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Abstract. Several models in mathematical physics are described by quasi-linear hyperbolic
systems with source term and in several cases the production term can become stiff. Here suitable
central numerical schemes for such problems are developed and applications to the Broadwell model
and extended thermodynamics are presented.

The numerical methods are a generalization of the Nessyahu–Tadmor scheme to the nonhomoge-
neous case by including the cell averages of the production terms in the discrete balance equations.
A second order scheme uniformly accurate in the relaxation parameter is derived and its properties
analyzed. Numerical tests confirm the accuracy and robustness of the scheme.
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1. Introduction. In several problems of mathematical physics, hyperbolic sys-
tems of balance laws arise. In particular we mention hyperbolic systems with re-
laxation, such as discrete velocity models in kinetic theory [1], gas with vibrational
degrees of freedom [2], hydrodynamical models for semiconductors [3, 4], and radiation
hydrodynamics [5].

Lately the development of high order shock-capturing methods for conservation
laws has become an interesting area of research (see, for example, [6, 7, 8]). However,
most schemes deal almost exclusively with the homogeneous case. The extension to
systems with a source term has been studied mainly in the context of upwind methods
[9, 10, 11] where a method of line approach, together with splitting techniques, has
been used. Most of such schemes are based on the solution to the Riemann problem.
There are systems with relaxation for which the analytical expression of the eigenval-
ues and eigenvectors is not known. Typical examples are given by monatomic gas in
extended thermodynamics and some hydrodynamical models for electron transport
in semiconductors. For such systems, schemes based on the solution of the Riemann
problem are expensive or impractical.

An alternative approach to upwind schemes for the solution of systems of conser-
vation laws is given by central schemes, which have recently attracted great attention,
mainly because of their simplicity and robustness. Central schemes, in fact, require
neither the (exact or approximate) solution to the Riemann problem nor the knowl-
edge of the characteristic structure of the Jacobian matrix. The first order, building
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block of central schemes is the Lax–Friedrichs scheme. A second order nonoscillatory
scheme was introduced by Nessyahu and Tadmor [12] for one dimensional problems.
Central schemes in two dimensions have been derived and studied by several authors
[13, 14, 15]. Higher order central schemes have also been developed in one dimension
[16, 17, 18], and in several dimensions [19, 20].

Most central schemes are based on the use of a staggered grid in space-time. Re-
cently a new approach has been proposed, which combines the central approach with
the method of lines [21]. Such a method has been successfully applied to convection-
diffusion problems and seems very promising to obtain numerical solutions of systems
with (stiff or nonstiff) source term. We remark that other high order shock-capturing
schemes have been constructed that are not based on characteristic decomposition
of the system (see, for example, [22]). Whether such schemes are called “central” or
“upwind” depends more on the derivation than on the actual resulting scheme.

Here we consider the extension of second order central schemes to the nonhomo-
geneous case. The aim is to provide a general-purpose robust scheme for systems of
balance laws, valid in all the regimes, i.e., when the relaxation time ranges from zero
to infinity.

Central schemes with source have been considered in [23, 24]. In the first paper,
central schemes for systems of conservation laws are extended to systems with nonstiff
source, with particular application to the system of shallow water. In the second
paper, a numerical scheme is derived for systems with a (possibly stiff) relaxation
term. The authors are aware that Strang splitting is not able to guarantee second order
accuracy in the stiff case and propose a nonsplitting strategy which reduces to the
second order Nessyahu–Tadmor scheme when the relaxation term is omitted. Their
scheme can be written as a predictor-corrector scheme, with an implicit treatment of
the source. Its structure, however, is different from the schemes that we propose.

In this paper we consider a family of schemes, which extend the Nessyahu–Tadmor
scheme [12] to systems with source. This is done by including the source term in
the integration over the cells in space-time. Explicit and implicit formulations are
considered. In particular, an implicit scheme which is able to treat stiff source term
is derived and analyzed. Splitting strategies have been successfully developed in the
context of upwind schemes [10, 11]. However, the approach used in [11] cannot be
straightforwardly extended to the Nessyahu–Tadmor central scheme (see [25] and [26]
for splitting central schemes).

Here only nonsplitting schemes are considered. This work may be considered an
extension of previous works on central schemes and on the proper treatment of stiff
source in upwind schemes, although the scheme we present for the treatment of the
source and the analysis are original.

If an appropriate quadrature formula is employed for the integration of the pro-
duction terms, then the scheme retains a full second order accuracy both for stiff and
nonstiff source. For a splitting strategy used in conjunction with central schemes, the
reader is referred to [25]. However, the splitting schemes, although sufficiently robust
for the applications, suffer a loss of accuracy in the fluid regime.

The schemes have been tested on the Broadwell model and the equations for a
monatomic gas in extended thermodynamics and accurate results have been obtained.

The plan of the paper is the following. In section 2, a sketch of the mathematical
models is given. In sections 3 the method of Nessyahu and Tadmor (hereafter NT)
for homogeneous hyperbolic systems is recalled. In section 4 the numerical schemes
obtained by including the cell average of the production term are presented and their



CENTRAL SCHEMES FOR BALANCE LAWS OF RELAXATION TYPE 1339

analysis is performed in the next section. Numerical tests and applications to extended
thermodynamics are reported in the last two sections.

