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Abstract. Staggered grid finite volume methods (also called central schemes) were introduced in
one dimension by Nessyahu and Tadmor in 1990 in order to avoid the necessity of having information
on solutions of Riemann problems for the evaluation of numerical fluxes. We consider the general case
in multidimensions and on general staggered grids which have to satisfy only an overlap assumption.
We interpret the staggered Lax–Friedrichs scheme as a three-step method consisting of a prolongation
step onto a finer intersection grid , a finite volume step with an arbitrarily good numerical flux (e.g.,
Godunov flux) on the intersection grid , followed by an averaging step such that the calculation of
numerical fluxes reduces to evaluations of the continuous flux. Using this point of view, we prove an
a posteriori error estimate and an a priori error estimate in the L1-norm in space and time which is
of order h1/4, where h is a mesh-size parameter. Hence, we recover for the staggered Lax–Friedrichs
scheme the same order of convergence as for upwind finite volume methods on a fixed grid.
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1. Introduction. In this paper we prove an a priori and an a posteriori error
estimate for the first order Lax–Friedrichs scheme on general staggered grids for scalar
multidimensional conservation laws.

Staggered finite volume schemes were introduced by Nessyahu and Tadmor in 1990
[19]. The main advantage of these schemes is that no information about solutions to
local Riemann problems is needed. Using staggered grids one can replace the upwind
fluxes with central differences. The price one has to pay is the occurrence of excessive
numerical viscosity since the resulting scheme can be interpreted as a Lax–Friedrichs
scheme. Therefore, a higher order scheme of MUSCL type in one spatial dimension
is proposed in [19]. Numerical experiments in [19] show the good performance of the
algorithm. Later, in [2, 4] the central schemes (of second order) have been generalized
to multidimensional schemes on unstructured grids and in [13, 2] on two-dimensional
tensor product structured grids. In [4] a primal and a dual mesh are used with time
evolution performed alternately on either of both meshes.

Convergence of finite volume schemes on a fixed grid has been proven in [7, 16, 5].
In the case of staggered unstructured grids in multidimensions, there exist only a few
convergence results. In [3] convergence of a second order central scheme on special
two-dimensional grids has been proven for a linear conservation law. Convergence of
the first order Lax–Friedrichs scheme on the same special staggered grids for nonlinear
scalar problems has been proven in [11].

We prove an a priori and a posteriori error estimate on general staggered grids
for the first order Lax–Friedrichs scheme for scalar nonlinear problems in any spatial
dimension; see Theorems 3.3 and 3.5. We allow that at each time step one may have
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a new grid. The only additional condition on the sequence of staggered grids which
we need is an overlap assumption of consecutive grids; see Assumption 3.1.

Our main idea for proving the error estimates is to reinterpret the Lax–Friedrichs
scheme on staggered grids such that the error analysis, which is known in the case of
a fixed grid, can be used and modified; see Definition 2.14.

In order to perform a time evolution we need to construct a relationship between
two grids: the grid at the actual time level and the grid at the next level. A natural
candidate for this job is the intersection grid. Then, the staggered Lax–Friedrichs
scheme can be decomposed into three steps: a prolongation step of the actual values
to values on the intersection grid; a time evolution step on the intersection grid
with an arbitrary numerical flux, e.g., the Godunov flux (which has to be consistent,
conservative, monotone, and Lipschitz; see Assumption 2.5); and an averaging step
from the intersection grid to the grid on the next time level. Our point is that due
to the properties of the numerical flux (conservation and consistency) and, thanks to
the overlap condition on two consecutive grids, the overall scheme (consisting of the
three steps described above) reduces to the staggered Lax–Friedrichs scheme.

The technique for proving error estimates for nonlinear hyperbolic equations is
quite old and goes back to Kruzkov [17] and Kuznetsov [18], where entropy inequalities
are used to establish error estimates. We employ this technique as well, as it is
formulated in [8] and [5]. Our a posteriori error estimate is given in the spirit of
Kröner and Ohlberger [15] which takes into account the domain of dependence of
the error. In that sense, the error estimate is local . In [15] an adaptive strategy is
developed which can be easily generalized to the situation we consider here.

We want to mention that one can return to nonstaggered grids from staggered
grids, retaining the simplicity of the central schemes, by using a projection step; see
[19, 12]. The error analysis of these schemes, as well as the error analysis of higher
order schemes on staggered grids, constitutes the subject of further ongoing research.

The paper is organized as follows. In section 2 we formulate the problem and
introduce the finite volume discretization on a fixed grid and on staggered grids to
show the analogy and difference between these two approaches. In section 3 we state
our a priori and a posteriori error estimates and give our ideas of how to prove these
results. The rest of the paper is devoted to the proofs.

2. Finite volume discretization on staggered grids. In this section we
present our model problem. Then, we define the finite volume scheme on a fixed
mesh and on staggered meshes. Finally, we give a reinterpretation of the scheme on
staggered meshes and link both methods.

2.1. Continuous problem. We consider the following nonlinear scalar hyper-
bolic conservation law with some initial condition:{

∂tu(x, t) + divF (x, t, u(x, t)) = 0, (x, t) ∈ R
d × R

+,

u(x, 0) = u0(x), x ∈ R
d,

(2.1)

where F : R
d × R

+ × R → R
d, d ≥ 1, (x, t, s) �→ F (x, t, s).

We make the following assumptions about the data.
Assumption 2.1.
1. u0 ∈ L∞(Rd) ∩BVloc(R

d) with Um ≤ u0 ≤ UM almost everywhere.
2. F ∈ C1(Rd×R

+×R;Rd), (x, t, s) �→ F (x, t, s) and ∂F/∂s is locally Lipschitz
continuous.

3. divxF (x, t, s) =
∑d
i=1 ∂xiF (x, t, s) = 0 for all (x, t, s) ∈ R

d × R
+ × R.
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4. For all compact K ⊂ R there exists a constant 0 < VK < +∞ such that∣∣∣∣∂F∂s (x, t, s)
∣∣∣∣ ≤ VK for almost all (x, t, s) ∈ R

d × R
+ ×K.

Definition 2.2. We say that u ∈ L∞(Rd×]0,∞[) is an entropy weak solution
to (2.1) if for all κ ∈ R and all ϕ ∈ C1

0 (R
d × R

+;R+)∫
Rd×R+

{
|u(x, t)− κ|∂tϕ(x, t) + [F (x, t, u(x, t)�κ)− F (x, t, u(x, t)⊥κ)]∇ϕ(x, t)

}
dtdx

+

∫
Rd

|u0(x)− κ|ϕ(x, 0)dx ≥ 0(2.2)

holds, where a�b := max{a, b} and a⊥b := min{a, b}.
Existence and uniqueness of entropy weak solutions to (2.1) have been proven by

Kruzkov in 1970 under somewhat stronger assumptions [17]. A proof for the case of
Assumption 2.1 can be found in [5, Thm. 2].

2.2. Finite volume discretization on a fixed grid. Let T = (Ti)i∈I , I ⊂ N,
be a partition of R

d consisting of polygonal cells and any common (d−1)-dimensional
interface of two cells lies in a hyperplane.

Notation 2.3.
• For i ∈ I let N(i) denote the set of all indices j ∈ I of cells having a common

interface of dimension d− 1 with Ti.
• For i ∈ I and j ∈ N(i) let Sij denote the common interface and nij the unit

outer normal to Sij with respect to Ti.
This notation is illustrated in Figure 2.1 for the two-dimensional case (d = 2).

Ti

Tj

Sij

Fig. 2.1. Illustration of Notation 2.3.

The time axis R
+ is partitioned into intervals [tn, tn+1[ of length kn := tn+1 − tn.

The idea of finite volume schemes is to integrate the partial differential equation in
(2.1) over a cell Ti and to apply Gauss’s formula. The resulting integrals have to be
approximated. For more details we refer to the book of Kröner [14, p. 158].

The first order finite volume scheme is defined as follows.
Definition 2.4 (first order finite volume scheme). Let i ∈ I and n ∈ N. Then

u0
i :=

1

|Ti|
∫
Ti

u0(x)dx,(2.3)

un+1
i := uni −

kn

|Ti|
∑
j∈N(i)

gnij(u
n
i , u

n
j ),(2.4)

and

uh(x, t) := u
n
i for tn ≤ t < tn+1 and x ∈ Ti.(2.5)
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Here, gnij denotes a so-called numerical flux which is supposed to lie in C0(R2;R),
where i ∈ I, j ∈ N(i), n ∈ N.

In order to prove error estimates between uh, defined in (2.5), and the entropy
solution to (2.1), one needs the following assumptions on the mesh and the numerical
fluxes gnij .

Assumption 2.5.
1. The mesh T has to satisfy the following assumption: There exists α > 0

(regularity of the mesh) such that for all i ∈ I

αhdi ≤ |Ti|,
|∂Ti| ≤ 1

α
hd−1
i ,

where hi := diam(Ti). Set

h := max
i∈I

hi.

2. The numerical fluxes gnij ∈ C0(R2;R) with i ∈ I, j ∈ N(i), n ∈ N, have to
satisfy the following properties:
(a) (monotony) gnij is nondecreasing with respect to its first argument and

nondecreasing with respect to its second argument.
(b) (conservation)

gnij(v, w) = −gnji(w, v) for all v, w ∈ R.

(c) gnij is locally Lipschitz continuous; i.e., for every compact interval I ⊂ R

there exists a constant Lg > 0 depending only on I and F such that for
all u1, u2, v1, v2 ∈ I

|gnij(u1, v1)− gnij(u2, v2)| ≤ Lg|Sij |
[|u1 − u2|+ |v1 − v2|

]
.

(d) (consistency)

gnij(s, s) =
1

kn

∫ tn+1

tn

∫
Sij

F (γ, t, s) · nijdγdt for all s ∈ R.

Examples for such numerical fluxes can be found, for instance, in [14, 5]. The
following result has been proven in [5, Thm. 4].

Theorem 2.6. Let Assumptions 2.1 and 2.5 hold. Assume that the following
CFL-condition is met:

kn ≤ (1− ξ)α2h

2Lg
with ξ ∈ ]0, 1[.(2.6)

Let u be the unique entropy weak solution to (2.1) and uh its first order finite volume
approximation which is defined in Definition 2.4. If u0 ∈ BVloc(R

d), the following
error estimate holds: For any compact set E ⊂ R

d × R
+, there exists a constant

K > 0 depending only on E, F , u0, Lg, α, and ξ such that∫
E

|u(x, t)− uh(x, t)|dxdt ≤ Kh1/4.(2.7)
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2.3. Finite volume discretization on unstructured staggered grids. Stag-
gered grid finite volume methods have been introduced by Nessyahu and Tadmor [19]
for the one-dimensional case. Later, this method was generalized to two-dimensional
Cartesian grids in [13, 2] and to special two-dimensional unstructured grids in [4].

