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Abstract� Several models in mathematical physics are described by quasilin�
ear hyperbolic systems with source term� which in several cases may become
sti�� Here a suitable central numerical scheme for such problems is developed
and application to shallow water equations� Broadwell model and Extended
Thermodynamics are mentioned�

The numerical methods are a generalization of the Nessyahu�Tadmor
scheme to the non�homogeneous case� We propose two ways for treating the
production term� The �rst is obtained by including the cell averages of the
productions� while the second family of schemes is obtained by a splitting
strategy�

�� Introduction

In several problems of mathematical physics� hyperbolic systems of balance laws
arise� In particular we mention hyperbolic systems with relaxation� such as discrete
velocity models in kinetic theory ���� gas with vibrational degrees of freedom �����
hydrodynamical models for semiconductors ��� ��� radiation hydrodynamics �����

Lately the development of high�order shock�capturing methods for conserva�
tion laws has become an interesting area or research� However� most schemes deal
almost exclusively with the homogeneous case� The extension to systems with a
source term has been studied in ���� ��� 	� where a method of line approach� to�
gether with splitting techniques has been used� Here we consider the extension of
second order central schemes to the non homogeneous case� The aim is to provide
a general�purpose robust scheme for systems of balance laws ��
� ����

The main advantage of central schemes is their �exibility� in fact they do not
require the knowledge of the characteristic structure of the system� and the 
exact
or approximate� solution to the Riemann problem� at variance with upwind�based
schemes�

There are systems with relaxation for which the analytical expression of
the eigenvalues and eigenvectors is not known� Typical examples are given by
monoatomic gas in Extended Thermodynamics ��	�� and some hydrodynamical
models for electron transport in semiconductors�

Explicit central schemes for balance laws with source have been considered
in ���� and applied to the shallow water equations�
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In this paper we consider two families of central schemes� which extend the
Nessyahu�Tadmor 
NT� scheme ��
� to systems with source� The �rst family is
obtained by including the source term in the integration over the cell in space�
time� Explicit and implicit formulations are considered� The implicit schemes are
able to treat sti� source terms� However a degradation of the accuracy is observed
in this case�

The second family is based on a splitting strategy� A new splitting scheme is
presented� For non sti� source� the new scheme gives second order accuracy with
�rst order evaluation of the relaxation step�

Application of the schemes to the shallow water equations� the Broadwell
model� and the equations for a monoatomic gas in Extended Thermodynamics are
presented in �����

The plain of the paper is the following� In section �� a sketch of the math�
ematical models is given� In sections � and � the numerical schemes obtained by
including the cell average of the production term and the numerical scheme based
on a splitting strategy respectively are presented�

�� The mathematical models

Here we present some signi�cant physical models represented by hyperbolic sys�
tems of balance laws� First we show a case with a non sti� source� the shallow water
equations with a smooth pro�le of the bottom� Then we present some examples of
relaxation systems�

We recall that the system

�tU � �xF 
U� � �
�

�
R
U�� U � RN �

is said a relaxation system ���� 
� if there exists a constant matrix Q with rank
n � N such that QR
U� � � � U which gives n conserved quantities v� One
assumes that each such v uniquely determines a local equilibrium value U � E
v�
satisfying R
E
v�� � � and such that

QE
v� � ���v�

Associated with the original system there are n conservation laws which represent
the local equilibrium subsystem

�tQU � �x
QF 
U�� � �� with U � E
v� �

When � is small compared to the time scale determined by the characteristic speed
of the system� we have a sti� relaxation term�

���� Non sti� problems� the shallow water equations

The evolution equations governing the �ow of shallow water waves into a channel
with a �xed bottom elevation described by B
x�� in the one dimensional case are
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given by the system ���� ���

ht � 
hu�x � �� 
��


hu�t �

�
hu� �

�

�
gh�

�
x

� �ghBx� 
��

where g is the gravitational constant� h represents the �uid depth and u is the
velocity� B
x� � h
x� t� gives the top surface� It is straightforward to check that
the equations 
���
�� form a hyperbolic system with characteristic velocities

� � u�
p
gh�

Stationary solutions are given by

g
h
x� �B
x�� �
�

�
u� � constant�

The next example we consider is the Broadwell model� It describes a ��D 
��
D� gas composed of particles with four 
six� discrete velocities with binary collision
law and spatial variation in only one direction� For the ��D gas the evolution
equations read

�t�� �xm � �� 
��

�tm� �xz � �� 
��

�tz � �xm �
�

�

�� �m� � ��z�� 
	�

where � is the mean free path� The dynamical variables � and m are the density
and the momentum respectively� while z represents the �ux of momentum� A
description of the Broadwell model can be found� for example� in �	��

The characteristic velocities are constant

� � ��� �� ��

As �� �� z is given by a local Maxwellian distribution

z � zE
��m� �
�

��

�� �m�� 

�

and we get the �uid dynamic limit

�t�� �x
�u� � ��

�t
�u� � �x

�
�

�

�� �u��

�
� ��

with u � m���
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�� Non splitting schemes

