a solution of (1.5)
subject toL∞-bounded initial conditionsuν(x, 0) ≡ u0(x). Thenuν converges
to the unique entropy solution of(1.6) as ν ↓ 0, and the following error
estimates hold for allt ≥ 0:

‖uν(·, t)− u(·, t)‖W−1(L∞) ≤ constt · ν ,(4.2)

‖uν(·, t)− u(·, t)‖Lp ≤ constt · ν1/p , ≤ p ≤ ∞ ,(4.3)

‖uν(·, t)− u(·, t)‖L1 ≤ constt ·
√
ν .(4.4)

PROOF: Let U(x, t) ≡
∫ x u(x, t)dx andUν(x, t) ≡

∫ x uν(x, t)dx denote
the primitives of solutions of (1.6) and (1.5), respectively. Then they satisfy
the following two equations:

Uνt + f(Uνx ) = νQ(Uνxx) ,(4.5)

Ut + f(Ux) = 0 .(4.6)

Subtracting (4.6) from (4.5) and denoting byE(x, t) the error Uν(x, t) −
U(x, t), we obtain

Et + f ′
(
ξ(x, t)

)
· Ex = νQ(Uνxx) ,(4.7)

whereξ(x, t) is betweenUν(x, t) andU(x, t). It follows from (4.7) and (1.2)
that

−ν ≤ Et + f ′(ξ)Ex ≤ ν ,
and hence

‖E(·, t)‖L∞ ≤ ‖E(·, 0)‖L∞ + constt · ν .
Sinceuν(x, 0) ≡ u0(x), the last inequality implies (4.2).

Finally, interpolating between theW−1(L∞)-error estimate, (4.2), and the
BV -boundedness of the error (which follows from (4.1) and the well-known
BV -boundedness of the entropy solution of (1.6)), we are able to convert the
weak error estimate (4.2) into a strong one, (4.3) (e.g., [2, theorem 9.3]). Since
this estimate does not hold forp = 1, theL1-estimate (4.4) has to be deduced
using an interpolation betweenW−1(L1)- andBV -spaces (in fact, all error
estimates of (1.7) were derived in [5, 12] in this manner). This concludes the
proof of Theorem 4.1.
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Remarks.

1. For equation (1.7) the following error estimates were shown by Nessyahu
and Tadmor [5, 12]:

‖e‖W−1(L∞) ≤ Ct ·
√
ε , ‖e‖W−1(L1) ≤ Ct · ε , ‖e‖Lp ≤ Ct · ε1/2p ,

wheree(x, t) denotes the difference between the solutions of (1.7) and
(1.6). Our differential approximation (1.5) enables us to derive better
estimates in theW−1(L∞)- andLp-norms (p > 1). However, insofar
as theW−1(L1)- , L1-, andL∞-norms are concerned, our estimates are
the same as the ones derived for the vanishing viscosity approximation
(1.7).

2. Unlike the standard vanishing viscosity model [5, 12], all our error es-
timates apply to any smoothf(u), not necessarily convex.

5 Existence of the Classical Solution

In this section we demonstrate the existence of the classical solution of the
problem (1.1),(1.3) and thus complete the proof of Theorem 3.3. Again con-
sider the regularized viscosity initial value problem, (1.4),(1.3), that admits a
unique global classical solution. To derive a weak solution of the nonviscous
problem, (1.1),(1.3), defined as aL1-limit of the sequenceuδn , we assume
adequately small and smooth initial data (3.5). We then demonstrate that this
solution is smooth and satisfies (1.1) in the classical sense.

First, we note that equation (1.4) is parabolic and hence its solution satisfies
the maximum principle (e.g., [4]), that is,

|uδ(x, t)| ≤ ‖u0‖L∞ , t ≥ 0 .(5.1)

We now turn to the major part of the proof and show a uniform boundedness
of |uδx| for small δ’s. To this end we rewrite (1.4) as

uδt = zx ,(5.2)

where

z := νQ(uδx) + δuδx − f(uδ) .(5.3)

Differentiating (5.3) with respect tot and using (5.2), we obtain the following
parabolic equation:

zt = νQ′(uδx)zxx + δzxx − f ′(uδ)zx .(5.4)
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Its solution,z(x, t), satisfies a maximum principle:

|νQ(uδx(x, t)) + δuδx(x, t)− f(uδ(x, t))|
≤ ‖νQ(u′0) + δu′0 − f(u0)‖L∞ , t ≥ 0 .