The idea of staggered grid finite volume schemes is to change consecutive grids in
such a way that the time evolution corresponds to an integration over the complete
Riemann fan. To be more precise, in order to define a new value at time level tn+1

one has to evaluate fluxes across edges of the grid at time level tn and, by using the
staggered grid, values of the previous time level are uniquely given on these edges (in
contrast to the case of a single grid where one has to use the values on the left and
the right of the edge; see Definition 2.4). Hence, no Riemann solvers are needed. The
main drawback of using staggered grids is the large amount of numerical dissipation
which is compensated by the use of higher order methods. However, as a first step
we consider in this paper only the first order case.

We present in this section the extension of the (first order) staggered Lax–
Friedrichs scheme on unstructured grids in two spatial dimensions as it was introduced
in [4] for the special case F (x, t, s) = f(s).

Let Th be a triangular partition of R
2 which is conforming (has no hanging nodes)

and regular; see Assumption 2.5.1. We use the following notation.
Notation 2.7.
1. The set of vertices of triangles in Th is (ai)i∈Iv with Iv ⊂ N. The set of

indices of vertices which are direct neighbors to ai is denoted by Nv(i). Note
that the line segment aiaj is an edge of a triangle in Th.

2. For i ∈ Iv and j ∈ Nv(i) the midpoint of the line segment aiaj is denoted by
Mij. The center of gravity of the triangle which is to the left of the (oriented)
line aiaj is denoted by G+

ij and the one to the right by G−
ij (see Figure 2.2).

From Th two additional grids are built as follows.
For the first grid, finite volume cells are the barycentric cells Ci, obtained by

joining the midpoints Mij of the sides originating at node ai to the centroids G±
ij of

the triangles of Th which meet at ai (see Figure 2.2). For the second grid, the finite
volume cells are the quadrilaterals Lij obtained by joining two vertices ai, aj to the
centroids G+

ij , G
−
ij of the two triangles of Th of which aiaj is a side. This construction

is illustrated in Figure 2.2.

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

ai aj
Gij

−

Ci

Gij
+

Mij ai aj
Mij

Gij
−CCCCCC

CCCCCC
CCCCCC
CCCCCC

L
ij

Gij
+

Fig. 2.2. Construction of special staggered meshes from a triangular mesh. Left: grid consisting
of barycentric cells; right: grid consisting of quadrilaterals.

Since we need the fluxes across edges in a finite volume scheme we have to in-
troduce further notation for the (scaled) normals of the barycentric cells, which are
denoted by η±ij , and normals for quadrilaterals, denoted by µ1

ij , . . . , µ
4
ij . All normals

have the length of the corresponding edge. This notation is illustrated in Figure 2.3.
Furthermore, we need the following abbreviation.
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a
i
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Gij
+

Gij
−

Mij

η
ij
−

η
ij
+

µ
ij
3

µ
ij
2

µ
ij
1

µ
ij
4

Fig. 2.3. Normals on barycentric cells (η±ij) and quadrilaterals (µ
1
ij , . . . , µ

4
ij).

Notation 2.8. Define for i ∈ Iv and j ∈ Nv(i)
θij := µ

2
ij + µ

3
ij .(2.8)

Remark 2.9. Note that θij = −(µ1
ij + µ

4
ij) = η

+
ij + η

−
ij .

Now, we are in position to state the finite volume algorithm on these staggered
grids (recall that the special case F (x, t, s) = f(s) was considered in [4]). The time
axis is partitioned into equidistant intervals of length ∆t.

Definition 2.10. For i ∈ Iv initial values are given on the barycentric mesh:

u0
i =

1

|Ci|
∫
Ci

u0(x)dx.(2.9)

Let n ∈ N be an even positive integer and let (uni )i∈Iv be values given on the mesh
consisting of barycentric cells.

First step. For i ∈ Iv and j ∈ Nv(i) define values on the mesh consisting of
quadrilaterals by

un+1
ij =

1

2
(uni + u

n
j )−

∆t

|Lij |
(
f(uni )− f(unj )

)
θij .(2.10)

Second step. For i ∈ Iv define values on the mesh consisting of barycentric
cells by

un+2
i =

∑
j∈Nv(i)

[ |Lij |
2|Ci|u

n+1
ij − ∆t

|Ci|f(u
n+1
ij )θij

]
.(2.11)

The discrete approximation uh is defined by

uh(x, t) =

{
uni if (x, t) ∈ Ci × [tn, tn+1[,
un+1
ij if (x, t) ∈ Lij × [tn+1, tn+2[.

(2.12)

In a paper by Haasdonk, Kröner, and Rohde [11, Thm. 4.1] the following conver-
gence result has been proven.

Theorem 2.11. Let F (x, t, s) = f(s) ∈ (C1(R))2, u0 ∈ L1(R2) ∩ L∞(R2) with
M := ‖u0‖∞. Let (Thk)k∈N be a family of shape regular triangulations satisfying

ah2 ≤ |T | ≤ bh2 for all T ∈ Thk
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uniformly in k with 0 < a ≤ b; the sequence of mesh sizes is supposed to tend to zero,
i.e., hk → 0 for k → ∞. Let β, γ be constants with the relation 0 < γ < β < a/4.
Let (∆tk)k∈N be a sequence of time steps such that for all k ∈ N the following CFL-
condition holds:

γ ≤ ∆tk
hk

max
s∈[−M,M ],i=1,2

|f ′i(s)| ≤ β.(2.13)

Then the sequence of approximations (uhk)k, which is defined in Definition 2.10 (with
h = hk and ∆t = ∆tk) converges strongly in Lploc(R

2 ×R
+) for all 1 ≤ p <∞ towards

the unique entropy weak solution of (2.1).
Remark 2.12. We prove below an a priori error estimate in a more general

framework. See Theorem 3.5, which covers the case treated in this theorem.

2.4. General staggered grid finite volume schemes in multidimensions.
We generalize the staggered grid finite volume method introduced in section 2.3 (see
[1] for a generalization on tetrahedral grids) to general unstructured grids in arbitrary
space dimensions. Of course, the grids have to satisfy certain conditions which will be
specified later. The key idea is to reinterpret the finite volume scheme on staggered
grids which is defined in Definition 2.10. As a special case, we recover the staggered
grid schemes introduced by Arminjon et al. in [2, 4] for two dimensions and in [1] for
three dimensions.

To present this general framework we need more notation.
Here, we consider again an arbitrary partition of the time axis

0 = t0 < t1 < · · · < tn < tn+1 < · · · , kn := tn+1 − tn.
Let (T nh )n∈N be a sequence of finite volume grids of R

d. Here n corresponds to the
time level. That is, for every time step we may have a different grid. We use the
following notation, which is a bit involved since the grids vary from time step to
time step.

Notation 2.13.
• T nh = (Tni )i∈In , I

n ⊂ N, consists of polyhedrons of finite diameter. Set
hni := diam (Tni ) and hn := maxi∈In hni .

• Define the intersection grid of T nh ∩T n+1
h by T n,n+1

h = (Tn,n+1
i )i∈In,n+1 , where

there exist unique indices k ∈ In and l ∈ In+1 with Tn,n+1
i = Tnk ∩Tn+1

l �= ∅.
• For i ∈ In,n+1 let Nn,n+1(i) denote the set of all neighboring indices j ∈
In,n+1 with Sn,n+1

ij := T
n,n+1

i ∩ Tn,n+1

j �= ∅ and Sn,n+1
ij being a (d − 1)-

dimensional set. We allow hanging nodes so that Sn,n+1
ij may consist of a

finite number of line segments for d = 2 and bounded planes for d = 3 (in
general, of a bounded set contained in a (d−1)-dimensional hyperplane) since
the finite volumes are polyhedrons, i.e.,

Sn,n+1
ij =

L(i,j)⋃
l=1

Sn,n+1
ijl .

We denote by νn,n+1
ijl the outer normal to Sn,n+1

ijl of length |Sn,n+1
ijl |. Set

νn,n+1
ij :=

L(i,j)∑
l=1

νn,n+1
ijl .
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• (Link between T n+1
h and T n,n+1

h .) For i ∈ In+1 set

Jn,n+1(i) := {j ∈ In,n+1|Tn,n+1
j ⊂ Tn+1

i }.

For i ∈ In+1 and j ∈ Jn,n+1(i) set

rn,n+1
ij :=

|Tn,n+1
j |
|Tn+1
i | .

• We need a link from T nh to T n,n+1
h as well. For i ∈ In set

Kn,n+1(i) := {j ∈ In,n+1|Tn,n+1
j ⊂ Tni }.

We illustrate this notation with several figures. Figure 2.4 shows the construction
of T n+1

h in the case that T nh consists of barycentric cells and T n+1
h of quadrilaterals,

as was the case in Definition 2.10. Figure 2.5 shows the definition of the index set
Jn,n+1(i) if i ∈ In+1 is given. Finally, Figure 2.6 shows the index set Kn,n+1(i) if
i ∈ In is given.

Using this notation the finite volume scheme reads on these staggered grids as
follows.

Definition 2.14. Define an approximation uh to the solution of (2.1) by the
following scheme.

n τ
h

n+1

τ
h

n,n+1

τ
h

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

Fig. 2.4. Definition of T n,n+1
h

.

i j1 j2

τ
h

n+1 τ
h

n,n+1

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

Fig. 2.5. The index set Jn,n+1(i).
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i j1
j2

j3

j4

τ
h

n τ
h

n,n+1

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

Fig. 2.6. The index set Kn,n+1(i).

For i ∈ I0 set

u0
i :=

1

|T 0
i |
∫
T 0
i

u0(x)dx.(2.14)

Let n ∈ N and uni , i ∈ In be given. Define un+1
i , i ∈ In+1, by the following

algorithm.
(i) Prolongation to T n,n+1

h .
For i ∈ In,n+1 there exists by construction a uniquely defined index j ∈ In
such that i ∈ Kn,n+1(j). Set

vni := unj .(2.15)

(ii) Time evolution on T n,n+1
h .

For i ∈ In,n+1 set

vn+1
i := vni − kn

|Tn,n+1
i |

∑
l∈Nn,n+1(i)

gn,n+1
il (vni , v

n
l ),(2.16)

where gn,n+1
il is some monotone, consistent, conservative Lipschitz flux which

may vary from time step to time step (see Assumption 2.5.2). kn is the time
step which has to meet a CFL-condition, to be given below.

(iii) Averaging to T n+1
h .

For i ∈ In+1 set

un+1
i =

∑
j∈Jn,n+1(i)

rn,n+1
ij vn+1

j .(2.17)

Set

uh(x, t) = u
n
i for t ∈ [tn, tn+1[ and x ∈ Tni .(2.18)

Note that one would implement the overall algorithm and not the single steps.
Due to the conservation of the numerical fluxes gil the fluxes across interior edges of
Tn+1
i = ∪j∈Jn,n+1(i)T

n,n+1
j cancel. Hence, fluxes across outer edges of Tn+1

i remain. If

one assumes that each part of an edge (or face) of elements in T n+1
h is contained in the

interior of an element in T nh , then these fluxes across outer edges reduce to evaluations
of the function F (see (2.1)) which is due to the consistency of the numerical fluxes.

