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Abstract. Several models in mathematical physics are described by quasilin-
ear hyperbolic systems with source term, which in several cases may become
stiff. Here a suitable central numerical scheme for such problems is developed
and application to shallow water equations, Broadwell model and Extended
Thermodynamics are mentioned.

The numerical methods are a generalization of the Nessyahu-Tadmor
scheme to the non-homogeneous case. We propose two ways for treating the
production term. The first is obtained by including the cell averages of the
productions, while the second family of schemes is obtained by a splitting
strategy.

1. Introduction

In several problems of mathematical physics, hyperbolic systems of balance laws
arise. In particular we mention hyperbolic systems with relaxation, such as discrete
velocity models in kinetic theory [8], gas with vibrational degrees of freedom [21],
hydrodynamical models for semiconductors [2, 1], radiation hydrodynamics [14].

Lately the development of high-order shock-capturing methods for conserva-
tion laws has become an interesting area or research. However, most schemes deal
almost exclusively with the homogeneous case. The extension to systems with a
source term has been studied in [18, 11, 5] where a method of line approach, to-
gether with splitting techniques has been used. Here we consider the extension of
second order central schemes to the non homogeneous case. The aim is to provide
a general-purpose robust scheme for systems of balance laws [16, 19].

The main advantage of central schemes is their flexibility, in fact they do not
require the knowledge of the characteristic structure of the system, and the (exact
or approximate) solution to the Riemann problem, at variance with upwind-based
schemes.

There are systems with relaxation for which the analytical expression of
the eigenvalues and eigenvectors is not known. Typical examples are given by
monoatomic gas in Extended Thermodynamics [15], and some hydrodynamical
models for electron transport in semiconductors.

Explicit central schemes for balance laws with source have been considered
in [7], and applied to the shallow water equations.
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In this paper we consider two families of central schemes, which extend the
Nessyahu-Tadmor (NT) scheme [16] to systems with source. The first family is
obtained by including the source term in the integration over the cell in space-
time. Explicit and implicit formulations are considered. The implicit schemes are
able to treat stiff source terms. However a degradation of the accuracy is observed
in this case.

The second family is based on a splitting strategy. A new splitting scheme is
presented. For non stiff source, the new scheme gives second order accuracy with
first order evaluation of the relaxation step.

Application of the schemes to the shallow water equations, the Broadwell
model, and the equations for a monoatomic gas in Extended Thermodynamics are
presented in [13].

The plain of the paper is the following. In section 2, a sketch of the math-
ematical models is given. In sections 3 and 4 the numerical schemes obtained by
including the cell average of the production term and the numerical scheme based
on a splitting strategy respectively are presented.

2. The mathematical models

Here we present some significant physical models represented by hyperbolic sys-
tems of balance laws. First we show a case with a non stiff source, the shallow water
equations with a smooth profile of the bottom. Then we present some examples of
relaxation systems.

We recall that the system

U + 0, F(U) = —%R(U), UecRVN,

is said a relazation system [22, 6] if there exists a constant matrix Q with rank
n < N such that QR(U) = 0 V U which gives n conserved quantities v. One
assumes that each such v uniquely determines a local equilibrium value U = £(v)
satisfying R(€(v)) = 0 and such that

Q&(v) = 0,Vu.

Associated with the original system there are n conservation laws which represent
the local equilibrium subsystem

QU + 9, (QF(U)) =0, withU =&E(v) .
When ¢ is small compared to the time scale determined by the characteristic speed

of the system, we have a stiff relaxation term.

2.1. Non stiff problems: the shallow water equations

The evolution equations governing the flow of shallow water waves into a channel
with a fixed bottom elevation described by B(z), in the one dimensional case are
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given by the system [22, 20]

1
(hu)¢ + <hu2 + Egh2> = —ghB,, (2)

T

where g is the gravitational constant, i represents the fluid depth and w is the
velocity. B(z) + h(z,t) gives the top surface. It is straightforward to check that
the equations (1)-(2) form a hyperbolic system with characteristic velocities

/\:uﬂ:\/g_h.

Stationary solutions are given by
Lo
g(h(z) + B(x)) + Jun = constant.

The next example we consider is the Broadwell model. It describes a 2-D (3-
D) gas composed of particles with four (six) discrete velocities with binary collision
law and spatial variation in only one direction. For the 2-D gas the evolution
equations read

Oup + Oem =0, (3)
Oym + 0z =0, (4)
Oz + Opm = %(p2 +m? — 2p2), (5)

where € is the mean free path. The dynamical variables p and m are the density
and the momentum respectively, while z represents the flux of momentum. A
description of the Broadwell model can be found, for example, in [5].

The characteristic velocities are constant

A=-1,0,1.

