
Three-dimensional Adaptive Central Schemes
on Unstructured Staggered Grids

Aziz Madrane1

Airbus/Institut for Aerospace-Technology aziz.madrane@airbus.com

Summary. We present a new formulation of three-dimensional central finite volume
methods on unstructured staggered grids for solving systems of hyperbolic equations.
Based on the Lax-Friedrichs and Nessyahu-Tadmor one-dimensional central finite
difference schemes, the numerical methods we propose involve a staggered grids in
order to avoid solving Riemann problems at cell interfaces. The cells are barycentric,
while those of the staggered grid are diamond-shaped. In order to reduce artificial
viscosity, we start with an adaptively refined primal grid in 3D, where the theoretical
a posteriori result of the first-order scheme is used to derive appropriate refinement
indicators. We apply those methods and solve Euler equations. Our numerical results
are in good agreement with corresponding results appearing in the literature.

1 Introduction

Staggered central finite volume schemes have been introduced by Nessyahu
and Tadmor in 1990 [NT90]. The main advantage of these schemes is that
no information about solutions to local Riemann problems is needed. Using
staggered grids one can replace the upwind fluxes by central differences. The
price one has to pay is the occurrence of excessive numerical viscosity since the
resulting scheme can be interpreted as a Lax–Friedrichs scheme. Therefore,
a MUSCL-type higher-order scheme in one spatial dimension was proposed
in [NT90]. Later in [AVM97] and [AMS01] the central schemes have been
generalized to multi-dimensional schemes on unstructured grids. The present
paper focusses on the derivation of high-order central schemes on unstructured
staggered grids. Furthermore we extend an adaptation strategy of [KO02] for
first- and second-order methods where the theoretical a posteriori result of
first-order schemes is used to derive appropriate refinement indicators.
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2 Mathematical modelling

2.1 Governing equations

Let Ω ⊂ R3 be the domain of interest of the flow with boundary Γ . We write
Γ = ΓB ∪Γ∞, where ΓB denotes the part of the body boundary which is rele-
vant for the computational domain and Γ∞ is the (upwind) farfield boundary.
Three-dimensional compressible inviscid flows are described by Euler’s equa-
tions, written in their conservation form

∂U

∂t
+∇ · −→F (U) = 0, (1)

where

U = (ρ, ρu, ρv, ρw, E)T ,
−→F (U) = (F (U), G(U),H(U))T

.

Here −→F (U) denotes the convective flux, ρ is the density, −→V = (u, v, w)T is the
velocity vector, E = ρe = ρε + 1

2ρ(u2 + v2 + w2) is the total energy per unit
volume, and p is the pressure of the fluid.

3 Space and time discretization

3.1 Definitions

We assume that Ω is a bounded polyhedral domain of R3 and we start from
an arbitrary FEM tetrahedral grid Th, where h is the maximal length of the
edges in Th.

A dual finite volume partition is derived from the construction of median
planes, that is, for every vertex i of Th, a cell Ci is defined around i as follows.

Every tetrahedron having i as a vertex is subdivided into 24 sub-tetrahedra
by planes containing an edge and the midpoint of the opposite edge; then the
cell Ci is the union of sub-tetrahedra having i as a vertex (see Fig. 1). In
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Fig. 1. Barycentric cell Ci and diamond cell Lij and Sketch of ∂Cij = ∂Ci ∩ ∂Cj

and ∂Lij = ∂Lij ∩ τ

particular, the boundary ∂Ci of Ci is the union of ∂Cij = ∂Ci∩∂Cj that can be
defined as the union of triangles (see Fig. 1) such that As for two-dimensional
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extensions [AVM97], the present three-dimensional extension also uses a dual
grid, with dual cells Lij associated with the edges of Th. The dual (“diamond”)
cell Lij is composed of the sub-tetrahedra (defined above) sharing edge [i, j]
(see Fig. 1).The following notation will be needed.

Notation 1 Let i, j, k, l be the four nodes defining a tetrahedron τ , τ ∈ Th.
Then

• Tij denotes the set of all tetrahedra which share edge [i, j] as a common
edge,

• K(i) is the set of nodes (vertices) which are neighbors of node i

• Ci =
⋃

j∈K(i)

(Ci ∩ Lij) and

• ∂Ci =
⋃

j∈K(i)

{∂Ci ∩ ∂Cj} ∪ {∂Ci ∩ ΓB} ∪ {∂Ci ∩ Γ∞},

• Lij =
⋃

τ∈Tij

(Lij ∩ Ci ∩ τ) ∪ (Lij ∩ Ci ∩ τ) and

• ∂Lij =
⋃

τ∈Tij

(∂Lij ∩ τ) ∪ (∂Lij ∩ Γ∞) ∪ (∂Lij ∩ ΓB),

• nij = (nijx
, nijy

, nijz
) is the unit outward normal vector to ∂Lij,

• νi = (νix , νiy , νiz ) is the unit outward normal vector to ∂Ci.