To be more precise, we introduce more notation.
Notation 2.15 (link between T nh and T n+1

h ). Let i ∈ In+1 be given. Denote

by K̃n,n+1(i) those indices j ∈ In which correspond to elements having a nonempty
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intersection with Tn+1
i ; denote by K̃n,n+1

∂ (i) those indices j ∈ In which correspond

to elements intersecting the boundary of Tn+1
i ; denote by ν̃n,n+1

ij the scaled outer
normal associated with those indices (compare the construction of the normal in No-
tation 2.13); and denote the unit outer normal by

ñn,n+1
ij =

ν̃n,n+1
ij

|ν̃n,n+1
ij | .

The set K̃n,n+1
∂ (i) of indices is illustrated in Figure 2.7.

τ
h

n

j1

j2

j3 j4 j5

j6

j7j8

τ
h

n+1

i

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

τ
h

n,n+1

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

νij7
~n,n+1

νij6
~n,n+1

Fig. 2.7. For i ∈ In+1 the set of indices K̃n,n+1
∂

(i) ⊂ In equals j1, . . . , j8.

Using this notation, we can define an overall algorithm which one would use in
implementations.

Definition 2.16. Define an approximation uh to the solution of (2.1) by the
following scheme.

For i ∈ I0 set

u0
i :=

1

|T 0
i |
∫
T 0
i

u0(x)dx.(2.19)

For given values uni , i ∈ In, define values un+1
i , i ∈ In+1, by

un+1
i =

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij unj −

kn

|Tn+1
i |

∑
j∈K̃n,n+1

∂
(i)

Fn,n+1
ij (unj ),(2.20)

with

r̃n,n+1
ij :=

|Tnj ∩ Tn+1
i |

|Tn+1
i |

and (see also Assumption 2.5)

Fn,n+1
ij (s) :=

1

kn

∫ tn+1

tn

∫
S̃n,n+1
ij

F (γ, t, s) · ñijdγdt.
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Set

uh(x, t) = u
n
i for t ∈ [tn, tn+1[ and x ∈ Tni .(2.21)

Proposition 2.17. Assume that the numerical fluxes in (2.16) satisfy Assump-
tion 2.5 and that the sequence of staggered grids satisfies the condition that for all
n ∈ N, all i ∈ In+1, and all j ∈ K̃n,n+1(i),

∂Tn+1
i ∩ ∂Tnj has dimension at most d− 2(2.22)

holds. Then, the algorithms defined in Definitions 2.14 and 2.16 generate the same
numerical approximation.

Proof. We simply have to use the properties of the numerical fluxes (see Assump-
tion 2.5) and the overlap assumption (2.22). The proof follows by induction over
n ∈ N. For n = 0 the assertion follows by construction. Let n > 0 be given and let
i ∈ In+1; then

un+1
i

=
(2.17)

∑
j∈Jn,n+1(i)

rn,n+1
ij vn+1

j ,

=
(2.16)

∑
j∈Jn,n+1(i)

rn,n+1
ij vnj − kn

|Tn+1
i |

∑
j∈Jn,n+1(i)

∑
l∈Nn,n+1(j)

gn,n+1
jl (vnj , v

n
l ),

=
(2.15)

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij unj −

kn

|Tn+1
i |

∑
j∈Jn,n+1(i)

∑
l∈Nn,n+1(j)

gn,n+1
jl (vnj , v

n
l ),

=
Ass. 2.5, (2.22)

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij unj −

kn

|Tn+1
i |

∑
j∈K̃n,n+1

∂
(i)

Fn,n+1
ij (unj ),

where we have used in the last step that fluxes across interior edges of T n,n+1
h in

Tn+1
i vanish due to the conservation of the numerical fluxes and that fluxes across

outer edges reduce to F -evaluations thanks to the overlap condition (2.22) and the
consistency of the numerical fluxes. This concludes the proof.

Remark 2.18.
1. This result shows that the staggered Lax–Friedrichs scheme in Definition 2.16

can be viewed as an upwind finite volume scheme with an arbitrary good numerical
flux (e.g., with Godunov flux) on a finer grid (the intersection grid T n,n+1

h ) followed
by a projection step.

2. In the error analysis we will use both points of view of the staggered Lax–
Friedrichs scheme. The latter one in Definition 2.16 is used to establish an estimate
for the entropy dissipation (see Proposition 4.2) while the algorithm in its decomposed
form (see Definition 2.14) is used to prove a continuous entropy estimate for the
approximate solution. In this proof (see Theorem 5.2 below) we can use parts of the
argumentation of the corresponding result for the single-grid case (i.e., T nh ≡ Th for
each time step n ∈ N).

One main demand on numerical methods for conservation laws is that these meth-
ods be mass conservative. This property is satisfied by the method in Definition 2.14
as well.

Proposition 2.19 (conservation). Let uh be given in Definition 2.14. Then the
total mass is conserved, i.e.,∫

Rd

uh(x, t)dx =

∫
Rd

u0(x)dx for all t > 0.(2.23)
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Proof. By definition we have

∫
Rd

uh(x, 0)dx =
∑
i∈I0

|T 0
i |u0

i =

∫
Rd

u0(x)dx.

The assertion follows now by induction if we prove

∑
i∈In+1

|Tn+1
i |un+1

i =
∑
i∈In

|Tni |uni .

This is a simple consequence of the definition of uh and is also due to the conservation
of the numerical fluxes.

∑
i∈In+1

|Tn+1
i |un+1

i =
∑
i∈In+1

∑
j∈In,n+1(i)

|Tn,n+1
j | vn+1

j (see (2.17))

=
∑

j∈In,n+1

|Tn,n+1
j | vn+1

j

=
∑

j∈In,n+1

|Tn,n+1
j | vnj (conservation of the fluxes)

=
∑
i∈In

∑
j∈Kn,n+1

|Tn,n+1
j | vnj

=
∑
i∈In

∑
j∈Kn,n+1

|Tn,n+1
j |uni (see (2.15))

=
∑
i∈In

|Tni |uni .

In the rest of this section we show that the staggered grid finite volume scheme
defined in [4, 11], which we have stated in Definition 2.10, can be rewritten in the
form introduced in Definition 2.16. In order to do so, we simply have to identify the
corresponding index sets. However, since our notation is a bit involved, we give some
insight into the proof of Proposition 2.17 by showing that (2.10) and (2.11) can be
rewritten in the form given in Definition 2.14. The main technical difficulty is the
identification of index sets. Therefore, we illustrate a more instructive “proof” with
the following figures.

We show that the first step of the algorithm in Definition 2.10 (see (2.10)) can
be rewritten in the framework of Definition 2.14; i.e., assume that n ∈ N is even and
that values (uni )i∈I are given on barycentric cells; see Figure 2.2. We have to show
that the three steps in Definition 2.14 lead to values (un+1

ij )i∈I,j∈Nv(i) given by

un+1
ij =

1

2
(uni + u

n
j )−

∆t

|Lij |
(
f(uni )− f(unj )

)
θij .

We use the same grids as in Figure 2.4.
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Prolongation (see (2.15)). Values (uni )i∈In are trivially prolongated onto the
intersection grid T n,n+1

h :

τ
h

n

ui uj

τ
h

n,n+1

Lij

ui
uiui

ui
uj uj

ujuj

uj

Time evolution on T n,n+1
h . For the time evolution on T n,n+1

h we need the
index set In,n+1. We assume an enumeration which is depicted in the following figure:

τ
h

n,n+1 1

2
3 4

5

6

Identifying (vni )i∈In,n+1 with the corresponding values (uni )i∈In we get (using the
definition of the normals in Figure 2.3 and noting that F (x, t, s) = f(s)), with i ∈ Iv
and j ∈ Nv(i),

vn+1
3 = uni −

∆t

|Lij ∩ Ci|
(
f(uni )(µ

4
ij + µ

1
ij) + g

n
34(u

n
i , u

n
j )
)
,

vn+1
4 = unj −

∆t

|Lij ∩ Cj |
(
f(unj )(µ

3
ij + µ

2
ij) + g

n
43(u

n
j , u

n
i )
)
.

Averaging to T n+1
h . In the situation we consider here, (2.17) reads

un+1
ij =

|Lij ∩ Ci|
|Lij | uni +

|Lij ∩ Cj |
|Lij | unj +

∆t

|Lij |
[
gn34(u

n
i , u

n
j ) + g

n
43(u

n
j , u

n
i )

+f(uni )(µ
4
ij + µ

1
ij) + f(u

n
j )(µ

3
ij + µ

2
ij)
]
.

Using the conservation of the numerical flux (see Assumption 2.5), the definition of
θij (see (2.8) and Remark 2.9), and that by construction

|Lij ∩ Ci|
|Lij | =

|Lij ∩ Cj |
|Lij | =

1

2
,

we end up with (2.11), which is what we wanted to show.
The proof that the second step (2.12) in Definition 2.10 fits into the framework

of Definition 2.14 is similar and is left to the reader.

3. Main results and ideas of proofs. In this section we state an a posteriori
and an a priori error estimate between the entropy weak solution of (2.1) and the
numerical approximation defined in Definition 2.14 in the L1-norm in space and time.
Then we explain the guideline of the proofs of these results.

First, we need additional assumptions on the CFL-number and on the overlap
between two consecutive finite volume grids.



1282 MARC KÜTHER

Assumption 3.1.
1. Regularity of the meshes. Assume that (T nh )n∈N and (T n,n+1

h )n∈N satisfy
Assumption 2.5.1 uniformly in n; i.e., the mesh regularity parameter α does
not depend on hn or hn,n+1 for all n ∈ N.

2. CFL-condition. For n ∈ N the time step kn is chosen such that for all i ∈
In,n+1

knV[Um,UM ] ≤ 1

2
(1− ξ)α2hn,n+1

i , ξ ∈ ]0, 1[,(3.1)

where V[Um,UM ] is defined in Assumption 2.1. In particular, we have

knV[Um,UM ]
|∂Tn,n+1

i |
|Tn,n+1
i | ≤ 1

2
(1− ξ).