2. The mathematical models. Here we present some significant physical mod-
els represented by hyperbolic systems of balance laws of relaxation type.

We recall that the system of the type

∂tU + ∂xF (U) = −1

ε
R(U), U ∈ RN ,(2.1)

is said to be a relaxation system in the sense of Whitham [27] and Liu [28] if there
exists a constant n×N matrix Q with rank n < N such that QR(U) = 0 ∀ U .

This yields n independent conserved quantities v = QU . One assumes that each
such v uniquely determines a local equilibrium value U = E(v) satisfying R(E(v)) = 0.
The image of E then constitutes the manifold of local equilibria of R.

Associated with the original system and the matrix Q are n conservation laws
which are satisfied by every solution of (2.1)

∂tQU + ∂x(QF (U)) = 0 with U = E(v) .

These equations form a closed system (the reduced system or the equilibrium subsys-
tem) for v = QU if we take the local relaxation approximation

U = E(v).

Such a system has the form

∂v

∂t
+
∂F
∂x

= 0,

where F(v) = QF (E(v)).
When ε is small compared to the time scale determined by the characteristic

speed of the system, we have a stiff relaxation term.
In the following we shall present two models of relaxation type with stiff source:

the Broadwell model and the model of extended thermodynamics for monatomic gas.
The first one is an example of a semilinear hyperbolic system while the second one is
a quasi-linear hyperbolic system.

2.1. The Broadwell model. The Broadwell model describes a two dimensional
(three dimensional) gas composed of particles with four (six) discrete velocities with
binary collision law and spatial variation in only one direction. For the two dimen-
sional gas the evolution equations read [11]

∂tρ+ ∂xm = 0,(2.2)

∂tm+ ∂xz = 0,(2.3)

∂tz + ∂xm =
1

ε
(ρ2 +m2 − 2ρz),(2.4)

where ε is the mean free path. The dynamical variables ρ and m are the density and
the momentum, respectively, while z represents the flux of momentum.

The characteristic velocities are constant,

λ = −1, 0, 1.
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As ε→ 0, z is given by a local Maxwellian distribution

z = zE(ρ,m) =
1

2ρ
(ρ2 +m2)(2.5)

and we are in the fluid dynamic limit, satisfying the equations

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x

(
1

2
(ρ+ ρu2

)
= 0,

with u = m/ρ.

2.2. The model of extended thermodynamics for monatomic gas. The
extended thermodynamics [29, 30] describes nonequilibrium phenomena in contin-
uum mechanics by treating the dissipative variables as additional evolution variables.
Therefore the balance equations also comprise, in addition to the conservation equa-
tions for density, momentum, and energy, further balance equations for the viscous
stress tensor and the heat flux.

In the one dimensional case the model is given by the following evolution equa-
tions:

∂ρ

∂t
+
∂

∂x
(ρu) = 0,(2.6)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p+ σ

)
= 0,(2.7)

∂

∂t

(
1

2
ρu2 +

3

2
p

)
+
∂

∂x

(
1

2
ρu3 +

5

2
up+ σu+ q

)
= 0,(2.8)

∂

∂t

(
2

3
ρu2 + σ

)
+
∂

∂x

(
2

3
ρu3 +

4

3
up+

7

3
uσ +

8

15
q

)
= −ρσ

ε
,(2.9)

(2.10)

∂

∂t

(
ρu3 + 5up+ 2σu+ 2q

)
+
∂

∂x

(
ρu4 + 5

p2

ρ
+ 7

σp

ρ
+

32

5
qu+ u2 (8p+ 5σ)

)

= −2ρ

ε

(
2

3
q + σu

)
,

where ρ is the density, u is the velocity, p is the pressure, σ is the xx-component of
the viscous stress tensor, and q is the heat flux. In the case of a monatomic gas, ε is
a constant and ρ/ε is the inverse of the relaxation time for σ.

System (2.6)–(2.11) is hyperbolic in a suitable region of the space variable (see
[29]).

As in the Broadwell model, when ε is small compared to the speed given by the
characteristic velocity of the system, the problem becomes stiff. Moreover, as ε→ 0,
the local equilibrium subsystem is given by the usual Euler equations for a monatomic
gas,

∂ρ

∂t
+
∂

∂x
(ρu) = 0,(2.11)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0,(2.12)

∂

∂t

(
1

2
ρu2 +

3

2
p

)
+
∂

∂x

(
1

2
ρu3 +

5

2
up

)
= 0.(2.13)
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We remark that explicit analytical expressions for the eigenvalues and eigenvectors of
the system (2.6)–(2.11) are not known. Therefore in order to integrate numerically the
system (2.6)–(2.11), a highly desirable property of the numerical scheme is that it does
not require the knowledge of the characteristic structure of the evolution equations.
In fact, the use of numerical methods based on the characteristic decomposition such
as those obtained with the use of the Roe matrix can be computationally too heavy.

