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ABSTRACT. We discuss applications of semi-discrete central schemes for systems of

balance laws. We distinguish between two generic cases of sti� and nonsti� source

terms. In the nonsti� case, the main advantage of semi-discrete central schemes is

their universality. Since no (approximate) Riemann problem solver or characteristic

�eld decomposition is involved, no operator splitting is required. It allows one to elim-

inate splitting errors, which may be very signi�cant, especially for quasi-stationary

solutions. In the sti� case, operator splitting or an implicit-explicit ODE solver has

to be implemented in order to preserve eÆciency of the scheme. Our numerical ex-

periments demonstrate that the designed method, based on the semi-discrete central

scheme from [KUR 00a], performs extremely well in both regimes.
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1. Introduction

We consider the one-dimensional (1-D) system of balance laws,

ut + f(u)x =
1

"
S(u; x; t); u 2 RN ; " > 0; [1]

subject to the initial data, u(x; 0) = u0(x). Balance laws arise in several hy-
drodynamical models (including shallow water equations), gravitational ows,
multi-phase models, chemotaxis models and other applications. If the param-
eter " << 1, the source term is sti�, and the system [1] is of relaxation type.
Sti� balance laws are of a special interest, since they are used to model reacting
ows, combustion, detonation, absorption, semiconductors, magnetohydrody-
namics, traÆc ows, and many other phenomena.
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In this paper, we study �nite-volume methods for balance laws. In particu-
lar, we focus on Godunov-type central schemes, which are not tied to a special
eigenstructure of the problem, and therefore can be used as a \black-box-solver"
for complicated systems. The prototype of Godunov-type central schemes is
the �rst-order Lax-Friedrichs scheme [LAX 71]. Its staggered second-order
generalization was proposed in [NES 90]. For higher-order extensions of the
staggered central schemes we refer the reader to [LEV 00] and the references
therein.

The major drawback of staggered central schemes is their relatively large
numerical dissipation, which can be decreased when (one-sided) local speeds of
propagation are utilized for more precise estimate of the width of the Riemann
fans. This leads to nonstaggered central schemes, developed in [KUR 00b,
KUR 01, KUR 00a] for homogeneous conservation laws. It should be no-
ticed that unlike the staggered central schemes, these new schemes admit a
particularly simple semi-discrete form, briey described in x2. This feature is
especially advantageous when the central schemes are applied to convection-
di�usion equations, [KUR 00b, KUR 01], or nonsti� balance laws, [KUR 02],
since no operator splitting is required in these cases.

The paper is focused on the application of semi-discrete central schemes
to hyperbolic systems with relaxation. As a test-problem, which admits both
sti� and nonsti� regimes, the Broadwell model [BRO 64] is considered. It is
quite a challenging task to design a numerical method, which is capable to treat
both regimes of the model eÆciently and accurately (see [CAF 97]). Staggered
central schemes for the Broadwell model, which achieve this goal, have been
recently introduced in [LIO 00, PAR 02a]. The nonstaggered semi-discrete
framework, however, is much more convenient than the fully-discrete staggered
one, especially in the sti� case. In x3, we design a second-order semi-discrete
scheme for the Broadwell model. The numerical experiments, presented in x4,
con�rm a very high resolution of the proposed method.

2. Semi-discrete central schemes { a brief overview

In this section we give a brief description of the semi-discrete central schemes,
developed in [KUR 00b, KUR 01, KUR 00a, KUR 02].

We �rst introduce a uniform spatial grid, x� = ��x. The integration of
system [1] over the control volume Ij := [xj� 1

2
; xj+ 1

2
] results in an equivalent

semi-discrete form of [1],

d

dt
�uj(t) +

f
�
u(xj+ 1

2
; t)
�
� f

�
u(xj� 1

2
; t)
�

�x
=

1

"�x

x
j+ 1

2Z
x
j� 1

2

S
�
u(x; t); x; t

�
dx; [2]
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where �uj(t) denotes the cell average over Ij , �uj(t) :=
1

�x

R
Ij
u(x; t) dx: Semi-

discrete �nite-volume schemes are then obtained by approximating the uxes
at xj� 1

2
, and by the application of an appropriate quadrature for computing

the source average, �Sj(t), on the right-hand side of [2]:

d

dt
�uj(t) = �

Hj+ 1
2
(t)�Hj� 1

2
(t)

�x
+

1

"
�Sj(t); [3]

where Hj+ 1
2
is a numerical ux.