3. Inverse CFL-condition. There exists a constant η > 0 independent of (hn,n+1)n∈N

and (kn)n∈N such that for all n ∈ N and all i ∈ In,n+1, the following estimate
holds:

η ≤ knV[Um,UM ]

α2hn,n+1
i

.(3.2)

4. Overlap condition. There exists a constant Cov > 0 such that for all n ∈ N,
i ∈ In+1, j ∈ K̃n,n+1(i), the following estimate holds:

Cov ≤ |Tnj ∩ Tn+1
i |

|Tn+1
i | ≤ 1.(3.3)

Furthermore, suppose that for all n ∈ N, for all i ∈ In+1, and for all j ∈
K̃n,n+1(i),

∂Tn+1
i ∩ ∂Tnj has dimension at most d− 2.(3.4)

Note that the overlap condition states that the mesh sizes of T n,n+1
h and T n+1

h

should be comparable and that by (3.4)

|Tnj ∩ Tn+1
i |

|Tn+1
i | < 1.

First, we state the a posteriori error estimate in space and time which is the
analogue to the single grid result given in Kröner and Ohlberger [15, Thm. 2.11].

Notation 3.2. Let ω = V[Um,UM ] and R, T > 0 be given. Set

I0 :=

{
n ∈ N| 0 ≤ tn ≤ min

{
R+ 1

ω
, T

} }
,

N0 := max{n| n ∈ I0},
D ≡ DR+1(x0) := {(x, t) ∈ R

d × R
+| |x− x0|+ ωt < R+ 1},

and for n ∈ I0,

In+1
D := {i ∈ In+1| Tn+1

i × {tn} ⊂ DR+1(x0)}.
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The oriented set of edges in T n,n+1
h is defined as

En,n+1 := {(j, l)| j ∈ In,n+1, l ∈ Nn,n+1(j), and vnj > v
n
l }.

The set of edges contained in D is denoted by En,n+1
D .

Furthermore, we need the oriented set of edges Snjl = ∂(T
n
j ∩ Tnl ) in T nh which is

defined as

En := {(j, l)| j ∈ In, l ∈ Nn(j), and unj > u
n
l }.

The set of edges contained in D is denoted by EnD. Finally, we need portions of edges
in En which are contained in Tn+1

i , where i ∈ In+1. For i ∈ In+1 set

Ẽn,n+1(i) := {(j, l) ∈ En|S̃n,n+1
jl (i) := Snjl ∩ Tn+1

i �= ∅}.
Note that In+1

D contains those elements which are contained in DR+1(x0) at time
tn since those elements are used to evolve in time from tn to tn+1.

Theorem 3.3 (a posteriori error estimate). Assume that Assumptions 2.1 and
2.5 and the CFL-condition (3.1) hold. Let K ⊂⊂ R

d×R
+, ω = V[Um,UM ], and choose

T,R > 0 and x0 ∈ R
d such that T ∈ ]0, R/ω[ and

K ⊂
⋃

0≤t≤T
BR−ωt(x0)× {t}.

Then we have∫
K

|u− uh| ≤ T
[∫

|x−x0|<R+1

|u0 − uh(., 0)|+ aQ+
√
bcQ

]
,(3.5)

where

a := 2ω +
1

T
+ 2,

b := 4 + 2d+2,

c := ‖u‖BV

[
2

(
2ω +

1

T

)
+ V[Um,UM ](8 + 2d+5)

]
+ ‖u0‖BV

[
2d+4V[Um,UM ] + 1

]
+ 2V[Um,UM ] max{Um, UM} [|BR+1(0)| − |BR(0)|]T,

and

Q =
1

2

N0∑
n=0

∑
i∈In+1

D

hn+1
i |Tn+1

i |
∑

j,l∈K̃n,n+1(i)

r̃n,n+1
ij r̃n,n+1

il |unj − unl |

+

N0−1∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |

∣∣∣∣∣∣un+1
i −

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij unj

∣∣∣∣∣∣
+ 6V[Um,UM ]

N0∑
n=0

kn
∑
i∈In+1

D

(hn+1
i + kn)

∑
(j,l)∈Ẽn,n+1(i)

|S̃n,n+1
jl (i)| |unj − unl |

+ CF,R,T,u0

N0∑
n=0

∑
(j,l)∈En,n+1

D

kn|Sn,n+1
jl | [ diam(Sn,n+1

jl ) + kn
]2
,

where CF,R,T,u0 is defined in (5.12). See also Lemma 6.7.
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Remark 3.4.
1. Note that the domain of dependence of the error is taken into account since

the set K is embedded into the characteristic cone DR+1(x0).
2. If F (x, t, s) = f(s), then one can choose CF,R,T,u0 = 0 (see (5.12) in the proof

of Theorem 5.2 below).
From the a posteriori error estimate one gets the following a priori error estimate.
Theorem 3.5 (a priori error estimate). Let Assumptions 2.1, 2.5, and 3.1 hold.

Let u be the unique entropy solution to (2.1) and let uh be given by Definition 2.14.
Then for all compact K ⊂⊂ R

d × R
+ there exists a constant Ce > 0, which depends

only on K, F , u0, and the geometrical constants given above such that∫
K

|uh(x, t)− u(x, t)|dxdt ≤ Ceh1/4,(3.6)

where

h := sup
0≤n≤N0

max{hn, hn,n+1}.

The proof of this result relies on a technique introduced by Kruzkov [17] which
has been used by Kuznetsov [18] to prove an error estimate for first order finite volume
schemes in one space dimension. The key idea is to use the concept of entropy (see
Definition 2.2) and the so-called technique of doubling the variables. This can be done
on an abstract level and is contained in Approximation Lemma 3.6 below.

Then all the conditions in this approximation lemma have to be verified. The
main difficulty is to prove a continuous entropy inequality for the discrete solution.

For a simple introduction concerning error estimation for hyperbolic problems we
refer to Cockburn [6].

We will employ the following approximation lemma [5, Lem. 10] in which error
terms are expressed with the help of some positive Radon measures. For Ω = R

d or
Ω = R

d × R
+ we denote by M(Ω) the set of positive Radon measures, i.e., the set of

positive continuous linear forms on C0
0 (Ω). For µ ∈ M(Ω) we set

〈µ, g〉 =
∫

Ω

gdµ, g ∈ C0
0 (Ω).

Approximation Lemma 3.6. Assume (2.1) and u0 ∈ BVloc(R
d). Let ũ ∈

L∞(Rd× R
+). Assume that there exist measures µ ∈ M(Rd × R

+) and µ0 ∈ M(Rd)
such that for all κ ∈ R and all φ ∈ C∞

0 (Rd × R
+,R+)∫

Rd×R+

{
|ũ(x, t)− κ|φt(x, t) +

[
F (x, t, ũ(x, t)�κ)− F (x, t, ũ(x, t)⊥κ)]

×∇φ(x, t)
}
dxdt+

∫
Rd

|u0(x)− κ|φ(x, 0)dx

≥ −
∫

Rd×R+

[|φt(x, t)|+ |∇φ(x, t)|]dµ(x, t)− ∫
Rd

φ(x, 0)dµ0(x).(3.7)

Let u be the unique entropy solution to (2.1); i.e., for all κ ∈ R and all φ ∈ C∞
0 (Rd×

R
+,R+) the following estimate holds:∫
Rd×R+

{
|u(x, t)− κ|∂tϕ(x, t) + [F (x, t, u(x, t)�κ)− F (x, t, u(x, t)⊥κ)]∇ϕ(x, t)

}
dtdx

+

∫
Rd

|u0(x)− κ|ϕ(x, 0)dx ≥ 0.(3.8)



ERROR ESTIMATES FOR THE STAGGERED LAX–FRIEDRICHS SCHEME 1285

Then, for all compact sets E ⊂ R
d × R

+, there exist positive CE,F,u0
> 0, R, and T

which depend only on E, F , and u0 such that the following error estimate holds:∫
E

|ũ(x, t)− u(x, t)|dxdt ≤ CE,F,u0

(
µ0(BR(0)) + µ(BR(0)× [0, T ])

+ [µ(BR(0)× [0, T ])]1/2
)
.(3.9)

In order to apply this lemma we have to prove an L∞-bound for the discrete
solution (see Proposition 4.1 below) and we have to prove inequality (3.7) for the ap-
proximate solution (see Theorem 5.2) which follows from a discrete entropy inequality.
Then, we have to control the behavior of the measures which are involved. To do this,
we need some regularity estimates of the discrete solution, namely, BV-regularity es-
timates. One can prove a strong BV-regularity result for the solution of (2.1) (see
Theorem 3 in [5]):

‖u‖BVloc(Rd×R+) ≤ C(F, u0).

In the case of F (x, t, s) = f(s) this can be sharpened as follows (see [10, Thm. 2.3.1]):
For all t > 0

|u(., t)|BV(Rd) ≤ |u0|BV(Rd).

Unfortunately, so far it is not possible to prove such a strong BV-estimate for the
discrete approximation on arbitrary unstructured grids. However, it is sufficient to
prove a weak BV-estimate which is paid for by a loss in the convergence order (see
Proposition 4.4 below).

The proofs of these results are given in the rest of the paper and then the proofs of
Theorems 3.3 and 3.5 consist of putting together these results and applying Lemma 6.1
below which is a refined version of Approximation Lemma 3.6.

4. Stability results. We prove a maximum principle and an estimate of the
entropy production from which weak BV-estimates of the approximate solution can
be deduced.

Proposition 4.1 (maximum principle). Let u0 ∈ L∞(Rd) with Um ≤ u(x) ≤
UM almost everywhere. Let uh be defined in Definition 2.14 and suppose that
Assumption 2.5 holds. Then

Um ≤ uni ≤ UM ∀n ∈ N, ∀i ∈ In,(4.1)

and

‖uh‖L∞(Rd×[0,T ]) ≤ ‖u0‖L∞(Rd) ∀T > 0.(4.2)

Proof. This is a proof by induction over n ∈ N. Note that due to the convex
combination in (2.17) we have

min
j∈Jn,n+1(i)

vn+1
j ≤ un+1

i ≤ max
j∈Jn,n+1(i)

vn+1
j .

For the v-values on T n,n+1
h a maximum principle is well known under condition (3.1);

see [5, Lem. 1]. Taking into account that the first step of the algorithm (2.15) is just
a trivial prolongation, where the function is not changed, concludes the proof.
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The next result is a key result for proving the a priori error estimate. This result
is a straightforward generalization of [11, Prop. 4.4 and Lem. 4.8]. For the sake of
completeness we include its proof here.

Unfortunately, we cannot work with the Kruzkov entropies but have to deal with
quadratic entropies. Let U(x) = x2 and Φ denotes the associated entropy flux, i.e.,

∂sΦ(x, t, .) = U
′(.)∂sF (x, t, .) a.e.