3. The Nessyahu–Tadmor scheme. Let us consider the initial value problem

∂u

∂t
+
∂f

∂x
= g(u),(3.1)

u(x, 0) = Φ(x), −∞ < x <∞(3.2)

with u ∈ Rm and f(u) : Rm → Rm.
The NT numerical method for the homogeneous equation, that is, for g(u) = 0,

has the form of a predictor-corrector scheme

u
n+1/2
j = unj − λ

2
f ′j ,(3.3)

un+1
j+1/2 =

1

2
(unj + unj+1) +

1

8
(u′j − u′j+1)− λ

(
f(u

n+1/2
j+1 )− f(un+1/2

j )
)
,(3.4)

where λ = ∆t/∆x.
The time step ∆t must satisfy the stability condition

λmax
j
ρ(A(u(xj , t)) <

1

2
,(3.5)

where ρ denotes the spectral radius of the Jacobian matrix A = ∂f/∂u. This condition
ensures that the generalized Riemann problems with piecewise smooth data at time
tn do not interact during the time step ∆t.

The values of u′j/∆x and f ′j/∆x are a first order approximation of the space
derivatives of the field and of the flux. They can be computed in several ways (see
[12]). The simplest choice is

u′j = MM(uj+1 − uj , uj − uj−1),(3.6)

where MM(x, y) is the min mod function, defined by

MM(x, y) =

{
sgn(x) ·min(|x|, |y|) if sgn(x) = sgn(y),
0 otherwise.

We shall adopt the UNO-like derivative [31]

Dj+ 1
2
u = MM(uj+2 − 2uj+1 + uj , uj+1 − 2uj + uj−1),

u′j = MM(uj+1 − uj − 1

2
Dj+ 1

2
u, uj − uj−1 +

1

2
Dj− 1

2
u)

which we find gives the best results among the limiters proposed in [12].
Now we show how to generalize the NT scheme to the nonhomogeneous case, that

is, when g(u) �= 0. For a strategy based on a splitting schemes the reader is referred
to [25].
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In developing the numerical schemes we keep in mind the following guidelines:
• truncation error analysis is used to obtain second order accuracy in the rar-
efied regime (ε=O(1));

• the collision step is well posed ∀ε and its solution relaxes to a local Maxwellian
as ε→ 0;

• the scheme should be unconditionally stable in the collision step;
• the limiting scheme obtained as ε → 0 is a consistent numerical scheme for
the equilibrium subsystem.

4. Extension of the Nessyahu–Tadmor scheme to the nonhomogeneous
case. Let us consider again the initial value problem (3.1)–(3.2).

We discretize space-time with staggered cells. Following [12], at each time level
we reconstruct a piecewise linear approximation of the form

Lj(x, t) = uj(t) +
x− xj
∆x

u′j , xj−1/2 ≤ x ≤ xj+1/2,

where u′j/∆x is a first order approximation of the space derivative at xj . By inte-

grating (3.1) over the cell [xj , xj+1]× [tn, tn+1], we obtain

un+1
j+1/2 =

1

2
(unj + unj+1) +

1

8
(u′j − u′j+1) +

1

∆x

∫ tn+1

tn
f(u(xj , t))− f(u(xj+1, t)) dt

+
1

∆x

∫ tn+1

tn

∫ xj+1

xj

g(u(x, t)) dxdt.(4.1)

Different schemes are obtained by suitable discretization of the integrals of fluxes
and source.

The integral of the flux is discretized by midpoint rule

∫ tn+1

tn
f(u(xj , t)) dt ≈ ∆t f(u

n+1/2
j ).

The predictor u
n+1/2
j is obtained from Taylor expansion by an explicit scheme

u
n+1/2
j = unj +

∆t

2

(
g(unj )−

f ′j
∆x

)
,

or by an implicit scheme

u
n+1/2
j = unj +

∆t

2

(
g(u

n+1/2
j )− f ′j

∆x

)
,

which is appropriate for stiff problems in order to avoid restriction on the time step.
The values of u′j and f ′j can be explicitly computed as illustrated in section 3.
Several quadrature formulas have been tested for discretizing the integral of the

source term. The main guideline to select the appropriate quadrature formula in order
to get a uniformly accurate scheme in ε is to choose nodes and weights that give an
L-stable scheme for the stiff part (see the next section for the stability analysis).

Here we show several possible choices. Consistency and stability analysis will be
used to select schemes suitable also in the fluid limit.
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An example of a scheme with explicit corrector is obtained by using a quadrature
formula which is midpoint in time and trapezoidal rule in space

Ig =

∫ tn+1

tn

∫ xj+1

xj

g(u(x, t)) dxdt ≈ 1

2

(
g(u

n+1/2
j ) + g(u

n+1/2
j+1 )

)
∆x∆t.(4.2)

The predictor values u
n+1/2
j may be computed by an explicit or an implicit step. An

example of a scheme with implicit corrector is obtained by

Ig ≈ ĝn+1/2
j+1/2 =

1

2

(
g(unj+1) + g(u

n
j )

2
+ g(un+1

j+1/2)

)
∆x∆t(4.3)

which leads to the implicit central scheme of order 2 (ICS2)

un+1
j+1/2 −

∆t

2
g(un+1

j+1/2) =
1

2
(unj + unj+1) +

1

8
(u′j − u′j+1)

−λ
(
f(u

n+1/2
j+1 )− f(un+1/2

j )
)
+

∆t

4

(
g(unj ) + g(u

n
j+1)

)
.(4.4)

We observe that in the simple case when f ≡ 0, the scheme can be regarded as
a numerical scheme for systems of ordinary differential equations (ODEs). More
precisely, scheme ICS2 becomes the trapezoidal method (or Crank–Nicolson), which
is A-stable, but not L-stable [33], and therefore it is not suitable for strongly stiff
systems, such as the hyperbolic system near the fluid dynamic regime. For an explicit
example in this context consult [25].

