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Abstract

Kurganov and Tadmor have developed a numerical scheme for solving the initial value problem for hyperbolic

systems of conservation laws. They showed that in the scalar case their scheme satisfies a local maximum–minimum

principle i.e., the solution at future is bounded above and below by the solution at current locally. In this paper we show

that this scheme is positive in the sense of Friedrichs for systems as well. We present the scheme of Kurganov and

Tadmor as a convex combination of composites of positive schemes. Since each component of a composite scheme is

bounded in the l2 norm, so is the convex combination of the composites. To achieve second order accuracy in time, we

use a Runge–Kutta type scheme due to Shu and Osher. We present two numerical experiments to add to the ones

carried out by Kurganov and Tadmor.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The total variation of a solution of a single conservation law in one space variable is a diminishing

function of time. For hyperbolic systems of conservation laws this is no longer strictly true, although the

related Glimm functional is decreasing. Harten, in [3], and many after him, have derived total variation

diminishing (TVD) schemes that worked splendidly for approximating solutions of systems of conservation

laws, principally the Euler equations of compressible flow in one space variable.

The total variation of solutions of hyperbolic systems of conservation laws in more than one space
variable is not a diminishing function of times; in fact it can become unbounded because of the possibility

of focusing. Therefore, there can be no TVD schemes for such problems. The only functional known to be
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bounded for linear systems of equations that are symmetric hyperbolic is energy, represented by the L2

norm of the solutions. Friedrichs has shown that difference approximations to solutions of such systems

which employ coefficient matrices that are symmetric, positive definite, and depend Lipschitz continuously

on the space variables, are bounded under the discrete l2 norm of the numerical solutions. This suggests

positivity as a design principle for solving systems of conservation laws in more than one space variable.

The organization of this paper is as follows. In the beginning of Section 2, we review the positivity

principle for linear systems. In Section 2.1 we describe the notion of a positive scheme for solving symmetric

nonlinear systems. In Section 2.2 we describe the scheme of Kurganov and Tadmor for one space di-
mension and prove that the scheme is a convex combination of composites of positive schemes. The Runge–

Kutta method to achieve second order accuracy in time is described in Section 2.3. In Section 2.4 we explain

how to combine the fluxes in all space direction. The numerical experiments are described in Section 3.

2. Positive scheme

We consider multi-dimensional hyperbolic systems of conservation laws

Ut þ
Xd

s¼1

FsðUÞxs ¼ 0; ð1Þ

where U ¼ ðu1; . . . ; unÞT 2 Rn and x ¼ ðx1; x2; . . . ; xdÞ 2 Rd. We assume that all Jacobian matrices

As ¼ oFsðUÞ=oU are symmetric or simultaneously symmetrizable with the same similarity transformation

for the proof of positivity [11]. The actual scheme does not required that [9].
A linear symmetric hyperbolic systems is of the form

Ut þ
Xd

s¼1

AsUxs ¼ 0; ð2Þ

As real symmetric matrices, which is independent from U and its dependence on x is Lipschitz continuous. It
is easy to show in this case that the L2 norm of a solution is of bounded growth

kUðtÞk6 ectkUð0Þk; ð3Þ

where kV ðtÞk2 ¼
R
ðV ðx; tÞ; V ðx; tÞÞdx and c is related to the Lipschitz constant.

Set a uniform Cartesian grid fXJg in Rd, where J ¼ ðj1; j2; . . . ; jdÞ is a lattice point in which all js are
integers. The grid points are xJ ¼ ðj1Dx1; . . . ; jdDxdÞ. Let UJ be an approximation to the value of the so-

lution UðxJ ; tÞ at current time t, and U 	
J an approximation to the value of the future solution UðxJ ; t þ DtÞ.

Friedrichs [2] has shown that solutions of such Eq. (2) can be approximated by solutions of difference

equations of form

U 	
J ¼

X
K

CJ ;KUJþK ; ð4Þ

and with the coefficient matrices CJ ;K satisfying the following properties:

ðiÞ CJ ;K is symmetric and semi-positive definite;

ðiiÞ
X
K

CJ ;K ¼ I ; where I is the identity matrix;

ðiiiÞ CJ ;K ¼ 0 except for a finite set of K;

ðivÞ CJ ;K depends Lipschitz continuously on x:

ð5Þ
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The first two properties, in scalar cases, imply that the solution at future U 	 is a convex combination of the

solution at current U , which leads to a local maximum–minimum principle. The third property echos the

fact that the propagation speed of waves is finite for hyperbolic systems.