We set for i ∈ In+1 and j ∈ K̃n,n+1
∂ (i)

Φn,n+1
ij (s) :=

1

kn

∫ tn+1

tn

∫
S̃n,n+1
ij

Φ(γ, t, s) · ñn,n+1
ij dγdt.(4.3)

Proposition 4.2 (entropy production estimate). Assume that Assumptions 2.1,
2.5, and 3.1 hold where ξ in (3.1) has to fulfill the restriction ξ ∈ ]0, Cov[. Then for
i ∈ In+1 the following estimate holds:

U(un+1
i )−

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij U(unj )−

kn

|Tn+1
i |

∑
j∈K̃n,n+1

∂
(i)

Φn,n+1
ij (unj )

+ ξ2
∑

j∈K̃n,n+1(i)

∑
l∈K̃n,n+1(i)

U(unj − unl ) ≤ 0.(4.4)

Proof. Let n ∈ N and i ∈ In+1 be given. Enumerate the values unj , j ∈
K̃n,n+1(i), by size. To be more precise, set m := |K̃n,n+1(i)| and define a bijection
α : {1, . . . ,m} → K̃n,n+1(i) with ul := u

n
iα(l) and

u1 ≤ u2 ≤ · · · ≤ um.

Analogously, set rl := r̃
n,n+1
iα(l) , and for α(l) ∈ K̃n,n+1

∂ (i) we set Fl(s) = F
n,n+1
iα(l) (s) and

Φl = Φn,n+1
iα(l) (s). To simplify notation set

δl :=

{
1 α(l) ∈ K̃n,n+1

∂ (i),
0 else.

Using this notation we can rewrite (2.20) as follows:

un+1
i =

m∑
l=1

[
rlul − kn

|Tn+1
i | Fl(ul)δl

]
=: q(u1, . . . , um).(4.5)

Set

p(t1, . . . , tm) := U(q(t1, . . . , tm))−
m∑
l=1

[
rlU(tl)− kn

|Tn+1
i | Φl(tl)δl

]
+ ξ2

m∑
j,l=1

U(tl− tj).

We have to prove that

p(u1, . . . , um) ≤ 0.
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Clearly, p is differentiable. Define values P1, . . . , Pm ∈ R
m as follows:

P1 := (u1, . . . , u1),

P2 := (u1, u2, . . . , u2),

...
...

Pm−1 := (u1, . . . , um−1, um−1),

Pm := (u1, . . . , um).

We prove that
(i) p(P1) = 0;
(ii) for k = 2, . . . ,m and for all x ∈ I(Pk−1, Pk) we have

∇P (x)(Pk − Pk−1) ≤ 0,

where I(Pk−1, Pk) denotes the straight line between the points Pk−1 and Pk.
Assertion (i) follows directly. For proving (ii) let l ∈ {1, . . . ,m} be given. Using
∂sΦ(x, t, .) = U

′(.)∂sF (x, t, .) a.e. and U ′(s) = 2s we calculate

∂lp(t1, . . . , tm)

= 2

m∑
k=1

{[
rl − kn

|Tn+1
i |F

′
l (tl)δl

] [
rl − kn

|Tn+1
i |F

′
l (ηkl)δl

]
− ξ2

}
1

(tk − tl),

where we used that

q(t1, . . . , tm)− tl =
m∑
k=1

[
rk(tk − tl)− kn

|Tn+1
i |F

′
k(ηkl)δk(tk − tl)

]

and ηkl is a value between tk and tl. Using the CFL-condition (3.1) and ξ ∈ ]0, Cov[
one gets that {. . .}1 ≥ 0. Finally, with the definition of the values Pk it is now easy
to verify (ii), which concludes the proof.

Remark 4.3. Using this entropy production estimate we are in position to prove
weak BV-estimates. These estimates are different from the corresponding results on
a fixed grid in the following respect. First, these results are weak BV-estimates since
half an order of convergence is lost from optimality [20]. The estimates are stronger
than those on fixed grids (cf., e.g., [5, Lem. 2]) since those have the following form
(with notation obviously changed for the case of a fixed grid):

N0∑
n=0

kn
∑

(j,l)∈ED

Cjl(u
n
j , u

n
l )|unj − unl | ≤ Ch−1/2,

where

Cjl(u, v) =
gjl(u, u)− 2gjl(u, v)− gjl(v, v)

u− v .

To make our point, in our BV-estimate we have a factor 1 instead of Cjl in front of
the differences of values (uni )i∈In . This factor 1 is essentially needed since it appears
naturally in the continuous entropy estimate for the approximate solution (see Theo-
rem 5.2 below) which is due to the averaging step (2.17) in the numerical scheme in
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Definition 2.14. It is possible to generalize the result of Chainais-Hillairet [5, Lem. 2]
to the situation we consider here but it is not possible to estimate the factors Cjl
uniformly from below.

Proposition 4.4 (weak local space BV-estimate). Assume that the conditions
of Proposition 4.2 hold. Then there exists a constant C > 0 depending only on the
characteristic cone D, data F, u0, the geometry parameter α, and the CFL-condition
parameter ξ such that

N0∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |

∑
j,l∈K̃n,n+1(i)

|unj − unl | ≤ Ch1/2,(4.6)

where

h = max
n=0,...,NT

hn.(4.7)

Proof. First, we note that for i ∈ In+1 by Assumption 3.1

|K̃n,n+1(i)| =
∑

j∈K̃n,n+1(i)

|Tnj ∩ Tn+1
i |

|Tnj ∩ Tn+1
i | ≤

1

minj∈K̃n,n+1(i) |Tn,n+1
j | |T

n+1
i | ≤ 1

Cov
.

Using Cauchy’s inequality we see that

N0∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |

∑
j,l∈K̃n,n+1(i)

|unj − unl |

≤ C−1/2
ov

N0∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |


 ∑
j,l∈K̃n,n+1(i)

|unj − unl |2



1/2

≤ C−1/2
ov


 N0∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |




1/2

×

 N0∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |

∑
j,l∈K̃n,n+1(i)

|unj − unl |2



1/2

≤
( |DR+1(x0)|

Cov

)1/2

 N0∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |

∑
j,l∈K̃n,n+1(i)

|unj − unl |2



1/2

.(4.8)

In order to estimate the last factor we multiply (4.4) by Tn+1
i and sum over i ∈ In+1

D

and get

‖uh(., tn+1)‖L2(DR+1∩(BR+1×{tn+1})) − kn
∑
i∈In+1

D

∑
j∈K̃n,n+1

∂
(i)

Φn,n+1
ij (unj )

+ ξ2
∑
i∈In+1

D

|Tn+1
i |

∑
j,l∈K̃n,n+1(i)

|unj − unl |2

≤ ‖uh(., tn)‖L2(DR+1∩(BR+1×{tn+1}))
≤ ‖uh(., tn)‖L2(DR+1∩(BR+1×{tn})).
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Let us consider the term containing the numerical entropy fluxes Φn,n+1
ij . Obviously,

these fluxes are conservative in the sense of Assumption 2.5, and hence the sum over
all edges (i, j) with i ∈ In+1

D and j ∈ K̃n,n+1
∂ (i) reduces to the sum over all edges lying

on the boundary of the characteristic cone DR+1 ∩ (BR+1 × {tn+1}). The number
of such edges is bounded by C(α)hd−1. Furthermore, since we have the maximum
principle (see Proposition 4.1) we know that there exists a constant C > 0 depending
only on D,F, u0, U such that

|Φn,n+1
ij (s)| ≤ C|Sn,n+1

ij | ∀s ∈ [Um, UM ].

Using this we can continue our estimate and get

‖uh(., tn+1)‖L2(DR+1∩(BR+1×{tn+1})) + ξ2
∑
i∈In+1

D

|Tn+1
i |

∑
j,l∈K̃n,n+1(i)

|unj − unl |2

≤ ‖uh(., tn)‖L2(DR+1∩(BR+1×{tn})) + Ckn.

Summing over n ∈ {0, . . . , N0} we end up with

N0∑
n=0

∑
i∈In+1

D

|Tn+1
i |

∑
j,l∈K̃n,n+1(i)

|unj − unl |2 ≤ 1

ξ2
‖u0‖L2(BR+1(x0)) + C.

Using this and applying the CFL-condition (3.1) in inequality (4.8) concludes the
proof.

Finally, we are in position to prove a weak time BV-estimate.
Proposition 4.5. Let the assumptions of Proposition 4.4 hold. Then there

exists a constant C > 0 depending only on the characteristic cone D, data F, u0, the
geometry parameter α, and the CFL-condition parameter ξ such that

N0−1∑
n=0

kn
∑
i∈In+1

R

|Tn+1
i |

∣∣∣un+1
i −

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij vnj

∣∣∣ ≤ Ch1/2(4.9)

Proof. The assertion of this proposition follows from Proposition 4.4. Note that
by definition of the index sets Jn,n+1(i) and K̃n,n+1(i) (Notations 2.13 and 2.15) we
have ∑

j∈Jn,n+1(i)

rijv
n
j =

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij unj .

Using the definition of un+1
i (see (2.17)) and the Lipschitz continuity of the numerical

fluxes (Assumption 2.5) we get∣∣∣un+1
i −

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij unj

∣∣∣
≤

∑
j∈Jn,n+1(i)

rn,n+1
ij |vn+1

j − vnj |

≤
∑

j∈Jn,n+1(i)

rn,n+1
ij

kn

|Tn,n+1
j |

∑
l∈Nn,n+1(j)

|gn,n+1
jl (vnj , v

n
l )− gn,n+1

jl (vnj , v
n
j )|
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≤
∑

j∈Jn,n+1(i)

rn,n+1
ij

kn

|Tn,n+1
j |Lg

∑
l∈Nn,n+1(j)

|Sn,n+1
jl | |vnj − vnl |

≤ 1

2
(1− ξ)

∑
j,l∈Jn,n+1(i)

|vnj − vnl |

=
1

2
(1− ξ)

∑
j,l∈K̃n,n+1(i)

|unj − unl |,

where we have used (3.3) and the CFL-condition (3.1).
Remark 4.6. Note that we have estimated in the previous proof the Lipschitz

constant of the numerical fluxes by

Lg ≤ V[Um,UM ].

Since in practice no numerical flux is needed and since we use these numerical fluxes
just as a tool for our analysis, we have freedom to choose the numerical flux. The
aforementioned inequality holds, for example, if gn,n+1

jl is chosen as Godunov’s flux;
see, e.g., [5, section 2.1].

5. Continuous entropy estimate for the approximate solution. In this
section we prove a continuous entropy estimate for the approximate solution. There-
fore, we need a discrete entropy inequality for the approximate solution. For the
concept of entropy solutions and discrete entropy inequalities we refer to [14, 21, 9].