The choice of a Radau quadrature formula leads to the uniformly implicit central
scheme of order 2 (UCS2)

un+1
j+1/2 =

1

2
(unj + unj+1) +

1

8
(u′j − u′j+1)− λ

(
f(u

n+1/2
j+1 )− f(un+1/2

j )
)

+ ∆t

(
3

8
g(u

n+1/3
j ) +

3

8
g(u

n+1/3
j+1 ) +

1

4
g(un+1

j+1/2)

)
.(4.5)

In the implicit methods ICS2 and UCS2, the values of u
n+1/2
j and u

n+1/3
j are evaluated

with an implicit predictor step,

u
n+1/2
j = unj +

∆t

2

(
g(u

n+1/2
j )− f ′j

∆x

)
,

u
n+1/3
j = unj +

∆t

3

(
g(u

n+1/3
j )− f ′j

∆x

)
.

Standard truncation analysis shows that UCS2 is second order accurate in space and
time in the rarefied regime (i.e., when ε� 1).

Concerning the fluid limit, we observe that when f ≡ 0, the scheme is an L-stable
scheme for systems of ODEs (see section (5.2)), and therefore the scheme provides
the correct limit as ε→ 0. A more detailed analysis of this scheme is presented in the
next section.

5. Analysis of scheme UCS2.
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5.1. Consistency analysis. In this section we perform a consistency analysis
of scheme UCS2. We shall show that the scheme is second order accurate both in the
rarefied regime (ε = 1) and the fluid dynamic limit (ε = 0). We apply the scheme to
the simple 2× 2 system

ut + vx = 0,

vt + ux = −1

ε
(v − au),(5.1)

u(x, 0) = u0(x), v(x, 0) = v0(x),(5.2)

where a ∈ R, |a| < 1. The accuracy of the scheme is studied by comparing the Taylor
expansion in time of the exact solution and of the numerical solution after one time
step. In the fluid dynamic limit v = au, and the system reduces to the single equation

ut + aux = 0,(5.3)

u(x, 0) = u0(x).(5.4)

For small value of ε, the behavior of the system is described by the Navier–Stokes
limit

ut + aux = ε(1− a2)uxx,(5.5)

v = au− ε(1− a2)ux,(5.6)

u(x, 0) = u0(x).(5.7)

We shall consider separately the different regimes.
Rarefied regime: ε = 1. The Taylor expansion of the exact solution is given by

u(x,∆t) = u0 −∆t v0x +
1

2
∆t2 (u0

xx + v0x − au0
x) +O(∆t

3),(5.8)

v(x,∆t) = v0 −∆t (u0
x + v0 − au0) +

1

2
∆t2 (v0xx + u0

x − av0x − au0) +O(∆t3),(5.9)

with an obvious notation.
Fluid dynamic limit: ε = 0. The Taylor expansion of the exact solution is given

by

u(x,∆t) = u0 −∆t au0
x +

1

2
∆t2 a2u0

xx +O(∆t3).(5.10)

Thin regime: ε� 1. The Taylor expansion of the exact solution is given by

u(x,∆t) = u0 −∆t au0
x +

1

2
∆t2 a2u0

xx + ε∆t (1− a2)(u0
xx − a∆t u0

xxx)

+ O(∆t3, ε2).
(5.11)

The above expressions are valid for the point-wise value of the exact solution.
Similar expressions can be derived for the cell average ū(x, t) defined as

ū(x, t) =
1

h

∫ h/2

−h/2

u(x+ ξ, t) dξ.

To the same order of accuracy, the expressions for the Taylor expansion of the solution
are the same, except that u0(x) will be substituted by

ū0(x) ≡ 1

h

∫ h/2

−h/2

u0(x+ ξ) dξ,



CENTRAL SCHEMES FOR BALANCE LAWS OF RELAXATION TYPE 1345

where h ≡ ∆x. The relation between u0(x) and ū0(x) for a smooth function is

u0(x) = ū0(x)− 1

24
u0
xx(x)h

2 +O(h4).

By applying scheme UCS2 to system (5.1), one computes ū1
j+1/2 and v̄1j+1/2 as regular

functions of ε, h, λ

ū1
j+1/2 = U(Uj , Uj+1, U

′
j , U

′
j+1, λ, h, ε),(5.12)

v̄1j+1/2 = V(Uj , Uj+1, U
′
j , U

′
j+1, λ, h, ε),(5.13)

where for brevity we denote by U the field variables (ū, v̄). Direct computation shows
that

V(·, ε = 0) = aU(·, ε = 0).