He has shown in [2] that the l2 norm of solutions of difference schemes satisfying these properties has

bounded growth:

kU 	k6 ð1þ constDÞkUk; ð6Þ

where the discrete l2 norm is defined as

kUk2 ¼
X
J

ðUJ ;UJ Þ:

The value of the constant in (6) depends on the Lipschitz constant.

Proof of (6): Take the scalar product of (4) with U 	
J

ðU 	
J ;U

	
J Þ ¼

X
K

ðU 	
J ;CJ ;KUKþJ Þ: ð7Þ

Since CJ ;K is symmetric and semi-positive definite, ðU ;CJ ;KV Þ can be regarded as an inner product, to which

the Schwartz inequality applies; combined with the inequality between arithmetic and geometric mean we

get

ðU ;CJ ;KV Þ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU ;CJ ;KUÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV ;CJ ;KV Þ

q
6

1

2
ðU ;CJ ;KUÞ þ 1

2
ðV ;CJ ;KV Þ: ð8Þ

Using this on the right side of (7) gives

ðU 	
J ;U

	
J Þ6

1

2

X
K

ðU 	
J ;CJ ;KU 	

J Þ þ
1

2

X
K

ðUJþK ;CJ ;KUJþKÞ: ð9Þ

Carrying out the summation with respect to K, using condition (ii) of (5) and multiplying by 2 gives

ðU 	
J ;U

	
J Þ6

X
K

ðUJþK ;CJ ;KUJþKÞ: ð10Þ

Now sum with respect to J , and introduce K þ J ¼ N as new index of summation:X
J

ðU 	
J ;U

	
J Þ6

X
N ;K

ðUN ;CN
K;KUN Þ: ð11Þ

Because Lipschitz continuity of the coefficient matrices and the fact that K ranges over a finite stencil,

CN
K;K ¼ CN ;K þ DN ;K ;

and

qðDN ;KÞ ¼ OðDÞ;

where qðDÞ is the spectral radius of D and D ¼ minðDt;Dx1; . . . ;DxdÞ. Therefore, we get that the right side of
(11) is

6

X
N ;K

ðUN ;CN ;KUN Þ þOðDÞ
X
N

ðUN ;UN Þ;
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which, using (ii) of (5), is equal toX
N

ðUN ;UN Þð1þOðDÞÞ:

Setting this into (11) gives (6)

kU 	k6 ð1þ constDÞkUk:

Q.e.d.

In the usual variables the Euler equations are not symmetric but symmetrizable [5] and [20]. It is worth
remarking that if a system of conservation laws has a convex entropy, then the linearized system is sym-

metrizable. We have indicated in [11] how to extend the notion of positive schemes to symmetrizable

systems, and show their l2 boundedness.

The difference schemes studied in this paper are nonlinear; when we write them in the form (4), the

coefficient matrices CJ ;K depend on the solution being computed. In the applications of interest these so-

lutions contain shocks and contact discontinuities; therefore, the coefficient matrices CJ ;K not only fail to be

Lipschitz continuous, they are not even continuous. So the analysis of the boundedness of the l2 norm of

the solution is not applicable. A possible way of salvaging our argument is to note that in inequality (8) the
left side is substantially smaller than the right side, unless the vector U and V are nearly equal. For unless

the vectors U and V are nearly proportional, the Schwartz inequality is a strict inequality. Similarly, unless

ðU ;CUÞ and ðV ;CV Þ are nearly equal, their geometric mean is substantially less than their arithmetic mean.

This shows that at a discontinuity the left side of (10) is substantially less than the right side. We do not at

this moment see how to show that this gain is enough to counterbalance what we may lose when we replace

on the right in inequality (11) the matrix CN
K;K by CN ;K , but at least we have found a plausible reason why

our scheme is as stable as it appears to be in numerical experiments.

2.1. Positivity principle

Conservative schemes are of the form

U 	
J ¼ UJ 


Xd

s¼1

Dt
Dxs

FJþ1
2
es

h

 FJ
1

2
es

i
; ð12Þ

where Dt is the time step, Dxs is the spatial step in the xs dimension and es is the unit vector in the xs di-
rection. A conservative scheme (12) is called positive if it could be rewritten in form of (4) and its coefficient

matrices satisfy the first three conditions of (5), see [11]. The positivity principle presented above is for the

stability of numerical solutions of general multi-dimensional hyperbolic systems. It does not guarantee the
positivity of pressure and density for the Euler equation or MHD.