Lemma 5.1 (discrete entropy inequalities). Let uh be given in Definition 2.14
and assume that Assumptions 2.1 and 2.5 and the CFL-condition (3.1) hold. For
j, l ∈ In,n+1 define a numerical entropy flux Gn,n+1

jl by

Gn,n+1
jl (u, v, κ) := gn,n+1

jl (u�κ, v�κ)− gn,n+1
jl (u⊥κ, v⊥κ),(5.1)

where

a�b := max{a, b} and a⊥b := min{a, b}
and gn,n+1

jl is the numerical flux in (2.16).
Then the following discrete entropy inequalities hold for all n ∈ N:

|Tn+1
j | |v

n+1
j − κ| − |vnj − κ|

kn

+
∑

l∈Nn,n+1(j)

Gn,n+1
jl (vnj , v

n
l , κ) ≤ 0 ∀j ∈ In,n+1,(5.2)

1

kn

[
|Tn+1
i | |un+1

i − κ| −
∑

j∈Jn,n+1(i)

|Tn,n+1
j | |vnj − κ|

]

+
∑

j∈Jn,n+1(i)

∑
l∈Nn,n+1(j)

Gn,n+1
jl (vnj , v

n
l , κ) ≤ 0 ∀i ∈ In+1.(5.3)

Proof. Assertion (5.2) follows from the monotony of the second step in Defini-
tion 2.14, which is due to the monotony of the numerical fluxes gn,n+1

jl (see Assump-
tion 2.5). The details can be found in [5, Lem. 3]. Assertion (5.3) follows from (5.2)
using that un+1

i is a convex combination of (vn+1
j )j∈Jn,n+1(i); see (2.17).
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For Ω = R
d or R

d × R
+ we denote by M(Ω) the set of positive Radon measures

on Ω. The following theorem is an adaptation of [9, Thm. 6.1] to our case of varying
grids.

Theorem 5.2. Assume that Assumptions 2.1 and 2.5 and the CFL-condition
(3.1) hold. Let uh be given by Definition 2.14. Then there exist measures µh ∈
M(Rd×R

+) and µ0 ∈ M(Rd) such that for all κ ∈ R and all φ ∈ C∞
0 (Rd×R

+; R
+)

the following estimate holds:

∫
R+

∫
Rd

(|uh(x, t)− κ|φt(x, t) + [
F (x, t, uh(x, t)�κ)− F (x, t, uh(x, t)⊥κ)

]

×∇φ(x, t))dxdt+ ∫
Rd

|u0(x)− κ|φ(x, 0)dx

≥ −
∫

Rd×R+

(|φt(x, t)|+ |∇φ(x, t)|) dµh(x, t)−
∫

Rd

φ(x, 0)dµ0(x).(5.4)

The measures are defined as follows. Let ψ ∈ C0
0 (R

d). Then

〈µ0, ψ〉 ≡
∫

Rd

ψ(x)dµ0(x) :=

∫
Rd

|uh(x, 0)− u0(x)|ψ(x, 0)dx.(5.5)

The measure µh is given by µh = µh1 + µh2 + µh3 + µh4, where the four parts are
defined as (with ψ ∈ C0

0 (R
d × R

+))

〈µh1, ψ〉 := 1

2

∑
n∈N

∑
i∈In+1

∑
j,l∈K̃n,n+1(i)

|unj − unl |

× hn+1
i

|Tn+1
i |

∫
Tn
l
∩Tn+1

i

∫
Tn
j
∩Tn+1

i

∫ 1

0

ψ(x+ θ(y − x), tn+1)dθdydx,(5.6)

〈µh2, ψ〉 :=
∑
n∈N

∑
i∈In+1

∣∣∣∣∣un+1
i −

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij unj

∣∣∣∣∣
×
∫ tn+1

tn

∫
Tn+1
i

∫ 1

0

ψ(x, t+ θ(tn+1 − t))dθ dxdt,(5.7)

〈µh3, ψ〉 := 2
∑
n∈N

kn
∑
i∈In+1

∑
j∈Jn,n+1(i)

∑
l∈Nn,n+1(j)

∣∣gn,n+1
jl (vnj , v

n
l )− gn,n+1

jl (vnj , v
n
j )
∣∣

× hn+1
i

kn |Tn+1
i | |Tn,n+1

j |

∫ tn+1

tn

∫
Tn+1
i

∫
Tn,n+1
j

∫ 1

0

ψ(x+ θ(y − x), t)dθdxdydt,(5.8)

〈µh4, ψ〉 := 2
∑
n∈N

kn
∑

(j,l)∈En,n+1

{ ∣∣gn,n+1
jl (vnj , v

n
l )− gn,n+1

jl (vnj , v
n
j )
∣∣ 〈µn,n+1

jl , ψ〉

+
∣∣gn,n+1
jl (vnj , v

n
l )− gn,n+1

jl (vnl , v
n
l )
∣∣ 〈µn,n+1

lj , ψ〉
}

(5.9)

+ 4CF,φ,u0

∑
n∈N

∑
(j,l)∈En,n+1

〈λn,n+1
jl , ψ〉,

where
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〈µn,n+1
jl , ψ〉 := hn,n+1

j + kn

(kn)2|Tn,n+1
j | |Sn,n+1

jl |

∫ tn+1

tn

∫ tn+1

tn

∫
Tn,n+1
j

∫
Sn,n+1
jl

∫ 1

0

ψ(x+ θ(y − x), t+ θ(s− t))dθdγ(y)dxdsdt,(5.10)

〈λn,n+1
jl , ψ〉 := ( diam (Sn,n+1

jl ) + kn)2

kn|Sn,n+1
jl |

∫ tn+1

tn

∫ tn+1

tn

∫
Sn,n+1
jl

∫
Sn,n+1
jl

∫ 1

0

ψ(ξ + θ(γ − ξ), t+ θ(s− t))dθdξdγdxdt.(5.11)

Proof. Let φ ∈ C∞
0 (Rd × R

+; R
+) be given. Set

T10 := −
∫

R+

∫
Rd

|uh(x, t)− κ|φt(x, t)dxdt−
∫

Rd

|u0(x)− κ|φ(x, 0)dx,

T20 := −
∫

R+

∫
Rd

[
F (x, t, uh(x, t)�κ)− F (x, t, uh(x, t)⊥κ)

]∇φ(x, t)dxdt.
Let us consider the first term T10. Using the definition of uh in (2.18) we get

T10 = −
∑
n∈N

∑
i∈In

|uni − κ|
∫
Tn
i

[
φ(x, tn+1)− φ(x, tn)]dx− ∫

Rd

|u0(x)− κ|φ(x, 0)dx

=
∑
n∈N

{ ∑
i∈In+1

|un+1
i − κ|

∫
Tn+1
i

φ(x, tn+1)dx−
∑
i∈In

|uni − κ|
∫
Tn
i

φ(x, tn+1)dx

}

+
∑
i∈I0

|u0
i − κ|

∫
T 0
i

φ(x, t0)dx−
∫

Rd

|u0(x)− κ|φ(x, 0)dx

=: T11 + T12.

Using the triangle inequality we simply have that

T12 =
∑
i∈I0

|u0
i − κ|

∫
T 0
i

φ(x, 0)dx−
∫

Rd

|u0(x)− κ|φ(x, 0)dx

≤
∫

Rd

|uh(x, 0)− u0(x)|φ(x, 0)dx
= 〈µ0, φ(., 0)〉.

Now, let us consider the term T11. We note that using the first step of Definition
2.14 (see (2.15)) we have that

∑
i∈In

|uni − κ|
∫
Tn
i

φ(x, tn+1)dx =
∑
i∈In

|uni − κ|
∑

j∈Kn,n+1(i)

∫
Tn,n+1
j

φ(x, tn+1)dx

=
∑

j∈In,n+1

|vnj − κ|
∫
Tn,n+1
j

φ(x, tn+1)dx

=
∑
i∈In+1

∑
j∈Jn,n+1(i)

|vnj − κ|
∫
Tn,n+1
j

φ(x, tn+1)dx.

Using this and inserting an additional term which is due to the definition of un+1
i in

(2.17) we get
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T11 =
∑
n∈N

{ ∑
i∈In+1

|un+1
i − κ|

∫
Tn+1
i

φ(x, tn+1)dx−
∑
i∈In

|uni − κ|
∫
Tn
i

φ(x, tn+1)dx

}

=
∑
n∈N


 ∑
i∈In+1

|un+1
i − κ| −

∑
j∈Jn,n+1(i)

|Tn,n+1
j |
|Tn+1
i | |vnj − κ|


∫

Tn+1
i

φ(x, tn+1)dx

+
∑
n∈N


 ∑
i∈In+1

∑
j∈Jn,n+1(i)

|Tn,n+1
j |
|Tn+1
i | |vnj − κ|

∫
Tn+1
i

φ(x, tn+1)dx

−
∑
i∈In+1

∑
j∈Jn,n+1(i)

|vnj − κ|
∫
Tn,n+1
j

φ(x, tn+1)dx




=: T13 + T14.

For the term T14 we use a symmetrization trick.

T14 =
∑
n∈N


 ∑
i∈In+1

∑
j∈Jn,n+1(i)

|Tn,n+1
j |
|Tn+1
i | |vnj − κ|

∫
Tn+1
i

φ(x, tn+1)dx

−
∑
i∈In

∑
j∈Jn,n+1(i)

|vnj − κ|
∫
Tn,n+1
j

φ(x, tn+1)dx




=
∑
n∈N


 ∑
i∈In+1

∑
j∈Jn,n+1(i)

∑
l∈Jn,n+1(i)

|Tn,n+1
j |
|Tn+1
i | |vnj − κ|

∫
Tn,n+1
l

φ(x, tn+1)dx

−
∑
i∈In

∑
j∈Jn,n+1(i)

∑
l∈Jn,n+1(i)

|Tn,n+1
l |
|Tn+1
i | |vnj − κ|

∫
Tn,n+1
j

φ(x, tn+1)dx




=
1

2

∑
n∈N

∑
i∈In+1

∑
j,l∈Jn,n+1(i)

{
|vnj − κ|

[
|Tn,n+1
j |
|Tn+1
i |

∫
Tn,n+1
l

φ(x, tn+1)dx

− |Tn,n+1
l |
|Tn+1
i |

∫
Tn,n+1
j

φ(x, tn+1)dx

]

− |vnl − κ|
[
|Tn,n+1
j |
|Tn+1
i |

∫
Tn,n+1
l

φ(x, tn+1)dx− |Tn,n+1
l |
|Tn+1
i |

∫
Tn,n+1
j

φ(x, tn+1)dx

]}

≤ 1

2

∑
n∈N

∑
i∈In+1

∑
j,l∈Jn,n+1(i)

|vnj − vnl |

×
∣∣∣∣∣ |T

n,n+1
j |
|Tn+1
i |

∫
Tn,n+1
l

φ(x, tn+1)dx− |Tn,n+1
l |
|Tn+1
i |

∫
Tn,n+1
j

φ(x, tn+1)dx

∣∣∣∣∣
≤ 1

2

∑
n∈N

∑
i∈In+1

∑
j,l∈K̃n,n+1(i)

|unj − unl |

× hn+1
i

|Tn+1
i |

∫
Tn
l
∩Tn+1

i

∫
Tn
j
∩Tn+1

i

∫ 1

0

|∇φ(x+ θ(y − x), tn+1)|dθdydx

= 〈µh1, |∇φ|〉,
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where we have used ∑
j,l∈Jn,n+1(i)

|vnj − vnl | =
∑

j,l∈K̃n,n+1(i)

|unj − unl |.