The dependence on ε is regular, and the function can be expanded in ε. To zeroth
order in ε one has

ū1
j+1/2 =

1

2
(ū0

j + ū
0
j+1)−

1

8
(u′j+1 − u′j)− λa(ū0

j+1 − ū0
j ) +

1

2
aλ2(v′j+1 − v′j).(5.14)

The Taylor expansion of the exact solution is given by (5.10), which, for the cell
average, becomes

ū(xj+1/2, λh) = ū
0(xj+1/2)− λhau0

x(xj+1/2) +
1

2
λ2h2a2u0

xx(xj+1/2) +O(h
3).(5.15)

For a regular initial condition with

v0(x) = au0(x)(5.16)

one has

ū0(xj+1/2) =
1

2
(ū0

j + ū
0
j+1)−

1

8
(u′j+1 − u′j) +O(h3),

u0
x(xj+1/2) =

1

h
(ū0

j+1 − ū0
j ) +O(h

2),(5.17)

v0xx(xj+1/2) =
1

h2
(v′j+1 − v′j) +O(h).

These expressions can be easily proved under the following assumptions:
(i) the function u0(x) is smooth;
(ii) the approximation of the derivatives is first order accurate but depends

smoothly on x, i.e.,

u′j
h

=
∂u0

∂x
(xj) + c(xj)h+O(h

2),

v′j
h

=
∂v0

∂x
(xj) + d(xj)h+O(h

2)

(5.18)

with c(x) and d(x) smooth.
Making use of relations (5.14), (5.15), (5.17), one obtains

ū1
j+1/2 − ū(xj+1/2, λh) = O(h

3)

and therefore the scheme is second order accurate in the fluid dynamic limit.
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Analysis for ε = 1. In order to check the accuracy for ε = 1, we expand the nu-
merical solution (ū1

j+1/2, v̄
1
j+1/2) making use of the following Taylor expansion around

xj+1/2:

ūj+1 = ūj+1/2 +
1

2
uxh+

1

8
uxxh

2 +O(h3),

ūj = ūj+1/2 − 1

2
uxh+

1

8
uxxh

2 +O(h3),

u′j+1

h
= ux +

(
c+

1

2
uxx

)
h+O(h2),

u′j
h

= ux +

(
c− 1

2
uxx

)
h+O(h2),

(5.19)

where ū = ū(xj+1/2), ux ≡ ux(xj+1/2), uxx ≡ uxx(xj+1/2), c ≡ c(xj+1/2). Analogous
formulae hold for v. These expansions are in agreement with expressions (5.17) and
(5.18).

Substituting the expansion into the expression of U and V, and making use of
(5.17), one obtains

ū1
j+1/2 = ū0 − hλv0x +

1

2
h2λ2(v0x − au0

x + u0
xx) +O(h

3),

v̄1j+1/2 = v̄0 + λ(aū0 − v̄0 − ux) + 1

2
h2λ2(v̄0 − aū0 + u0

x − av0x + v0xx) +O(h
3),

which is in agreement with the Taylor expansion of the exact solution.
Analysis for ε� 1. The Taylor expansion in h and ε of the numerical solution U

is

ū1
j+1/2 = ū0 − hλau0

x +
1

2
h2λ2v0xx + εhλ(u0

xx − av0xx) + 2ε(au0
x − v0x) +O(ε2).

Assuming that the initial condition is in agreement with the Chapman–Enskog ex-
pansion of the solution of system (5.1), i.e., that

v0 = au0 +O(ε),

then the term 2ε(au0
x−v0x) can be neglected since it is O(ε2), and the numerical solu-

tion is in agreement with the exact solution (5.11), if we neglect terms O(h3, εh2, ε2).

5.2. Stability analysis. In this section we perform the linear stability analysis
of the scheme. We consider the scheme as applied to a system of ODEs and study its
A-stability property.

First let us briefly recall the definition of A- and L-stability. Let us consider a
system of ODEs of the form

y′ = f(y),(5.20)

y(0) = y0,(5.21)

where y ∈ Rm. In order to study A-stability of a one-step scheme (e.g., a Runge–
Kutta scheme), let us apply the scheme to the test equation

y′ = λy,(5.22)

y(0) = 1,(5.23)
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with y ∈ C and λ ∈ C, �λ < 0. The exact solution of this equation at time n∆t is

y(n∆t) = exp(λn∆t)

and its absolute value decreases monotonically in time. When we apply a one-step
method to the test equation, the numerical solution at time n∆t is

yn = (y1)
n,

where y1 = R(λ∆t) is the numerical solution after one step. The function R(λ∆t) is
called function of absolute stability. The region of the complex plane

SA = {z ∈ C : |R(z)| ≤ 1}
is called region of absolute stability . A one-step scheme is said to be A-stable if its
region of absolute stability contains the complex half plane C− = {z ∈ C : �z ≤ 0}.

A scheme is said to be L-stable if it is A-stable and limz→∞ R(z) = 0. L-stability
is important when dealing with stiff systems. For a discussion of different concepts of
stability and stiffness for systems of ODEs, see, for example, [33].