In this paper, we use a family of central-upwind schemes from [KUR 00a],
whose numerical uxes can be presented in the following form,

Hj+ 1
2
(t) =

a+
j+ 1

2

f(u�
j+ 1

2

)� a�
j+ 1

2

f(u+
j+ 1

2

)

a+
j+ 1

2

� a�
j+ 1

2

+a+
j+ 1

2

a�
j+ 1

2

"
u+
j+ 1

2

� u�
j+ 1

2

a+
j+ 1

2

� a�
j+ 1

2

�
qj+ 1

2

2

#
:

[4]
Here, u�

j+ 1
2

:= pj+ 1
2
�
1
2
(xj+ 1

2
) are the intermediate values of the piecewise poly-

nomial interpolant,
P

j pj(x; t)�j , reconstructed at each time step from the
previously computed cell averages, f�uj(t)g. The functions fpj(�; t)g are poly-
nomials of a given degree, and �j is the characteristic function of the interval
Ij .

The one-sided local speeds of propagation, a�
j+ 1

2

, are determined by

a+
j+ 1

2

= max

�
�N

�@f
@u

(u�
j+ 1

2

)
�
; �N

�@f
@u

(u+
j+ 1

2

)
�
; 0

�
;

a�
j+ 1

2

= min

�
�1

�@f
@u

(u�
j+ 1

2

)
�
; �1

�@f
@u

(u+
j+ 1

2

)
�
; 0

�
; [5]

with �1 < : : : < �N being the N eigenvalues of the Jacobian @f=@u.

Finally, qj+ 1
2
:= q(u�

j+ 1
2

; a�
j+ 1

2

) represents an additional degree of freedom,

which may be used to further decrease the numerical dissipation, attributed to
the original central-upwind scheme from [KUR 01], where qj+ 1

2
was set to be

zero. We refer the reader to [KUR 00a] for details.

Remark. |We would like to emphasize that one of the main advantages of the
above semi-discrete central scheme is its simplicity and universality. Indeed,
the 1-D system of balance laws can be solved component-wise since no (ap-
proximate) Riemann problem solvers were utilized. Moreover, this allows one
to use the scheme [3]{[5] without operator splitting. For example, in [KUR 02],
such unsplit scheme (with qj+ 1

2
= 0) was applied to the Saint-Venant system

of shallow water equations [SAI 1871] with the source term due to the nonat
bottom elevation. The most delicate point in this application was to preserve
a balance between the ux gradients and the source term, when the solution is
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quasi-stationary. This was achieved by the use of a special quadrature for the
source average in [3], see [KUR 02] for details.

Remark. | The (formal) order of the numerical ux [4] is determined by the
(formal) order of a piecewise linear reconstruction used in the computation of
the intermediate values. The non-oscillatory nature of the computed solution
is typically guaranteed by using a non-oscillatory reconstruction. In this paper,
we use the two-parameter family of piecewise linear, second-order reconstruc-
tions from [LIE 02].

Remark. | The semi-discrete scheme [3]{[5] forms a system of ODEs, which
should be solved by a stable ODE solver of an appropriate order. When the
system [1] in nonsti�, explicit methods can be eÆciently used. The situation
is much more delicate for sti� systems, in which case explicit methods may be
ineÆcient. Alternative implicit approaches are discussed below.

3. Sti� problems: the Broadwell model

In this section, we design a second-order semi-discrete central scheme for sti�
systems of balance laws (" << 1). As an example, we consider the Broadwell
model, [BRO 64], that describes a two-dimensional (2-D) gas as composed of
particles of only four velocities with a binary collision law and spatial variation
in only one direction. When looking for 1-D solutions of the 2-D gas, the
evolution equations of the model are given by

8>>>><
>>>>:

ft + fx =
1

"
(h2 � fg);

ht = �
1

"
(h2 � fg);

gt � gx =
1

"
(h2 � fg);

[6]

where " is the mean free path, f; h; and g denote the mass densities of gas
particles with speeds 1,0, and �1 respectively.

The uid dynamics variables are density, � := f + 2h+ g, and momentum,
m := f � g. We also de�ne z := f + g, and rewrite system [6] in the equivalent
form as,

8><
>:

�t +mx = 0;
mt + zx = 0;

zt +mx =
1

2"
(�2 +m2 � 2�z):

[7]
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If "! 0, z is given by a local Maxwellian distribution, z = (�2 +m2)=2�, and
in the limit system [7] becomes the following model Euler equations,8<

:
�t + (�v)x = 0;

(�v)t +
��+ �v2

2

�
x
= 0;

with velocity v := m=�.