As e — 0, z is given by a local Maxwellian distribution

2 = 2p(p,m) = ;p(pz +m?) (6)

and we get the fluid dynamic limit
Op + Ox(pu) =0,
1
o) +0: (504 ) =0,

with w =m/p.
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3. Non splitting schemes

Let us consider the initial value problem

U + f(u),z = g(u)) (7)
u(z,0) = &(z), —-oco<x<o0 (8)
with u € R™ and f: R™ — R™.
We discretize space-time with staggered cells. Following [16], at each time
level we reconstruct a piecewise linear approximation of the form
r—T;
U :
AV
where u;/Az is a first order approximation of the space derivative at z;. By
integrating Eq.(7) over the cell [z;,z;41] x [t",¢"T!], we obtain

Lj(l‘,t) = Uj(t) +

Tj_1/2 ST < Tjra)o,

e o= S bes - [0 [ ate ) e
uj = S +ufy)+ (U —uj) +-— g(u(z,t)) dedt
j+1/2 RN j+1 ]\ j+1 Az i .

I
+A_:E /t" flu(zj,t)) — f(u(zjr,t)) dt. 9)

Different schemes are obtained by suitable discretization of the integrals of fluxes
and source. The integral of the flux is discretized by midpoint rule
tn+1
1/2
Flu(z, 1) dt ~ At ful ™),
tn

172 is obtained by Taylor expansion in an explicit way

nt1/2 _ o At ny_ di
uj _uj+7<g(uj)_ﬂ )

The predictor u}”

or in an implicit way

!
=+ G (ot - 2,
which is appropriate for stiff problems in order to avoid restriction on the time
step.

The values of u;/Az and f;/Az are a first order approximation of the space
derivatives of the field and of the flux. They can be computed in several ways
[9, 16]. The simplest choice is

wy = MM(ujp1 — uj, uj — uj—1), (10)
where MM(z, y) is the min mod function, defined by

_ | sgn(z) -min(|z|,[y]) if sgn(z) = sgn(y),
MM(z, y) = { 0 otherwise .
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This approximation has the drawback of accuracy degradation near local
extrema. Better results are obtained by the UNO-like derivative [9]

1 1
u;. = MM(UJ' —uj—1 + EDj_l/Q,U]‘+1 —Uuj — 5Dj+1/2), (11)
where
Dy = MM (ujs = 2ujpr + uj, ujpr = 2uj + ). (12)

In the original NT scheme, the time step At must satisfy a stability condition
1
At - max p(A(u(z, t,))) < §Aw (13)
x

where A = 0f/0u is the Jacobian matrix, and p denotes the spectral radius. This
condition ensures that the generalized Riemann problems with piecewise smooth
data at time t,, do not interact during the time step At. The effect of the presence
of the source on the stability restriction is presently under investigation.

Several quadrature formulas have been tested for discretizing the integral of
the source term. An example of explicit scheme is given by using the mid-point
rule.

gt

I, = /tn /IHl g(u(z,t)) dedt ~ g(u?j_rll//;)AmAt, (14)

with
ujls = # (15)
where the values u;H_l/ % are computed in the predictor step. An example of semi-

implicit scheme is given by

oantryz _ [9(uf) + g(uf) el AzAt
I~ g = [% gt S, (16)
which leads to the second order semi-implicit scheme
At 1, 1
“?if/g - 79(“?111/2) = 5(“1 +uj) + g(%' — Ujy1)
At
n+1/2 n+1/2
A [FOGT) = £l ] + 5 9 + g ()] (a7)

Here A = At/Ax denotes the mesh ratio.
A fully implicit scheme is obtained by the (first order) quadrature formula

I, = g(u;.’illﬂ)Aa:At.
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Limitation of the the non splitting scheme for stiff source

Here we show, by and explicit example, that the semi-implicit non splitting scheme
may fail when dealing with a stiff relaxation term.
Let us consider a single equation with a source term of relaxation type

o) = -1

€
We want to analyze the non splitting schemes when ¢ — 0.
We shall consider the simple case

u—u
g(u) = — % with uy =constant.
€

The scheme with the implicit predictor step reads

1 1 +1/2 +1/2
Wity = 0w + gl — ) = A [F@p ) - )]
At [uf —uo  ujyy —uo At U?jr_ll/z
[ — + R A
4 € € 2 €
+1/2
JTY2 = f'(y) n U? /2 Up ﬁ
J J Az € 2
When € — 0, we get
u +u"
uY? — o, “?111/2 = Qug — 4 IFL

J 2

For the initial data
u? =wug + 6, with d=constant,

one has

4L

uj”+2 = ug + 9,

Therefore the scheme does not converge.
Such a counterexample suggests that the quadrature formula (14) is not ad-
equate in the case of a stiff source.