2.2. Positive scheme in one-dimension

Consider one-dimensional hyperbolic systems of conservation laws

Ut þ F ðUÞx ¼ 0: ð13Þ

We interpret the scheme of Kurganov and Tadmor as flux splittings, see [16] by Shu and Osher, and Convex

ENO scheme [12] by Liu and Osher, and rewrite the Eq. (13) as

Ut þ F þðUÞx þ F 
ðUÞx ¼ 0: ð14Þ
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Here

F ðUÞ ¼ F þðUÞ þ F 
ðUÞ; ð15Þ

and

Aþ ¼ oF þðUÞ
oU

P 0 and A
 ¼ oF 
ðUÞ
oU

6 0; ð16Þ

where Aþ ¼ ðoF þðUÞ=oUÞP 0 means symmetric semi-positive definite and A
 ¼ ðoF 
ðUÞ=oU 6 0Þ means

symmetric semi-negative definite. A simple example is

F þðUÞ ¼ F ðUÞ þ aU
2

and F 
ðUÞ ¼ F ðUÞ 
 aU
2

; ð17Þ

where a is a function of x and t (but not U ) and aP qðoF =oUÞ, where qð@F =oUÞ is the spectral radius of the
local Jacobian matrix of F ðUÞ. This is called local flux splitting. If a is taken to be constant over the whole

domain in x, the splitting is called global flux splitting. The local one produces less numerical viscosity than

the global one. The importance and potential of flux splitting started to be realized and established in the

early through mid eighties, [1,4,16,18,21,22], etc. and an early work can be traced back to Steger in late
seventies [17].

We consider schemes in conservation form, i.e.,

U 	
j ¼ Uj 
 k½F þ

jþ1
2


 F þ
j
1

2

þ F 

jþ1

2

 F 


j
1
2
� where k ¼ Dt

Dx
: ð18Þ

Choice of F þ
jþ1

2

is a variant of the ones used by Liu and Lax in [11], and Liu and Osher in [12]. It makes use of

two limiting matrices Uþ
jþ1

2

and Wþ
jþ1

2

defined as follows:

Uþ
jþ1

2

¼
/ðhþ

1 Þ
. .
.

/ðhþ
n Þ

0
B@

1
CA and Wþ

jþ1
2

¼
/ðhþ

1 Þ=h
þ
1

. .
.

/ðhþ
n Þ=h

þ
n

0
B@

1
CA; ð19Þ

where the limiter function /, see [19], satisfies

06/ðhÞ6 2; 06
/ðhÞ

h
6 2; and /ð1Þ ¼ 1; ð20Þ

and its arguments are

hþ
i ¼ ðUjþ1 
 UjÞi

ðUj 
 Uj
1Þi
; 16 i6 n: ð21Þ

Here ðV Þi means the ith component of vector V . It follows from (20) that:

06Uþ
jþ1

2

6 2I and 06Wþ
jþ1

2

6 2I ð22Þ

and

Uþ
jþ1

2

ðUj 
 Uj
1Þ ¼ Wþ
jþ1

2

ðUjþ1 
 UjÞ: ð23Þ
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Define

Uþ
jþ1

2

¼ Uj þ
1

2
Uþ

jþ1
2

ðUj 
 Uj
1Þ ð24Þ

F þ
jþ1

2

¼ F þ Uþ
jþ1

2

 �
: ð25Þ

Because of the relation (23) of Uþ
jþ1

2

and Wþ
jþ1

2

, Eq. (24) can be rewritten as

Uþ
jþ1

2

¼ Uj þ
1

2
Wþ

jþ1
2

ðUjþ1 
 UjÞ: ð26Þ

In smooth regions except at extrema of solutions, all hþ
i ¼ 1þOðDxÞ, hence Wþ

jþ1
2

¼ I þOðDxÞ. Therefore, it
follows from (24) that:

Uþ
jþ1

2

¼ Uj þ
Uj 
 Uj
1

Dx
Dx
2

þOðDx2Þ ¼ Uj þ Uxðxj; tÞ
Dx
2

þOðDx2Þ;

which is a second order accurate approximation of Uðxj þ Dx
2
; tÞ, and hence F þ

jþ1
2

is a second order accurate

approximation of F þðUðxj þ Dx
2
; tÞÞ.