Now we generalize the concept of A-stability to systems of equations which are
the sum of stiff and nonstiff parts. Let us consider a system of the form

y′ = f(y) + g(y),(5.24)

y(0) = y0.(5.25)

The time discretization of scheme UCS2 is particularly suited for systems of the form
(5.24), where it is possible to identify a stiff part, g, and a nonstiff part, f . Sometimes,
such as in the case of hyperbolic systems with relaxation, the computation of nonstiff
part is expensive, and therefore it would be desirable to do it explicitly.

The scheme that we used can be written in the form

Y1/2 = y0 +
k

2
f(y0) +

k

2
g(Y1/2),

Y1/3 = y0 +
k

3
f(y0) +

k

3
g(Y1/3),(5.26)

y1 = y0 + kf(Y1/2) +
k

4
(3g(Y1/3) + g(y1)),

where k denotes the time step, and y1 denotes the numerical solution after one time
step.

Standard truncation analysis shows that y(k)− y1 = O(k3), therefore the scheme
is of order 2.

In order to study the stability, we first show that the scheme is L-stable when
f ≡ 0. Then we study the restrictions on the time step in the general case.

In order to study the A-stability, we consider the model problem

y′ = λ1y + λ2y,(5.27)

y(0) = 1.(5.28)

When applied to this equation, scheme (5.26) gives

y1 = R(z1, z2) =

(
4 + 4z1

2 + z1
2− z2 + 3z2

3 + z1
3− z2

)
(4− z2)−1,(5.29)
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where z1 = λ1k, z2 = λ2k. The function R(z1, z2) is the function of absolute stability.
In the case z1 = 0 the function reduces to

R(0, z2) =
12 + 5z2

(3− z2)(4− z2) .

A simple calculation shows that this corresponds to the stability function of an L-
stable scheme.

The region of absolute stability SA associated with scheme (5.26) is defined as

SA = {(z1, z2) ∈ C2 : |R(z1, z2)| ≤ 1}.
It is evident that the region does not contain the set C− ×C−. Our goal is to show
that there exist two regions of the complex plane, S1 ⊂ C, S2 ⊂ C, with the following
properties:

SA ⊃ S1 × S2,(5.30)

S2 ⊃ C− ≡ {z ∈ C : �(z) ≤ 0},(5.31)

and to compute them. It is clear that two such sets, if they exist, are not unique.
We shall compute explicitly the largest set S1 for which S2 ⊃ C−. Such a region is
defined by

S1 =

{
z1 ∈ C : max

z2∈C−
|R(z1, z2)| ≤ 1

}
.

In order to proceed we make use of the following lemma.
Lemma 5.1. For any fixed z1 ∈ C, the function |R(z1, z2)| assumes its maximum

value in C− for some z2 belonging to the imaginary axis.
Proof. For any fixed value z1, the function R(z1, z2) is analytic in z2, olomorphic

in C−. Therefore the maximum value of the function in C− is obtained for some
value of z2 ∈ ∂C−. Furthermore, we observe that

lim
z2→∞R(z1, z2) = 0;

therefore the maximum of |R(z1, z2)| occurs on the imaginary axis.
From the above lemma, we can write

S1 = {z1 ∈ C : max
y∈R

|R(z1, iy)| ≤ 1}.

The boundary of this region (boundary locus) will be obtained as

∂S1 = {z1 ∈ C : max
y∈R

|R(z1, iy)| = 1}.

Such a set is not empty. In fact it contains point z1 = 0. In order to compute S1 we
proceed as follows. Let us define the function

F (θ, ρ, y) = |R(−1 + ρeiθ, iy)|2, θ ∈ [−π, π), y ∈ R.
Direct calculation shows that

F (θ, ρ, y) =
N(θ, ρ, y)

D(θ, ρ, y)
,
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with

N =
(
144 + 16 y2

)
ρ4

+
(
(144 y + 24 y3) sin θ + 24 y2 cos θ

)
ρ3

+
(
(160 y2 + 576) cos2 θ + 32 y3 cos θ sin θ + 9 y4 − 44 y2 − 288

)
ρ2

+
(
(24 y2 + 12 y4) cos θ − (144 y + 48 y3) sin θ

)
ρ

+ 64 y2 + 144 + 4 y4,

D = 576 + 244 y2 + 29 y4 + y6,

and let us define Fs(θ, ρ, y) = N(θ, ρ, y)−D(θ, ρ, y). Now let

H(θ, ρ) = max
y∈R

Fs(θ, ρ, y).

The boundary of S1 can therefore be expressed in terms of H(θ, ρ),

∂S1 = {(θ, ρ) : H(θ, ρ) = 0}.