Accuracy of the schemes

Standard truncation analysis can be performed for non-stiff source. The scheme
based on semi-implicit evaluation of the source integral is second order accurate
in space and time. When the source is stiff, however, the fully implicit scheme is
preferable. The latter is first order accurate for non-stiff source, but gives a second
order scheme for the limit system obtained as ¢ — 0. A possible way in order
to obtain a uniform second order scheme could be to combine the implicit and
semi-implicit schemes. Such approaches are presently under investigation [13, 17].
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4. Splitting schemes.

The basic idea is to integrate first the relaxation system (relaxation step),

du

= — gu 18
) (18)
for a time step At, and then the homogeneous system (convection step), using the
output of the previous step as initial condition,

Ou , 9f(w)

ot Ox

We use NT scheme with a staggered grid for the convection step. A complete
convection step of step-size At on the original grid is obtained as a sequence of
two intermediate steps of step-size At/2 on staggered grid.

The simple splitting scheme is only first order accurate. A different splitting
strategy is proposed which uses implicit Euler scheme for the source. The scheme
is second order accurate for non stiff source and reduces to first order in the stiff
case.

In developing the numerical schemes we keep in mind the following guidelines:

= 0. (19)

e truncation error analysis is used to obtain second order accuracy in the
rarefied regime (e=0(1));

e the collision step is well posed Ve and it relaxes to a local Maxwellian as
e —0;

e the scheme should be unconditionally stable in the collision step;

o the limiting scheme obtained as € — 0 is a consistent scheme for the
equilibrium subsystem.

We accept our schemes only if the above conditions are satisfied.
Truncation analysis is performed on the linear system:

8U + AU + BU =0 (20)

where U € R™ and A, B are constant matrices.
Following the approach used in [5], we write our splitting scheme as a com-
bination of convection and relaxation steps:

U, = U"-aAtBU; (21)
Us = Uy —aAtAU, + %dzAt2A2U1 (22)
Us = U,— BAtBUs —yAtBU, (23)
m::%-@mu+¥%&ﬁg (24)
Us = ¢U +nUs (25)
Uttt = Us — pAtBU™T? (26)
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By imposing that the local truncation error is O(A#?), the set of constraints con-
stitutes a system of 7 algebraic equations in 8 unknowns, which can be explicitly
solved in terms of the parameter 3. The following family of schemes is obtained:

U1 = Un — OéAtBUl (27)
U2 = U1 - ﬂAtBU2 - ’)/AtBUl (28)
U3 = T(Uz) (29)

1
Untt = U — 5AtBU”“ (30)

where o = /(268 — 1), v = 1/2 — a — 3, and the symbol T (U) denotes a robust
second order accurate scheme (in space and time). In our case it will represent the
Nessyahu-Tadmor scheme.

We remark that all the conditions used as guidelines are satisfied. Second
order accuracy (for non-stiff relaxation) is obtained by one second order convection
and two first order relaxation steps.

Accuracy test of the splitting scheme

Here we want to investigate the accuracy of the splitting scheme. For our numerical
experiments, we shall consider the Brodwell model.

We start our simulations by considering a smooth solution of periodic type.
We integrate the system (3)-(5) with the following initial data

2
p(z,0) =1+ a,sin %,
2nx

1
U(m,o) - 5 + ay sin T,

m(z,0) = p(z,0)u(z,0),
Z(:L‘, 0) = ZE(p(ma 0)) m(m, 0))0M

with 6y = constant, zg being the local Maxwellian (6). For 6y = 1 the initial
value of z is Maxwellian. Several values of € have been considered. The goal of the
test is to check uniform convergence of the scheme with respect to e.

The system has been integrated for ¢ € [0,¢7]. The values of the parameters
used in the computation are:

L=20, t;=30, a,=0.3, a,=0.1

A mesh 200, 400 and 800 point grid has been considered. We call Az, Axy and
Azs the relative values of the mesh size.
The convergence rate is computed from the error according to the formula

log(error;/error;y1)
lOg(A.’I}l/AH_l)

where error; is the error obtained comparing the solutions with Az; and A;44.

CR; =
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In Table 1 we report the density convergence rate in the L;, Ly and L
norms for the mesh ratio A = At/Az = 0.5. Similar results have been obtained
for m and z.

One can see that the scheme is not uniformly accurate in € and as € — 0 the
scheme become of the first order.

Tab.1 : convergence rate for p, CFL 1/2

p |e=10] e=1 [e=10"2]e=10""]e=10"%]e=10"8
Ly | 222183 | 2.13676 | 1.22621 | 1.00854 | 1.00829 | 1.00829
Lo | 2.09765 | 2.18820 | 1.23911 | 1.011839 | 1.01814 | 1.01814
Lo | 1.67444 | 2.28726 | 1.23950 | 0.998505 | 0.998191 | 0.998191
Application of the above schemes to other physical cases are presented in
[13].
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