Similarly define the limiting matrices U

j
1

2
and W


j
1
2
as follows:

U

j
1

2
¼

/ðh

1 Þ

. .
.

/ðh

n Þ

0
B@

1
CA and W


j
1
2
¼

/ðh

1 Þ=h



1

. .
.

/ðh

n Þ=h



n

0
B@

1
CA ð27Þ

and

h

i ¼ ðUj 
 Uj
1Þi=ðUjþ1 
 UjÞi; 16 i6 n: ð28Þ

It follows from (20) that

06U

j
1

2
6 2I and 06W


j
1
2
6 2I ð29Þ

and

U

j
1

2
ðUjþ1 
 UjÞ ¼ W


j
1
2
ðUj 
 Uj
1Þ: ð30Þ

Define

U

j
1

2
¼ Uj 


1

2
U


j
1
2
ðUjþ1 
 UjÞ ð31Þ

F 

j
1

2
¼ F 
 U


j
1
2

 �
: ð32Þ

Because of relation (30), Eq. (31) can be rewritten as

U

j
1

2
¼ Uj 


1

2
W


j
1
2
ðUj 
 Uj
1Þ: ð33Þ
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By (26) and (33)

Uþ
jþ1

2

¼ I
�


 1

2
Wþ

jþ1
2

�
Uj þ

1

2
Wþ

jþ1
2

Ujþ1 and U

j
1

2
¼ I

�

 1

2
W


j
1
2

�
Uj þ

1

2
W


j
1
2
Uj
1: ð34Þ

Assume that the system (13) is symmetric. In the following, we prove that the scheme (18,24,25,31,32) is
positive.

Because of (22) and (29), the above Eq. (34) shows that Uþ ¼ fUþ
jþ1

2

g and U
 ¼ fU

j
1

2

g are positive

combinations of U ¼ fUjg of form (4) where the conditions (i), (ii), and (iii) of (5) are satisfied. If condition

(iv) were satisfied, we could conclude that

kUþk6 ð1þOðDÞÞkUk and kU
k6 ð1þOðDÞÞkUk: ð35Þ

Setting (34) into (18) we get

U 	
j ¼ Uj 
 k F þ Uþ

jþ1
2

 �h

 F þ Uþ

j
1
2

 �
þ F 
 U


jþ1
2

 �

 F 
 U


j
1
2

 �i
: ð36Þ

Recall (17) that

F þ Uþ
jþ1

2

 �
¼

F Uþ
jþ1

2

 �
þ ajþ1

2
Uþ

jþ1
2

2
; F þ Uþ

j
1
2

 �
¼

F Uþ
j
1

2

 �
þ aj
1

2
Uþ

j
1
2

2
;

F 
 U

jþ1

2

 �
¼

F U

jþ1

2

 �

 ajþ1

2
U


jþ1
2

2
; F 
 U


j
1
2

 �
¼

F U

j
1

2

 �

 aj
1

2
U


j
1
2

2
:

Here a should be chosen to be large enough and will be specified below (41). (36) can be rewritten as

U 	
j ¼ Uj 
 k

F Uþ
jþ1

2

 �
þ ajþ1

2
Uþ

jþ1
2

2

2
4 


F Uþ
j
1

2

 �
þ aj
1

2
Uþ

j
1
2

2
þ
F U


jþ1
2

 �

 ajþ1

2
U


jþ1
2

2


F U


j
1
2

 �

 aj
1

2
U


j
1
2

2

3
5:
ð37Þ

Let Aj and Aj be the Roe matrices of F i.e.,

F Uþ
jþ1

2

 �

 F Uþ

j
1
2

 �
¼ Aj Uþ

jþ1
2



 Uþ

j
1
2

�
;

F U

jþ1

2

 �

 F U


j
1
2

 �
¼ Aj U


jþ1
2



 U


j
1
2

�
:

We then get

U 	
j ¼ 1

2
Uj

n

 k Aj Uþ

jþ1
2

h

 Uþ

j
1
2

�
þ ajþ1

2
Uþ

jþ1
2


 aj
1
2
Uþ

j
1
2

io
þ 1

2
Uj

n

 k Aj U


jþ1
2

h

 U


j
1
2

�


 ajþ1
2
U


jþ1
2
þ aj
1

2
U


j
1
2

io
: ð38Þ

Here we have used Roe�s mean value theorem [15] which asserts that for any pair of vectors V and W ,