(5.5)

Due to the boundedness ofuδ, (5.1), and the smoothness off and u0, one
deduces that forδ sufficiently small so that

α+ δ‖u0‖L∞ ≤ β < ν ·min(−a, b) ,

the inequalities (5.5) and (3.5) imply

|νQ(uδx(x, t)) + δuδx(x, t)| ≤ β , t ≥ 0 .(5.6)

Using the monotonicity ofQ, we apply its inverse to (5.6) and conclude that

|uδx(x, t)| ≤ const , t ≥ 0 ,(5.7)

whereconst = Q−1(β) does not depend onδ. This is the desired estimate of
|uδx|.

Remark. A similar estimate holds for the Riemann problem and can be
used toward a partial explanation of the sub- and supercritical solutions.

Equipped with the estimate (5.7) we now turn to proving the uniform bound-
edness ofuδt anduδxx. We differentiate (1.4) with respect tot and then denote
w := uδt to obtain

wt + f ′′(uδ)uδxw + f ′(uδ)wx
= νQ′′(uδx)uδxxwx + νQ′(uδx)wxx + δwxx .

(5.8)

This is a parabolic equation. As we have shown earlier, the coefficient ofw,
f ′′(uδ)uδx, is uniformly bounded. Therefore, the maximum principle for (5.8)
gives the following estimate:

|uδt (x, t)| ≤ constT , 0 ≤ t ≤ T ,(5.9)

whereconstT = eCT ‖uδt (·, 0)‖L∞ andC is a constant that depends on‖u0‖L∞
and‖u′0‖L∞ but not onδ. Note that‖uδt (·, 0)‖L∞ is bounded since the initial
condition is assumed to be smooth and since

uδt (x, 0) = νQ′(u′0(x))u′′0(x) + δu′′0(x)− f ′(u0(x))u′0(x) .
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Next, the estimate (5.7) implies thatQ′(uδx) is bounded away from zero,
that is,Q′(uδx) ≥ K > 0, whereK is independent ofδ. Consequently, from
(1.4) we obtain the following estimate:

|uδxx| ≤
|uδt |+ |f ′(uδ)uδx|

K
,(5.10)

which implies a uniform boundedness of|uδxx|.

We now recall that in Theorem 3.2 we showed the existence of a sequence
uδn such that

uδn(x, t) L1
−→ u(x, t) .(5.11)

Due to the uniform boundedness ofuδ, uδx, anduδt , theL1-convergence ofuδn

implies a pointwise convergence. In addition, there exists a subsequence also
denoted byuδn that converges tou uniformly. Moreover,u, ux, ut, anduxx
are also bounded, and therefore in order to conclude thatu(x, t) ∈ C2,1(x, t),
it suffices to show thatuxx ∈W 1(L2(x)).

To this end we differentiate (1.4) three times with respect tox, then multiply
by uδxxx and integrate over thex-domain. Integrating by parts and taking into
account the estimates (5.7), (5.9), and (5.10), we obtain:

d

dt
‖uδxxx‖

2
L2(x) ≤ K1‖uδxxx‖

2
L2(x) +K2 − 2δ‖uδxxxx‖

2
L2(x)

− 2
∫
x

Q′(uδx)(uδxxxx)2dx+ 18
∫
x

∣∣∣Q′′(uδx)uδxxu
δ
xxxu

δ
xxxx

∣∣∣ dx ,(5.12)

whereK1 andK2 are constants that depend only on the initial data andT .
The last term in the RHS of (5.12) can be estimated as follows:

18
∫
x

∣∣∣Q′′(uδx)uδxxu
δ
xxxu

δ
xxxx

∣∣∣ dx
≤ 9K3 ·

(
1
ε2 ‖u

δ
xxx‖

2
L2(x) + ε2‖uδxxxx‖

2
L2(x)

)
.

(5.13)

Here K3 = ‖Q′′(uδx)uδxx‖L∞ and ε is an arbitrary number. Consequently,
taking ε such that

9K3ε
2 ≤ 2‖Q′(uδx)‖L∞ ,

we can estimate the RHS of (5.12) and obtain a differential inequality,

d

dt
‖uδxxx‖

2
L2(x) ≤ K4‖uδxxx‖

2
L2(x) +K2 ,(5.14)
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whereK4 still depends on the initial data andT but does not depend onδ.
Thus, (5.14) implies the uniform boundedness of‖uδxxx‖L2(x), which in turn

yields the desiredW 1(L2(x))-boundedness ofuxx.
To prove thatu(x, t) is a classical solution of (1.1), we multiply the “vis-

cous" equation (1.4) by a smooth, compactly supported test functionϕ(x, t) ∈
C2,1

0 (x, t) and integrate it with respect tox and t. Integrating by parts, we
obtain

T∫
t=0

∫
x

{
uδnϕt + f(uδn)ϕx

}
dx dt

= ν

T∫
t=0

∫
x

Q(uδnx )ϕx dx dt− δ
T∫

t=0

∫
x

uδnϕxx dx dt .