The boundary locus can be efficiently computed by a technique similar to the one
used to compute the stability region of Runge–Kutta schemes. First observe that
H(θ, 0) < 0, therefore −1 ∈ S1. Now let us denote by ŷ the value of y for which
H(θ, ρ) = Fs(θ, ρ, y), i.e.,

ŷ(θ, ρ) = argmax
y∈R

Fs(θ, ρ, y),

and let ρ̂ denote the value of ρ for which Fs(θ, ρ, ŷ(θ, ρ)) = 0. Then the boundary
locus satisfies the equations

Fs(θ, ρ, y) = 0,(5.32)

G(θ, ρ, y) ≡ ∂Fs

∂y
(θ, ρ, y) = 0.(5.33)

The second equation is a consequence of the fact that ŷ is an extremal, and the
function Fs(θ, ρ, y) is smooth in y. By differentiating (5.32) and (5.33) one obtains a
set of differential equations that defines the boundary locus,

dρ

dθ
= F1(θ, ρ, y),(5.34)

dy

dθ
= F2(θ, ρ, y),(5.35)

with

F1(θ, ρ, y) = −∂Fs/∂θ

∂Fs/∂ρ
,(5.36)

F2(θ, ρ, y) = − (∂G/∂θ) + (∂G/∂ρ)F1

∂G/∂y
.(5.37)

The initial condition for the system is

y(0) = 0, ρ(0) = 1.
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Fig. 1. Stability region in the explicit parameter for scheme UCS2 (continuous line).
The dotted and the dashed lines are the stability region of explicit Euler and explicit second
order Runge–Kutta, respectively.

The system is solved forward in θ in the interval [0, π], to obtain the upper branch of
the boundary locus, and backward, in the interval [−π, 0], to obtain the lower branch.

The computed stability region is shown in Figure 1. By comparison, the stability
region for the explicit Euler scheme and second order Runge–Kutta scheme are shown.

Note that the stability region S1 contains the stability region of explicit Euler
scheme, and it is slightly smaller than the stability of the explicit second order Runge–
Kutta.

We remark that the scheme presented here can be effectively used for ODEs
where the system can be written in the form (5.24), with g stiff and f nonstiff. The
scheme is not optimal, since it requires three function evaluations for g per time step.
Improvements and generalizations of the above scheme are under investigation [34].

Similar problems have been considered in [35] and [36]. In the first paper implicit-
explicit multistep schemes (IMEX) for the solution of stiff-nonstiff problems have been
developed. In the second, several Runge–Kutta schemes have been developed for the
same purpose, and their performance is studied in the context of convection-diffusion
equations.

The analysis that we performed refers to the generalization of A-stability analysis
common to numerical schemes for systems of ODEs. Note that this result can be used
to study the stability for linear systems only if the two matrices that define the system
can be diagonalized simultaneously. A more general analysis on linear systems, which
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Table 1
Scheme UCS2: error (in units of 10−3) for ρ in the L∞ norm.

Grid points ε = 1 ε = 10−1 ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−8

100-200 0.17881 0.39626 0.46151 0.45765 0.45786 0.45787
200-400 0.043424 0.096516 0.11976 0.10844 0.10858 0.10859
400-800 0.010726 0.023920 0.034064 0.026575 0.026708 0.026708
800-1600 0.0026675 0.0059636 0.0098711 0.0064981 0.0066124 0.0066126

Table 2
Scheme UCS2: convergence rate for ρ in the L∞ norm.

Grid points ε = 1 ε = 10−1 ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−8

100-200-400 2.04188 2.03761 1.94625 2.07737 2.07609 2.07608
200-400-800 2.01737 2.01253 1.81379 2.02872 2.02349 2.02347
400-800-1600 2.00755 2.00399 1.78697 2.03197 2.01403 2.01401

does not require this assumption will be the subject of future study. A detailed Fourier
analysis of the method applied to the test system (5.1) is also under investigation.

6. Numerical tests. In this section we perform some numerical tests to assess
the accuracy and the shock-capturing properties of the schemes.

Accuracy tests. We integrate the equations of the Broadwell model for problems
with both smooth and nonsmooth solutions. In all our tests the UNO limiter has
been used.

We start our simulations by considering a smooth solution, periodic in space. We
integrate system (2.2)–(2.4) with the following initial data:

ρ(x, 0) = 1 + aρ sin
2πx

L
,(6.1)

u(x, 0) =
1

2
+ au sin

2πx

L
,(6.2)

m(x, 0) = ρ(x, 0)u(x, 0),(6.3)

z(x, 0) = 0.2zE(ρ(x, 0)u(x, 0)),(6.4)

where zE is the value of z given by the local Maxwellian, (2.5). Of course the initial
value of z is not Maxwellian.

Several values of ε have been considered. The goal of the test is to check uniform
convergence of the scheme with respect to ε.

The system has been integrated for t ∈ [0, tf ]. The values of the parameters used
in the computation are

L = 20, tf = 30, aρ = 0.3, au = 0.1.

A mesh with 100, 200, 400, 800, and 1600 grid points has been considered. We call
∆x1, ∆x2, ∆x3, ∆x4, and ∆x5 the corresponding values of the mesh size.

The convergence rate is computed from the error according to the formula

CRi =
log(errori/errori+1)

log(∆xi/∆xi+1)
,

where errori is the error obtained comparing the solutions with ∆xi and ∆xi+1.
We shall study only UCS2 because for ε→ 0 scheme ICS2 fails to converge unless

restrictions on the initial data are imposed. As Tables 1 and 2 show, second order
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convergence is obtained in all regimes (with a slight degradation for intermediate
regimes).