It remains to consider the terms T13 and T20. In order to do this we insert the
discrete entropy inequality (5.3). Define

T1 :=
∑
n∈N

∑
i∈In+1


|un+1

i − κ| −
∑

j∈Jn,n+1(i)

|Tn,n+1
j |
|Tn+1
i | |vnj − κ|


 1

kn

∫ tn+1

tn

∫
Tn+1
i

φ(x, t)dxdt,

T2 :=
∑
n∈N

kn
∑
i∈In+1

∑
j∈Jn,n+1(i)

∑
l∈Nn,n+1(j)

[
Gn,n+1
jl (vnj , v

n
l , κ)−Gn,n+1

jl (vnj , v
n
j , κ)

]

× 1

kn

∫ tn+1

tn

1

|Tn+1
i |

∫
Tn+1
i

φ(x, t)dxdt.

Since φ ≥ 0 we have by Lemma 5.1

T1 + T2 ≤ 0.

We now compare T13 with T1 and T20 with T2. This part is almost identical to the
proof of Theorem 1 in [5]. Let us start with the first pair. We have

T13 − T1 =
∑
n∈N

∑
i∈In+1


|un+1

i − κ| −
∑

j∈Jn,n+1(i)

|Tn,n+1
j |
|Tn+1
i | |vnj − κ|




×
[

1

kn

∫ tn+1

tn

∫
Tn+1
i

φ(x, tn+1)dxdt− 1

kn

∫ tn+1

tn

∫
Tn+1
i

φ(x, t)dxdt

]

≤
∑
n∈N

∑
i∈In+1

∣∣∣∣∣∣un+1
i −

∑
j∈K̃n,n+1(i)

|Tnj ∩ Tn+1
i |

|Tn+1
i | unj

∣∣∣∣∣∣
×
∫ tn+1

tn

∫
Tn+1
i

∫ 1

0

|φt(x, t+ θ(tn+1 − t))|dθ dxdt

= 〈µh2, |φt|〉.
It remains to compare T20 and T2. We first simplify T20 using the definition of

uh (see (2.18) and (2.15)) and that div xF = 0 (see Assumption 2.1).

T20 = −
∫

R+

∫
Rd

[
F (x, t, uh(x, t)�κ)− F (x, t, uh(x, t)⊥κ)

]∇φ(x, t)dxdt
=
∑
n∈N

∑
i∈In

∑
j∈Kn,n+1(i)

∫ tn+1

tn

∫
Tn,n+1
j[

F (x, t, uh(x, t)�κ)− F (x, t, uh(x, t)⊥κ)
]∇φ(x, t)dxdt

=
∑
n∈N

∑
i∈In

∑
j∈Kn,n+1(i)

∑
l∈Nn,n+1(j)

∫ tn+1

tn

∫
Sn,n+1
jl[

F (γ, t, vnj �κ)− F (γ, t, vnj ⊥κ)
]
nn,n+1
jl φ(γ, t)dγdt
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=
∑
n∈N

∑
(j,l)∈En,n+1

∫ tn+1

tn

∫
Sn,n+1
jl

{[
F (γ, t, vnl �κ)− F (γ, t, vnl ⊥κ)

]

−[F (γ, t, vnj �κ)− F (γ, t, vnj ⊥κ)]}nn,n+1
jl φ(γ, t)dγdt.

Due to the consistency of the numerical fluxes (see Assumption 2.5) we insert some
terms such that

T20 = T200 + T201,

where

T200 := −
∑
n∈N

kn
∑

(j,l)∈En,n+1

[
Gn,n+1
jl (vnj , v

n
j )−Gn,n+1

jl (vnj , v
n
l )

+Gn,n+1
jl (vnj , v

n
l )−Gn,n+1

jl (vnl , v
n
l )
] 1

kn |Sn,n+1
jl |

∫ tn+1

tn

∫
Sn,n+1
jl

φ(γ, t)dγdt,

T201 :=
∑
n∈N

∑
(j,l)∈En,n+1

∫ tn+1

tn

∫
Sn,n+1
jl

{([
F (γ, t, vnl �κ)− F (γ, t, vnl ⊥κ)

]
nn,n+1
jl

− 1

|Sn,n+1
jl |G

n,n+1
jl (vnl , v

n
l , κ)

)
−
([
F (γ, t, vnj �κ)− F (γ, t, vnj ⊥κ)

]
nn,n+1
jl

− 1

|Sn,n+1
jl |G

n,n+1
jl (vnj , v

n
j , κ)

)}
φ(γ, t)dγdt.

First, we estimate the consistency error T201 of the numerical flux. Due to the
definition of Gn,n+1

jl (see (5.1)) we have

T201 =
∑
n∈N

∑
(j,l)∈En,n+1

1

kn|Sn,n+1
jl |

∫ tn+1

tn

∫ tn+1

tn

∫
Sn,n+1
jl

∫
Sn,n+1
jl{[(

F (γ, t, vnl �κ)nn,n+1
jl − 1

|Sn,n+1
jl |g

n,n+1
jl (vnl �κ, vnl �κ)

)

−
(
F (γ, t, vnl ⊥κ)nn,n+1

jl − 1

|Sn,n+1
jl |g

n,n+1
jl (vnl ⊥κ, vnl ⊥κ)

)]

−
[(
F (γ, t, vnj �κ)nn,n+1

jl − 1

|Sn,n+1
jl |g

n,n+1
jl (vnj �κ, vnj �κ)

)

−
(
F (γ, t, vnj ⊥κ)nn,n+1

jl − 1

|Sn,n+1
jl |g

n,n+1
jl (vnj ⊥κ, vnj ⊥κ)

)]}

×[φ(γ, t)− φ(ξ, s)]dξdγdxdt.
Note that the term involving φ(ξ, s) equals zero due to the consistency of the

numerical fluxes; see Assumption 2.5. Since F ∈ C1 (see Assumption 2.1) there exists
a constant CF,φ,u0

such that for all (γ, s, v) ∈ (supp(φ)∩ (Rd× [tn, tn+1[))× [Um, UM ]∣∣∣∣∣F (γ, s, v)nn,n+1
jl − 1

|Sn,n+1
jl |g

n,n+1
jl (v, v)

∣∣∣∣∣ ≤ CF,φ,u0( diam (Sn,n+1
jl ) + kn).(5.12)
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Moreover, we have for (γ, ξ, t, s) ∈ (Sn,n+1
jl )2 × [tn, tn+1[2

∣∣φ(γ, t)−φ(ξ, s)∣∣ ≤ ( diam (Sn,n+1
jl )+ kn)

∫ 1

0

(|∇φ|+ |φt|)(ξ+ θ(γ− ξ), t+ θ(s− t))dθ.

Hence, we can estimate

|T201| ≤ 4CF,φ,u0

∑
n∈N

∑
(j,l)∈En,n+1

〈λn,n+1
jl , |∇φ|+ |φt|〉.

Now, let us consider T2.

T2 =
∑
n∈N

kn
∑
i∈In+1

∑
j∈Jn,n+1(i)

∑
l∈Nn,n+1(j)

[
Gn,n+1
jl (vnj , v

n
l , κ)−Gn,n+1

jl (vnj , v
n
j , κ)

]

×
[

1

kn

∫ tn+1

tn

1

|Tn+1
i |

∫
Tn+1
i

φ(x, t)dxdt− 1

kn

∫ tn+1

tn

1

|Tn,n+1
j |

∫
Tn,n+1
j

φ(x, t)dxdt

]

+
∑
n∈N

kn
∑
i∈In+1

∑
j∈Jn,n+1(i)

∑
l∈Nn,n+1(j)

[
Gn,n+1
jl (vnj , v

n
l , κ)−Gn,n+1

jl (vnj , v
n
j , κ)

]

× 1

kn

∫ tn+1

tn

1

|Tn,n+1
j |

∫
Tn,n+1
j

φ(x, t)dxdt

=: T3 + T4.

Note that due to the monotony of the numerical fluxes gn,n+1
jl (see Assumption 2.5)

and due to the definition of Gn,n+1
jl (see (5.1)) we have for all κ ∈ R

|Gn,n+1
jl (vnj , v

n
l , κ)−Gn,n+1

jl (vnj , v
n
j , κ)|

≤ 2|gn,n+1
jl (vnj , v

n
l )− gn,n+1

jl (vnj , v
n
j )|.(5.13)

Using this we get for T3

T3 =
∑
n∈N

kn
∑
i∈In+1

∑
j∈Jn,n+1(i)

∑
l∈Nn,n+1(j)

[
Gn,n+1
jl (vnj , v

n
l , κ)−Gn,n+1

jl (vnj , v
n
j , κ)

]

×
[

1

kn|Tn+1
i |

∫ tn+1

tn

∫
Tn+1
i

φ(x, t)dxdt− 1

kn|Tn,n+1
j |

∫ tn+1

tn

∫
Tn,n+1
j

φ(x, t)dxdt

]

≤ 2
∑
n∈N

kn
∑
i∈In+1

∑
j∈Jn,n+1(i)

∑
l∈Nn,n+1(j)

∣∣gn,n+1
jl (vnj , v

n
l )− gn,n+1

jl (vnj , v
n
j )
∣∣

× hn+1
i

kn |Tn+1
i | |Tn,n+1

j |

∫ tn+1

tn

∫
Tn+1
i

∫
Tn,n+1
j

∫ 1

0

|∇φ(x+ θ(y − x), t)|dθdxdydt

= 〈µh3, |∇φ|〉.
Now, we write the term T4 as a sum over edges.

T4 =
∑
n∈N

kn
∑
i∈In+1

∑
j∈Jn,n+1(i)

∑
l∈Nn,n+1(j)

[
Gn,n+1
jl (vnj , v

n
l , κ)−Gn,n+1

jl (vnj , v
n
j , κ)

]

× 1

kn|Tn,n+1
j |

∫ tn+1

tn

∫
Tn,n+1
j

φ(x, t)dxdt
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=
∑
n∈N

kn
∑

(j,l)∈En,n+1

[
Gn,n+1
jl (vnj , v

n
l )φ

n,n+1
j −Gn,n+1

jl (vnj , v
n
j )φ

n,n+1
j

+Gn,n+1
jl (vnl , v

n
l )φ

n,n+1
l −Gn,n+1

jl (vnj , v
n
l )φ

n,n+1
l

]
,

where

φn,n+1
j :=

1

kn|Tn,n+1
j |

∫ tn+1

tn

∫
Tn,n+1
j

φ(x, t)dxdt

for j ∈ In,n+1.
Now, we can compare T200 with T4.