F ðV Þ 
 F ðW Þ ¼ AðMÞðV 
 W Þ, where A ¼ ðoF ðUÞ=oUÞ, and M ¼ MðV ;W Þ. We emphasize that we do not

need to calculate the Roe matrix AðMÞ, we only need it for the proof of positivity.
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Using (24) and (31) we can rewrite (38) as

U 	
j ¼ 1

2

1

2
Uþ

jþ1
2

�

 k Aj Uþ

jþ1
2

h

 Uþ

j
1
2

�
þ ajþ1

2
Uþ

jþ1
2


 aj
1
2
Uþ

j
1
2

i
þ 1

2
Uj 


1

4
Uþ

jþ1
2

ðUj 
 Uj
1Þ
�

þ 1

2

1

2
U


j
1
2

�

 k Aj U


jþ1
2

h

 U


j
1
2

�

 ajþ1

2
U


jþ1
2
þ aj
1

2
U


j
1
2

i
þ 1

2
Uj þ

1

4
U


j
1
2
ðUjþ1 
 UjÞ

�

¼ 1

4
ðI

n

 2kðAj þ ajþ1

2
IÞÞUþ

jþ1
2

þ 2kðAj þ aj
1
2
IÞUþ

j
1
2

o

þ 1

4
ðI

n
þ 2kðAj 
 aj
1

2
IÞÞU


j
1
2
þ 2kð 
Aj þ ajþ1

2
IÞU


jþ1
2

o

þ 1

2
I

��

 1

4
Uþ

jþ1
2


 1

4
U


j
1
2

�
Uj þ

1

4
Uþ

jþ1
2

Uj
1 þ
1

4
U


j
1
2
Ujþ1

�
¼ 1

4
V þ
j þ 1

4
V 

j þ 1

2
Vj: ð39Þ

Here

V þ
j ¼ I



 2kðAj þ ajþ1

2
IÞ
�
Uþ

jþ1
2

þ 2k Aj


þ aj
1

2
I
�
Uþ

j
1
2

;

V 

j ¼ I


þ 2kðAj 
 aj
1

2
IÞ
�
U


j
1
2
þ 2k



Aj þ ajþ1

2
I
�
U


jþ1
2
;

Vj ¼ I
�


 1

4
Uþ

jþ1
2


 1

4
U


j
1
2

�
Uj þ

1

4
Uþ

jþ1
2

Uj
1 þ
1

4
U


j
1
2
Ujþ1:

ð40Þ

Here we require that

aj
1
2
P maxðqðAjÞ; qðAj
1ÞÞ: ð41Þ

The propagation speeds of waves involved in hyperbolic systems are finite i.e., those spectral radius are

finite. Hence such a exists and can be calculated or determined by trial and error in numerical calculations.

We also require the following CFL condition:

kmax
U

q
oF ðUÞ
oU

� �
6

1

4
: ð42Þ

Under (41), (42) V þ ¼ fV þ
j g is a positive combination of Uþ, V 
 ¼ fV 


j g is a positive combination of U
,

and V ¼ fVjg is a positive combination of U of form (4) where conditions (i), (ii) and (iii) of (5) are satisfied.

If (iv) of (5) were satisfied, we could conclude that

kV þk6 ð1þOðDÞÞkUþk; kV 
k6 ð1þOðDÞÞkU
k; kV k6 ð1þOðDÞÞkUk: ð43Þ

By (39),

U 	
j ¼ 1

4
V þ
j þ 1

4
V 

j þ 1

2
Vj:

Take the scalar product of it with U 	
j , then use the Schwartz inequality, we get

ðU 	
j ;U

	
j Þ6

1

4
ðV þ

j ; V þ
j Þ þ 1

4
ðV 


j ; V 

j Þ þ 1

2
ðVj; VjÞ:

Summing over j

kU 	k2 6 1

4
kV þk2 þ 1

4
kV 
k2 þ 1

2
kV k2:
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Using (43) we get

kU 	k2 6 ð1þOðDÞÞ 1

4
kUþk2

�
þ 1

4
kU
k2 þ 1

2
kUk2

�
:

Combining this with (35) we finally get that

kU 	k6 ð1þOðDÞÞkUk; ð44Þ
under the conditions of (41), (42) and (iv) of (5).