Our goal is to construct a semi-discrete central scheme for system [7] that
will perform in the sti� case (" � 0) as good as in the nonsti� one (" = O(1)).
The scheme [3]{[5] can be applied directly. The hyperbolic part of the system
is linear, and therefore the local speeds are a�

j+ 1
2

= �1 for all j. The numerical

ux [4] is then reduced to

Hj+ 1
2
(t) =

f(u+
j+ 1

2

) + f(u�
j+ 1

2

)

2
�

1

2

h
(u+

j+ 1
2

� u�
j+ 1

2

)� qj+ 1
2

i
;

where u = (�;m; z)T . Since all the �elds are linear, we may take qj+ 1
2
=

(u+
j+ 1

2

� u�
j+ 1

2

)=2 without risking oscillations (see [KUR 00a] for details). The

resulting ux is then given by

Hj+ 1
2
(t) =

f(u+
j+ 1

2

) + f(u�
j+ 1

2

)

2
�

1

4

h
u+
j+ 1

2

� u�
j+ 1

2

i
: [8]

Finally, the spatial source average, �S(t), in [3] is computed using the midpoint
quadrature.

As a result of the semi-discretization [3],[8], we obtain a system of ODEs,
needed to be solved by a stable and accurate ODE solver. The eÆciency of the
method can be ensured if one uses an implicit-explicit Runge-Kutta-type solver
(see [ASC 75, PAR 02b]). An alternative approach, realized in the numerical
experiments, is to use the second-order Strang operator splitting, [STR 68]:
we treat the hyperbolic and the relaxation parts of [3] separately. A second-
order modi�ed Euler method is used for the hyperbolic evolution, while the
sti� relaxation is resolved using the �fth-order implicit RADAU5 solver from
[HAI 96].

4. Numerical experiments

We solve the Broadwell model in the uid dynamics variables, [7], by the
method described in x3. The Riemann initial data, taken from [CAF 97], are

(�;m; z) = (2; 1; 1); for x < 0:2;
(�;m; z) = (1; 0:13962; 1); for x > 0:2:

[9]
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We test two versions of the semi-discrete schemes (abbreviated by SD1 and
SD2). The only di�erence between them is in the reconstruction of the inter-
mediate values u�

j+ 1
2

, required by the ux, [8]. The SD1 scheme employs the

second-order UNO reconstruction ([HAR 87, NES 90]), applied to the uid
dynamics variables, �;m, and z. To improve the resolution of contact waves,
we perform a piecewise linear reconstruction in the original, characteristic vari-
ables, f; h, and g (it is important that all the three �elds are linear), as it was
suggested in [KUR 00a]. In addition, we use a very compressive limiter from
[LIE 02], where the two-parameter family of piecewise linear reconstructions
is introduced. The SD2 scheme corresponds to the most compressive choice of
these parameters (� = 2 and � = �0:25), see [LIE 02] for details.

Remark. | The use of the compressive limiters does not provide a satisfac-
tory solution, if they applied to the uid dynamics variables. In this case, the
computed solutions (not presented in this paper) are overcompressed.

In Figures 1a{c, we present the solutions of [7],[9], computed by the SD1
and SD2 schemes in three di�erent regimes: nonsti� (" = 1), sti� (" = 10�8),
and the intermediate one (where " = 0:02 is proportional to �x). The reference
solution is computed by the SD2 scheme with 4000 grid points. As one can see
in Figure 1a, SD2 provides much sharper resolution of the contact discontinuity.
The solutions obtained by the SD1 scheme are not shown in Figures 1b and 1c,
since they look very similar to the solutions obtained by SD2.

In Figure 1d, we show the numerical solutions of [7] subject to the di�erent
initial data, taken from [CAF 97] as well (we set " = 10�8),

(�;m; z) = (1; 0; 1); for x < 0:5;
(�;m; z) = (0:2; 0; 1); for x > 0:5:

[10]

In this case, the SD2 scheme overcompresses the rarefaction wave (when a large
number of grid points is used). Therefore, the reference solution is computed
by the SD1 scheme. At the same time, when a small number of grid points is
used, the SD2 scheme resolves the rarefaction wave much better than SD1.
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