(5.15)

We now pass to the limit in (5.15) asδn ↓ 0. The uniform convergence ofuδn

to u implies that

T∫
t=0

∫
x

{
uδnϕt + f(uδn)ϕx

}
dx dt

δn↓0−−−→
T∫

t=0

∫
x

{
uϕt + f(u)ϕx

}
dx dt ,

(5.16)

and

δ

T∫
t=0

∫
x

uδnϕxx dx dt
δn↓0−−−→ 0 .(5.17)

It remains to find the limit of the first term in the RHS of (5.15). To this
end, since we have already shown theL∞-boundedness ofuδxx, (5.10), it is
enough to estimateuδxt. We differentiate (1.4) with respect tox andt, multiply
by sgn(uδxt), and integrate over thex-domain. We obtain

d

dt
‖uδxt‖L1(x) +

∫
x

f(uδ)xxt sgn(uδxt)dx

= ν

∫
x

Q(uδx)xxt sgn(uδxt)dx+ δ

∫
x

uδxxxt sgn(uδxt)dx .
(5.18)
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For the second term in the LHS of (5.18) we have,∫
x

(
f ′′(uδ)uδxu

δ
t + f ′(uδ)uδxt

)
x

sgn(uδxt)dx

=
∫
x

[
f ′′′(uδ)(uδx)

2
uδt + f ′′(uδ)uδxxu

δ
t + f ′′(uδ)uδxu

δ
xt

]
sgn(uδxt)dx .

Hence, due to theL∞-boundedness ofuδ, uδt , u
δ
x, anduδxx, it can be estimated

as ∣∣∣∣ ∫
x

f(uδ)xxt sgn(uδxt)dx
∣∣∣∣ ≤ C1‖uδxt‖L1(x) + C2 ,(5.19)

where the constantsC1 andC2 depend on the initial data andT . The second
term in the RHS of (5.18) is clearly nonpositive. Finally, the first term in the
RHS of (5.18) is equal to∫

x

(
Q′′(uδx)uδxxu

δ
xt +Q′(uδ)uδxxt

)
x

sgn(uδxt)dx

=
∫
x

(
Q′(uδ)uδxxt

)
x

sgn(uδxt)dx ,

and, consequently, it is also nonpositive because of our assumption (1.2).
Thus, from (5.18) we obtain the following differential inequality:

d

dt
‖uδxt‖L1(x) ≤ C1‖uδxt‖L1(x) + C2 .(5.20)

Its solution integrated over(0, T ) yields the desiredL1-estimate,

‖uδxt‖L1(x,t) ≤ constT , 0 ≤ t ≤ T ,(5.21)

whereconstT depends on‖u0‖L∞ , ‖u′0‖L∞ , ‖u′′0‖L∞ , T , ‖uδxt(·, 0)‖L1 , and
the measure of thex-domain, which is assumed to be finite. Note that the
boundedness of‖uδxt(·, 0)‖L1 follows from the assumption that the initial data
is in C3 and from equation (1.4), which after differentiation with respect tox
yields

uδxt =− f ′′(uδ)(uδx)
2 − f ′(uδ)uδxx

+ ν
[
Q′′(uδx)(uδxx)

2
+Q′(uδx)uδxxx

]
+ δuδxxx .
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In conclusion, the estimates (5.10) and (5.21) imply that

uδx ∈W 1(L1(x, t)) ,

which is compactly imbedded inL1(x, t). Consequently, there exists a subse-
quence ofuδn (also denoted byuδn) such that

uδnx
L1
−→ ux .(5.22)

Therefore, due to the uniform boundedness ofuδx and smoothness ofQ, we
may pass to the limit in the first term in the RHS of (5.15), obtaining

ν

T∫
t=0

∫
x

Q(uδnx )ϕx dx dt
δn↓0−−−→ ν

T∫
t=0

∫
x

Q(ux)ϕx dx dt .(5.23)

Finally, combining (5.16), (5.17), and (5.23) we conclude that, for any test
function ϕ(x, t), the limit functionu(x, t) satisfies the nonviscous equation
(1.1) in the integral sense:

T∫
t=0

∫
x

{uϕt + f(u)ϕx} dx dt = ν

T∫
t=0

∫
x

Q(ux)ϕx dx dt .(5.24)

But as we have shown earlier,u(x, t) ∈ C2,1(x, t). Combined with (5.24) this
means thatu(x, t) is a classical solution of the problem (1.1),(1.3). The proof
of Theorem 3.3 is thus completed.
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