Let us consider the initial value problem

ut � f
u��x � g
u�� 
��

u
x� �� � �
x�� �� � x �� 
��

with u � Rm and f � Rm � R
m�

We discretize space�time with staggered cells� Following ��
�� at each time
level we reconstruct a piecewise linear approximation of the form

Lj
x� t� � uj
t� �
x� xj
�x

u�j xj���� � x � xj�����

where u�j��x is a �rst order approximation of the space derivative at xj � By

integrating Eq�
�� over the cell �xj � xj���� �tn� tn���� we obtain

un��j���� �
�

�

unj � unj��� �

�

�

u�j � u�j��� �

�

�x

Z tn��

tn

Z xj��

xj

g
u
x� t�� dxdt

�
�

�x

Z tn��

tn
f
u
xj � t��� f
u
xj��� t�� dt� 
��

Di�erent schemes are obtained by suitable discretization of the integrals of �uxes
and source� The integral of the �ux is discretized by midpoint ruleZ tn��

tn
f
u
xj � t�� dt � �t f
u

n����
j ��

The predictor u
n����
j is obtained by Taylor expansion in an explicit way

u
n����
j � unj �

�t

�

�
g
unj ��

f �j
�x

�
�

or in an implicit way

u
n����
j � unj �

�t

�

�
g
u

n����
j ��

f �j
�x

�
�

which is appropriate for sti� problems in order to avoid restriction on the time
step�

The values of u�j��x and f �j��x are a �rst order approximation of the space
derivatives of the �eld and of the �ux� They can be computed in several ways
��� �
�� The simplest choice is

u�j � MM
uj�� � uj � uj � uj���� 
���

where MM
x� y� is the min mod function� de�ned by

MM
x� y� �

�
sgn
x� 	min
jxj� jyj� if sgn
x� � sgn
y��
� otherwise �
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This approximation has the drawback of accuracy degradation near local
extrema� Better results are obtained by the UNO�like derivative ���

u�j � MM
uj � uj�� �
�

�
Dj����� uj�� � uj �

�

�
Dj������ 
���

where

Dj� �
�
�MM
uj�� � �uj�� � uj � uj�� � �uj � uj���� 
���

In the original NT scheme� the time step �t must satisfy a stability condition

�t 	max
x

�
A
u
x� tn��� �
�

�
�x 
���

where A � �f��u is the Jacobian matrix� and � denotes the spectral radius� This
condition ensures that the generalized Riemann problems with piecewise smooth
data at time tn do not interact during the time step �t� The e�ect of the presence
of the source on the stability restriction is presently under investigation�

Several quadrature formulas have been tested for discretizing the integral of
the source term� An example of explicit scheme is given by using the mid�point
rule�

Ig �

Z tn��

tn

Z xj��

xj

g
u
x� t�� dxdt � g
u
n����
j���� ��x�t� 
���

with

u
n����
j���� �

u
n����
j � u

n����
j��

�
� 
�	�

where the values u
n����
j are computed in the predictor step� An example of semi�

implicit scheme is given by

Ig � �g
n����
j���� �

�
g
unj � � g
unj �

�
� g
un��j�����

�
�x�t

�
� 
�
�

which leads to the second order semi�implicit scheme

un��j���� �
�t

�
g
un��j����� �

�

�

unj � unj��� �

�

�

u�j � u�j���

��
h
f
u

n����
j�� �� f
u

n����
j �

i
�

�t

�

�
g
unj � � g
unj���

�
� 
���

Here � � �t��x denotes the mesh ratio�

A fully implicit scheme is obtained by the 
�rst order� quadrature formula

Ig � g
un��j������x�t�
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Limitation of the the non splitting scheme for sti� source

Here we show� by and explicit example� that the semi�implicit non splitting scheme
may fail when dealing with a sti� relaxation term�

Let us consider a single equation with a source term of relaxation type

g
u� � �
R
u�

�

We want to analyze the non splitting schemes when �� ��

We shall consider the simple case

g
u� � �
u� u�

�
� with u� �constant�

The scheme with the implicit predictor step reads

un��j���� �
�

�

unj � unj��� �

�

�

u�j � u�j���� �

h
f
u

n����
j�� �� f
u

n����
j �

i

�
�t

�

�
unj � u�

�
�
unj�� � u�

�

�
�

�t

�

un��j����

�

u
n����
j � unj �

�
f �
unj �

�x
�
u
n����
j � u�

�

�
�t

�
�

When �� �� we get

u
n����
j � u�� un��j���� � �u� �

unj � unj��
�

�

For the initial data

u�j � u� � �� with ��constant�

one has �
u�n��j � u� � ��

u�n��j � u� � ��
n � �� �� �� 	 	 	

Therefore the scheme does not converge�

Such a counterexample suggests that the quadrature formula 
��� is not ad�
equate in the case of a sti� source�

Accuracy of the schemes

Standard truncation analysis can be performed for non�sti� source� The scheme
based on semi�implicit evaluation of the source integral is second order accurate
in space and time� When the source is sti�� however� the fully implicit scheme is
preferable� The latter is �rst order accurate for non�sti� source� but gives a second
order scheme for the limit system obtained as � � �� A possible way in order
to obtain a uniform second order scheme could be to combine the implicit and
semi�implicit schemes� Such approaches are presently under investigation ���� ����



Central Schemes for Systems of Balance Laws �

�� Splitting schemes�

The basic idea is to integrate �rst the relaxation system 
relaxation step��

du

dt
� g
u�� 
���

for a time step �t� and then the homogeneous system 
convection step�� using the
output of the previous step as initial condition�

�u

�t
�
�f
u�

�x
� �� 
���

We use NT scheme with a staggered grid for the convection step� A complete
convection step of step�size �t on the original grid is obtained as a sequence of
two intermediate steps of step�size �t�� on staggered grid�

The simple splitting scheme is only �rst order accurate� A di�erent splitting
strategy is proposed which uses implicit Euler scheme for the source� The scheme
is second order accurate for non sti� source and reduces to �rst order in the sti�
case�

In developing the numerical schemes we keep in mind the following guidelines�


 truncation error analysis is used to obtain second order accuracy in the
rare�ed regime 
��O
����


 the collision step is well posed �� and it relaxes to a local Maxwellian as
�� ��


 the scheme should be unconditionally stable in the collision step�

 the limiting scheme obtained as � � � is a consistent scheme for the
equilibrium subsystem�

We accept our schemes only if the above conditions are satis�ed�

Truncation analysis is performed on the linear system�

�tU �AU �BU � � 
���

where U � Rm and A� B are constant matrices�

Following the approach used in �	�� we write our splitting scheme as a com�
bination of convection and relaxation steps�

U� � Un � 	�tBU� 
���

U� � U� � �	�tAU� �
�

�
�	��t�A�U� 
���

U� � U� � 
�tBU� � ��tBU� 
���

U� � U� � �
�tAU� �
�

�
�
��t�A�U� 
���

U� � �U� � 
U� 
�	�

Un�� � U� � ��tBUn�� 
�
�
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By imposing that the local truncation error is O
�t��� the set of constraints con�
stitutes a system of � algebraic equations in � unknowns� which can be explicitly
solved in terms of the parameter 
� The following family of schemes is obtained�

U� � Un � 	�tBU� 
���

U� � U� � 
�tBU� � ��tBU� 
���

U� � T 
U�� 
���

Un�� � U� �
�

�
�tBUn�� 
���

where 	 � 
�
�
 � ��� � � ���� 	 � 
� and the symbol T 
U� denotes a robust
second order accurate scheme 
in space and time�� In our case it will represent the
Nessyahu�Tadmor scheme�

We remark that all the conditions used as guidelines are satis�ed� Second
order accuracy 
for non�sti� relaxation� is obtained by one second order convection
and two �rst order relaxation steps�

Accuracy test of the splitting scheme

Here we want to investigate the accuracy of the splitting scheme� For our numerical
experiments� we shall consider the Brodwell model�

We start our simulations by considering a smooth solution of periodic type�
We integrate the system 
���
	� with the following initial data

�
x� �� � � � a� sin
��x

L
�

u
x� �� �
�

�
� au sin

��x

L
�

m
x� �� � �
x� ��u
x� ���

z
x� �� � zE
�
x� ���m
x� ����M

with �M � constant� zE being the local Maxwellian 

�� For �M � � the initial
value of z is Maxwellian� Several values of � have been considered� The goal of the
test is to check uniform convergence of the scheme with respect to ��

The system has been integrated for t � ��� tf �� The values of the parameters
used in the computation are�

L � ��� tf � ��� a� � ���� au � ����

A mesh ���� ��� and ��� point grid has been considered� We call �x�� �x� and
�x� the relative values of the mesh size�

The convergence rate is computed from the error according to the formula

CRi �
log
errori�errori���

log
�xi��i���

where errori is the error obtained comparing the solutions with �xi and �i���
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In Table � we report the density convergence rate in the L�� L� and L�
norms for the mesh ratio � � �t��x � ��	� Similar results have been obtained
for m and z�

One can see that the scheme is not uniformly accurate in � and as �� � the
scheme become of the �rst order�

Tab�� � convergence rate for �� CFL ���

� � � ��� � � � � � ���� � � ���� � � ���� � � ����

L� ������� ����
�
 ����
�� �����	� ������� �������
L� �����
	 ������� ������� �������� ������� �������
L� ��
���� ������
 �����	� �����	�	 �������� ��������

Application of the above schemes to other physical cases are presented in
�����
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