2.3. Runge–Kutta time discretization

To achieve second order accuracy in time we use the following second order accurate Runge–Kutta

method, due to Shu and Osher [16]:

U 	
j ¼ Um

j 
 Dt
Dx

F þ
jþ1

2

h

 F þ

j
1
2

þ F 

jþ1

2

 F 


j
1
2

i
;

U 		
j ¼ U 	

j 

Dt
Dx

F þ;	
jþ1

2

h

 F þ;	

j
1
2

þ F 
;	
jþ1

2


 F 
;	
j
1

2

i
;

Umþ1
j ¼ 1

2
Um

j þ 1

2
U 		

j :

ð45Þ

Here F þ;	 abbreviates the numerical flux F þ evaluated at U 	 and F 
;	 abbreviates the numerical flux F 


evaluated at U 	.

By the previous analysis,

kU 		k2 6 ð1þOðDÞÞkU 	k2 6 ð1þOðDÞÞkUk2;

so

kUmþ1k6 1

2
kUmk þ 1

2
kU 		k6 ð1þOðDÞÞkUmk: ð46Þ

2.4. Positive schemes for multi-dimensional systems of conservation laws

For multi-dimensional systems, we use the simple and well-known dimension-by-dimension technique

[16], which blends well with the positive schemes.

Consider multi-dimensional hyperbolic systems of conservation laws (1). Using the dimension-by-di-

mension technique [16], let positive schemes be of conservative form

U 	
J ¼ UJ 


Xd

s¼1

D
Dxs

F þ
Jþ1

2
es

h

 F þ

J
1
2
es
þ F 


Jþ1
2
es

 F 


J
1
2
es

i
: ð47Þ

A family of positive fluxes is constructed exactly as in one-dimension,

F þ
Jþ1

2
es
¼ F þ

s Uþ
Jþ1

2
es

 �
;

Uþ
Jþ1

2
es
¼ UJ þ

1

2
Uþ

Jþ1
2
es
ðUJ 
 UJ
esÞ ¼ UJ þ

1

2
Wþ

Jþ1
2
es
ðUJþes 
 UJ Þ;

F 

Jþ1

2
es
¼ F 


s U

Jþ1

2
es

 �
;

U

Jþ1

2
es
¼ UJþes 


1

2
U


Jþ1
2
es
ðUJþ2es 
 UJþesÞ ¼ UJþes 


1

2
W


Jþ1
2
es
ðUJþes 
 UJ Þ:

ð48Þ
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It is worth to note that the family of schemes (47), (48) uses component-wise limiting instead of field-

by-filed limiting.

The family of schemes (47), (48) are positive under the following CFL condition:

Xd

s¼1

Dt
Dxs

max
U

q
oFsðUÞ
oU

� �
6

1

4
: ð49Þ

We use the same second order accurate energy preserving Runge–Kutta of Shu and Osher [16] to achieve

second order accuracy in time: for m ¼ 0; 1; . . .,

U 	
J ¼ Um

J 

Xd

s¼1

Dt
Dxs

F þ
Jþ1

2
es

h

 F þ

J
1
2
es
þ F 


Jþ1
2
es

 F 


J
1
2
es

i
;

U 		
J ¼ U 	

J 

Xd

s¼1

Dt
Dxs

F þ;	
Jþ1

2
es

h

 F þ;	

J
1
2
es
þ F 
;	

Jþ1
2
es

 F 
;	

J
1
2
es

i
;

Umþ1
J ¼ 1

2
Um

J þ 1

2
U 		

J :

ð50Þ

It is straight forward to extend our analysis (46) of l2 boundedness to multi-dimensional hyperbolic sys-
tems:

kUmþ1k6 1

2
kUmk þ 1

2
kU 		k6 ð1þOðDÞÞkUmk:

3. Numerical experiments

In all examples in the section, we use local flux splitting, see (17), with

ajþ1
2
¼ lmax q

oF ðUjÞ
oU

� �
; q

oF ðUjþ1Þ
oU

� �� �
: ð51Þ

Here l is called the amplifier and l ¼ 1 in example 1 and l ¼ 1:3 in example 2. qðAÞ denotes the spectral

radius of the Jacobian matrix A ¼ ðoF ðUÞ=oUÞ. Van Leer�s limiter function is used.