T200 − T4 =
∑
n∈N

kn
∑

(j,l)∈En,n+1

{[
Gn,n+1
jl (vnj , v

n
l )−Gn,n+1

jl (vnj , v
n
j )
]
[φn,n+1
jl − φn,n+1

j ]

− [
Gn,n+1
jl (vnj , v

n
l )−Gn,n+1

jl (vnl , v
n
l )
]
[φn,n+1
jl − φn,n+1

l ]
}
,

where we have used the abbreviation

φn,n+1
jl :=

1

kn

∫ tn+1

tn

1

|Sn,n+1
jl |

∫
Sn,n+1
jl

φ(γ, t)dγdt.

Using the mean value theorem we get

|φn,n+1
jl − φn,n+1

j | ≤ hn,n+1
j + kn

(kn)2|Tn,n+1
j | |Sn,n+1

jl |

∫ tn+1

tn

∫ tn+1

tn

∫
Tn,n+1
j

∫
Sn,n+1
jl

∫ 1

0

|∇φ(x+ θ(γ − x), t+ θ(s− t))|
+ |φt(x+ θ(γ − x), t+ θ(s− t))|dθdγdxdsdt

= 〈µn,n+1
jl , |∇φ|+ |φt|〉.

Using this and (5.13) we get that

T20 − T4 ≤ 〈µh4, |∇φ|+ |φt|〉,
which concludes the proof.

6. Proof of the a posteriori error estimate. It is well known that the
Kruzkov technique for proving error estimates leads to a posteriori error estimates;
cf. [6]. The main idea for proving Theorem 3.3 consists of estimating the constant in
Approximation Lemma 3.6, to take care of the domain of dependence of the error,
and to estimate the measures appropriately. In case of a fixed grid, this has been
done in [15] where an adaptive strategy is introduced as well.

A more refined version of Approximation Lemma 3.6 contains test functions.
These test functions are chosen specifically and can be interpreted as a solution of a
linearized dual problem to (2.1). This is the content of the next lemma.

Lemma 6.1 (see [15, Lem. 2.10]). Let the assumptions in Approximation Lem-
ma 3.6 hold. Let ω,R, T ∈ R

+ be given and let ρ ∈ C1
0 (R

+; [0, 1]) be such that
ρ′ ≤ 0 and

ρ = 1 on [0, R],

ρ = 0 on [R+ 1,∞[.
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Set

ψ(x, t) :=
T − t
T

ρ(|x− x0|+ ωt) on R
d × [0, T ],

ψ(x, t) := 0 on R
d × [T,∞[,

where x0 ∈ R
d is given.

Then we have∫
Rd

∫
R+

{
|ũ(x, t)− u(x, t)|ψt(x, t)

+
[
F (x, tũ(x, t)�u(x, t))− F (x, t, ũ(x, t)⊥u(x, t))]∇ψ(x, t)}dtdx

≥ −µ0({ψ(., 0) �= 0})− 2
√
bc[µ({ψ �= 0})]1/2 − aµ({ψ �= 0}),(6.1)

with

a := 2ω +
1

T
+ 2,

b := 4 + 2d+2,

c := ‖u‖BV

[
2

(
2ω +

1

T

)
+ V[Um,UM ](8 + 2d+5)

]
+ ‖u0‖BV

[
2d+4V[Um,UM ] + 1

]
+ 2V[Um,UM ] max{Um, UM}[|BR+1(0)| − |BR(0)|]T.

Remark 6.2. Note that due to Theorem 3 in [5] we have under Assumption 2.1

‖u‖BV := ‖u‖BV (DR+1(x0)) ≤ C(F, u0, R, T ).

In the special case where F (x, t, s) = f(s), one has the estimate [10, Thm. 2.3.1]

‖u(., t)‖BV (Rd) ≤ ‖u0‖BV (Rd) ∀t > 0.

In the next few lemmas we estimate the measures which are defined in Theorem
5.2. Putting all these results together then gives the assertion of our a posteriori error
estimate in Theorem 3.3.

Lemma 6.3. Let µh1 be defined in (5.6). Then

µh1(DR+1(x0)) ≤ 1

2

N0∑
n=0

∑
i∈In+1

D

hn+1
i |Tn+1

i |
∑

j,l∈K̃n,n+1(i)

r̃n,n+1
ij r̃n,n+1

il |unj − unl |.

Proof. Let χDR+1(x0) denote the characteristic function of the set DR+1(x0). By
definition of µh1 we have

µh1(DR+1(x0)) =
1

2

N0∑
n=0

∑
i∈In+1

D

∑
j,l∈K̃n,n+1(i)

|unj − unl |

× hn+1
i

|Tn+1
i |

∫
Tn
l
∩Tn+1

i

∫
Tn
j
∩Tn+1

i

∫ 1

0

χDR+1(x0)(x+ θ(y − x), tn+1)dθdydx.

For n ≤ N0 and i ∈ In+1
D we have that Tnl ∩ Tn+1

i , Tnj ∩ Tn+1
i ⊂ Tn+1

i for j, l ∈
K̃n,n+1(i). Therefore, we estimate χDR+1

(x + θ(y − x), tn+1) ≤ 1 which gives the
assertion.
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Lemma 6.4. Let µh2 be defined in (5.7). Then

µh2(DR+1(x0)) ≤
N0−1∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |

∣∣∣∣∣un+1
i −

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij unj

∣∣∣∣∣.
The proof is obvious and therefore omitted.
Lemma 6.5. Let µh3 be defined in (5.8). Then

µh3(DR+1(x0)) ≤ 2V[Um,UM ]

N0∑
n=0

kn
∑
i∈In+1

D

hn+1
i

∑
(j,l)∈Ẽn,n+1(i)

|S̃n,n+1
jl (i)| |unj − unl |.

Proof. Note that analogously to the proof of Lemma 6.3 we have

hn+1
i

kn |Tn+1
i | |Tn,n+1

j |

∫ tn+1

tn

∫
Tn+1
i

∫
Tn,n+1
j

∫ 1

0

χDR+1(x0)(x+θ(y−x), t)dθdxdydt ≤ hn+1
i .

If indices j, l ∈ En,n+1 correspond to an edge which lies on ∂Tn+1
i , then by

construction (see (2.15))

vnj = vnl ,

and hence the flux difference vanishes. Therefore, only flux differences across interior
edges of elements Tn+1

i remain which are estimated using the Lipschitz property of
the numerical fluxes; see Assumption 2.5 and Remark 4.6. Hence, we have

µh3(DR+1(x0)) ≤ 2V[Um,UM ]

N0∑
n=0

kn
∑
i∈In+1

D

hn+1
i

∑
(j,l)∈E0,n,n+1(i)

|Sn,n+1
jl | |vnj − vnl |,

where

E0,n,n+1(i) := {(j, l) ∈ En,n+1| Tn,n+1
j ⊂ Tn+1

i and Tn,n+1
l ⊂ Tn+1

i }
denotes the set of edges in T n,n+1

h which lie in the interior of Tn+1
i . Using the

identification of indices due to the prolongation step (see (2.15)) and Notation 3.2 we
get the assertion.

Using similar arguments as before one can prove the following two lemmas.
Lemma 6.6. Let µn,n+1

jl and λn,n+1
jl be defined in (5.10) and (5.11), respectively.

Then

µn,n+1
jl (DR+1(x0)) ≤ hn,n+1

j + kn,

λn,n+1
jl (DR+1(x0)) ≤ kn|Sn,n+1

jl | [diam(Sn,n+1
jl ) + kn

]2
.

Lemma 6.7. Let µh4 be defined in (5.9). Then

µh4(DR+1(x0))

≤ 4V[Um,UM ]

N0∑
n=0

kn
∑
i∈In+1

D

(hn+1
i + kn)

∑
(j,l)∈Ẽn,n+1(i)

|S̃n,n+1
jl (i)| |unj − unl |

+ CF,R,T,u0

N0∑
n=0

∑
(j,l)∈En,n+1

D

kn|Sn,n+1
jl | [diam(Sn,n+1

jl ) + kn
]2
,

where CF,R,T,u0
is defined in (5.12).
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7. Proof of the a priori error estimate. The proof of the a priori error
estimate in Theorem 3.5 follows from the a posteriori error estimate in Theorem 3.3
by estimating the term Q. In order to show this we manipulate the various parts
in such a way that we can apply the BV-regularity results given in section 4; see
Propositions 4.4 and 4.5.

Proof. We have to estimate Q = Q1 +Q2 +Q3 +Q4, where

Q1 =
1

2

N0∑
n=0

∑
i∈In+1

D

hn+1
i |Tn+1

i |
∑

j,l∈K̃n,n+1(i)

r̃n,n+1
ij r̃n,n+1

il |unj − unl |,

Q2 =

N0−1∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |

∣∣∣∣∣un+1
i −

∑
j∈K̃n,n+1(i)

r̃n,n+1
ij unj

∣∣∣∣∣,

Q3 = 6V[Um,UM ]

N0∑
n=0

kn
∑
i∈In+1

D

(hn+1
i + kn)

∑
(j,l)∈Ẽn,n+1(i)

|S̃n,n+1
jl (i)| |unj − unl |,

Q4 = CF,R,T,u0

N0∑
n=0

∑
(j,l)∈En,n+1

D

kn|Sn,n+1
jl | [ diam(Sn,n+1

jl ) + kn
]2
.

Now, we need geometrical estimates to apply the stability estimates of section 4.

Using the mesh regularity (Assumptions 3.1 and 2.5) and the overlap condition
(Assumption 3.1) we get

hn+1
i ≤ (Covα)

−1/dhn,n+1
j ∀i ∈ In+1 ∀j ∈ Jn,n+1(i),

|Sn,n+1
jl | ≤ |∂Tn,n+1

j | ≤ 1

α
(hn,n+1
j )d−1 ∀(j, l) ∈ En,n+1

D .

Using these estimates together with the CFL-condition and the inverse CFL-condition
(see Assumption 3.1) we get the following estimates:

Q1 ≤ (Covα)
−1/dV[Um,UM ]

2α2η

N0∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |

∑
j,l∈K̃n,n+1(i)

|unj − unl |,

Q3 ≤ 6V[Um,UM ]
1

α2

[
(Covα)

−1/d +
1

2
(1− ξ)α2 1

V[Um,UM ]

]

×
N0∑
n=0

kn
∑
i∈In+1

D

|Tn+1
i |

∑
j,l∈K̃n,n+1(i)

|unj − unl |,

Q4 ≤ CF,R,T,u0

[
1 +

1

2
(1− ξ) α2

V[Um,UM ]

]2
1

α2
|DR+1(x0)| h.

Further estimating Q1 and Q3 by Proposition 4.4 and Q2 by Proposition 4.5 and
applying Theorem 3.3 concludes the proof.

Note that the constant Ce in Theorem 3.5 can be specified explicitly.
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