We remark that the previous results have been obtained in the case that the initial
data are not Maxwellian under the CFL condition ∆t/∆x = 1/3 for scheme UCS2
and ∆t/∆x = 0.9 for SPUM.

Shock capturing tests. In order to verify the validity of the schemes also on non-
smooth solutions, we have considered the Broadwell equations with two different initial
data:

RIM1

ρ = 2, m = 1, z = 1 for x < 0.2,

ρ = 1, m = 0.13962, z = 1 for x > 0.2.

RIM2

ρ = 1, m = 0, z = 1 for x < 0.5,

ρ = 0.2, m = 0, z = 1 for x > 0.5.

For comparison we integrate the same problem by using also the method proposed
in [11], which is a second order splitting scheme with the convection step given by a
MUSCL upwind method (hereafter SPUM). The results are reported in Figure 2.

7. Applications to extended thermodynamics. In this last section we present
a further application of the schemes to the numerical integration of the evolution
equations for monatomic gas described in extended thermodynamics. The example is
relevant since in this case the analytical expression of the eigenvalues and eigenvectors
is not known, and therefore it is preferable to use a numerical scheme that does not
require the knowledge of the characteristic structure of the system. Furthermore, the
system contains a small parameter that indicates the departure of the system from
standard gas dynamics. We study the behavior of the numerical schemes presented
in the paper for different values of the relaxation parameter.

Our test consists in the Riemann problem for system (2.6)–(2.11) similar to one
proposed by Sod [37], which consists of initial data

RIM3

ρ = 1, u = 0, p =
5

3
, σ = 0, q = 0 for x < 0.5,

ρ =
1

8
, u = 0, p =

1

6
, σ = 0, q = 0 for x > 0.5.

Note that these initial conditions coincide with those of the classical Sod problem
in terms of conserved quantities, but the gas is different, since here we consider a
monatomic gas. The numerical results, therefore, are necessarily different from the
classical ones.

For comparison we solve the equations also by the splitting scheme (SPLIT)
presented in [25] beside the scheme UCS2. A fixed mesh ratio ∆t = ∆x/9 has been
used, which is close to the stability limit. For practical applications it is advisable to
compute an estimate of the maximum eigenvalue so that an optimal Courant number
can be used throughout the calculation.
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Fig. 2. Comparison of the numerical solutions obtained with UCS2 (dots) and SPUM (contin-
uous line) for the problem RIM1 for the Broadwell model with ε = 1 (case a), with ε = 2 × 10−2

(case b) and with ε = 10−8 (case c). We used 200 grid points with CFL condition ∆t = ∆x/3
for UCS2 while the CFL condition for SPUM is ∆t = 0.9∆x. The final time is 0.5. (d) shows the
solution for initial condition RIM2, with ε = 10−8 and final time 0.25.
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Fig. 3. Solutions at time t = 0.07 of the extended thermodynamics model with ε = 10−4

for RIM3 initial data and comparison with the solution of the Euler equations of gas dynamics.
Mesh ratio ∆t = ∆x/9. Top pictures: density (left) and velocity (right) computed with 200 grid
points with UCS2 (continuous line) and SPLIT (dashed line). The thin line represents the reference
solution obtained by UCS2 with 1600 grid points. Bottom pictures: density (left) and velocity (right)
computed with 1600 grid points. The thin line represents the solution obtained by solving the Euler
equations of gas dynamics with the Nessyahu–Tadmor scheme for the same initial value problem
(RIM3).

We solve the equations in the x interval [0,1], with ε = 10−4, for the same initial
value problem. The numerical results at time t = 0.07 are presented in Figures 3
and 4. Figure 3 shows the behavior of the numerical solutions obtained by SPLIT
and UCS2 in the calculation of density and velocity, using 200 grid points. The flow
appears fully resolved, and very small difference is observed with the solution obtained
with 1600 grid points. By comparison, the solution of the same Riemann problem
RIM3 for standard gas dynamics is also reported. It appears that the splitting and
the nonsplitting scheme give both an accurate description of density and velocity.
However, a big difference between the two schemes is observed when computing shear
stress and heat flux. The results are presented in Figure 4. It is evident that for these
variables scheme UCS2 is much more accurate.

We conclude the paper by remarking that new problems ask for new solutions,
and inspire the development of new methods, which often require competences in
different fields. This is the case, for example, of recently introduced IMEX schemes
[35, 36], where the need for effective tools to solve convection-diffusion problems and
the complementary competences in numerical methods for systems of ODEs and PDEs
lead to the development of a new class of schemes.
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Fig. 4. Solutions of extended thermodynamics model with ε = 10−4 for RIM3 initial data.
Note that the x-scale has been magnified. Mesh ratio ∆t = ∆x/9. Shear stress (left) and heat flux
(right). Top pictures: UCS2 scheme with 200 (dashed line) and 400 (continuous line). Bottom
pictures: SPLIT scheme with 200 (dashed line) and 400 (continuous line). The thin line in the
bottom pictures is the reference solution obtained by UCS2 with 1600 grid points.
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