We approximate solutions of the two-dimensional Euler equations of Gas Dynamics,

Ut þ F1ðUÞx þ F2ðUÞy ¼ 0;

U ¼ ðq;m; n;EÞT;

F1ðUÞ ¼ ðm; qu2 þ P ;quv; uðE þ P ÞÞT;

F2ðUÞ ¼ ðn; quv; qv2 þ P ; vðE þ PÞÞT;

P ¼ ðc 
 1Þ E
�


 1

2
qðu2 þ v2Þ

�
;

m ¼ qu; n ¼ qv:
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Example 1: Double Mach reflection. A planar shock is incident on an oblique wedge at a 60� angle. The
test problem involves a Mach 10 shock in air, c ¼ 1:4. The undisturbed air ahead of the shock has density

1:4 and pressure 1. We use the boundary conditions described in [23]. The flow at time t ¼ 0:2, computed by

the positive scheme of Kurganov and Tadmor, is plotted in Fig. 1 with Dx ¼ Dy ¼ 1
120
, Dt

Dx ¼ 0:02. In each

plot 30 equally spaced contours are shown.

There are three difficulties in computing this flow mentioned in [23]. The first difficulty is the rather weak

second Mach shock; dies out entirely by the time it reaches the contact discontinuity from the first Mach

reflection. Fig. 1 shows that the second Mach shock is perfectly captured. The second difficulty is the jet
formed when the flow of the denser fluid is deflected by a pressure gradient built up in the region where the

first contact discontinuity approaches the reflecting wall. Fig. 1 shows that the jet is extremely well cap-

tured. The third difficulty is caused by the region bounded by the second Mach shock, the curved reflected

shock, and the reflecting wall. The double Mach reflection contains both steady and unsteady structures.

The curved reflected shock is moving rapidly at its right end and is not moving at all at its left end; this

causes oscillations for many difference schemes. Just as the original positive schemes, the positive scheme of

Kurganov and Tadmor generates no oscillation at all; thus the positive scheme overcomes extremely well all

three numerical difficulties.
Example 2: A Mach 3 wind tunnel with a step. This problem has been a useful test for schemes for many

years. The tunnel is 3 length units long and 1 length unit wide, with a step which is 0.2 length units high and

0.6 length units away from the left end of the tunnel (see Fig. 2). The state behind the incoming shock has

density 1.4, pressure 1.0, and velocity 3 from left to right. These are used as boundary condition at the left;

at the right all horizontal gradients are assumed to vanish. Along the walls of the tunnel and the obstacle

reflecting conditions are applied in the perpendicular direction. The corner of the step is the center of a

rarefaction fan and hence is a singular point of the flow. At the corner we use the boundary condition used

by Woodward and Colella in [23]. The amplifier l ¼ 1:3 is used, see Eq. (51). This value determined by trial
and errors. The density and pressure contours in the tunnel at time 4 are displayed in Fig. 2 with

Dx ¼ Dy ¼ 1
80
, Dt

Dx ¼ 0:15. The flow at time 4 is still unsteady.

Fig. 1. Double Mach reflection.
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The general position and shape of the shocks are accurate. The shocks are well captured. There is no

numerical noise, the contact discontinuities and the weak oblique shock are resolved. The resolution is as

high as that of our original positive schemes [11].

4. Discussion

TVD (Total-Variation-Diminishing) is a proper principle for designing numerical schemes to solve

hyperbolic equations (or linear hyperbolic systems) in one space dimension. For multi-dimensional hy-

perbolic systems, due to the possibility of focusing, TV norm is not bounded and hence no longer proper for

such systems. The only functional known to be bounded for solutions of linear hyperbolic systems is L2

norm [2]. Extending this result, [11], the positivity principle was introduced for multi-dimensional hyper-

bolic systems. The rationale of positivity principle is l2 stability. Positivity principle is a proper designing

principle for solving multi-dimensional hyperbolic systems.
Central schemes [6,7,9,10,13,14] are field-by-field limiting free. Other field-by-field limiting free schemes

are [8] and [12]. Hence with helps of these schemes hyperbolic systems with complex eigensystems or weak

hyperbolic systems can be solved easily and efficiently.

In this paper we show that Kurganov and Tadmor scheme, a field-by-field limiting free scheme, is po-

sitive for symmetric or symmetrizable multi-dimensional hyperbolic systems.

We present two numerical experiments to add to the ones carried by Kurganov and Tadmor [9]. The

numerical resolutions we obtained are as high as the ones we got from our original positive schemes [11],

which use field-by-field limiting.
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