Let mij denote the midpoint of edge [i, j], also written as M1 in Fig. 1, and let
Un

i
∼= U(ai, t

n) and Un+1
ij

∼= U(mij , t
n+1) denote the nodal (resp. cell average)

values in the first and second grid at time t = tn and t = tn+1, respectively,
(n even). The union of all the barycentric cells constitutes a partition of the
computational domain Ωh and the same holds for diamond cells. Now we
can define the two steps of our high-order accurate (staggered, Lax–Friedrichs
type) finite volume method.

3.2 High-order accurate approximations

To obtain second-order accuracy, we introduce cellwise piecewise linear inter-
polation.

First step: We integrate (1) on Lij × [tn, tn+1], assuming we have obtained,
from the cell average values Un

i , piecewise linear reconstructions given by

Uh(x, tn)
∣∣
Ci

= Li(x, tn) = Un
i +∇Un

i · (x− xi), ∀x ∈ Ci, x ∈ R3. (2)

For the integration with respect to time, in order to ensure “nearly” second-
order accuracy, we adopt a “quasi-midpoint formula” time discretization,
where the convective flux is computed at the intermediate time tn+1/2, thus
requiring the computation of predicted values Uh(x, tn+1/2) given ∂Lij .

Predictor’s first step: On each face of the cell Lij , using Euler’s equations,
we define a predicted vector
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U
n+1/2
i,g1,G = Un

i,g1,G −
∆t

2
−→F ′

(Un
i,g1,G) · ∇Un

i (3)

where, by (2), the value of Un
h is taken equal to

Uh(x, tn) ∼= Un
i +∇Un

i · (xi,g1,G − xi) ≡ Un
i,g1,G (4)

along the face ig1G of the diamond cell Lij .

Corrector’s first step: By (3) the corrector can be written as follows:

Vol(Lij)Un+1
ij −

∑

τ∈Tij

[∫

Lij∩Ci∩τ

L(x, tn) dx +
∫

Lij∩Cj∩τ

L(x, tn) dx

]
(5)

+∆t
∑

τ∈Tij

[∫

∂L1
ij
∩τ

+
∫

∂L2
ij
∩τ

+
∫

∂L3
ij
∩τ

+
∫

∂L4
ij
∩τ

]
−→F (Un+1/2

h ) · nij dA

+∆t

∫

∂Lij∩ΓB

−→F (Un
h ) · n dA + ∆t

∫

∂Lij∩Γ∞

−→F (Un
h ) · n dA = 0.

Where the volume and the boundary integrals are approximated by the mid-
point rule.

Second step: To obtain the second step of the time discretization, we in-
tegrate (1) on the cell Ci × [tn+1, tn+2], assuming that, from the diamond
cell average values Un+1

ij computed in the first time step, we have obtained
piecewise linear reconstructions given by

Uh(x, tn+1)|Lij = Lij(x, tn+1) = Un+1
ij +∇Un+1

ij · (x− xij). (6)

Predictor’s second step: Proceeding as in the first step, we obtain the

predictor’s second step:

U
n+3/2
M1g1G = Un+1

M1g1G −
∆t

2
−→F ′

(Un+1
M1g1G) · ∇Un+1

ij , (7)

where

Uh(x, tn+1) ∼= Un+1
ij +∇Un+1

ij · (xM1,g1,G − xM1) ≡ Un+1
M1,g1,G (8)

defines an approximation to the value of U on the boundary element [M1, g1, G]
of cell Ci.

Corrector’s second step: The second step is

Vol(Ci)Un+2
i −

∑

j∈K(i)

∫

Ci∩Lij

Lij(x, tn+1) dx (9)

+∆t
∑

j∈K(i)

∫

∂Ci∩∂Cj

−→F (U(x, tn+3/2)) · νi dA

+∆t

∫

∂Ci∩ΓB

−→F (Un+1
h ) · ν dA + ∆t

∫

∂Ci∩Γ∞

−→F (Un+1
h ) · ν dA = 0,

where the volume and the boundary integrals are computed as above.
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Approximation of the slopes and limitation

Numerical experiments have led us to choose Green–Gauss’ method [BJ89]
for the gradients used in the reconstruction for the cells Ci and a least
squares weighted procedure [HB98] for the cells Lij . For the limitation we
use Venkatakrishnan’s limiter see [Ven95].

4 Mesh adaptation algorithm

4.1 General description

The theory behind the mesh adaptation technique for central schemes on
unstructured staggered grids has been developed in [KO02]. We introduce the
following three main steps in this technique.

• First, a strategy to determine where a modification is needed in the field
of the grid, e.g. by means of an (a posteriori) error estimate.

• Secondly, a rule that selects the elements or edges in Th (marking strategy).
• Thirdly, a rule that refines the elements in Th (refinement strategy).

A posteriori error estimate:

For stationary problems, following the theory of [KO02], for each edge eij ∈ Th

we have the error estimate ηeij :

‖u− uh‖L1(eij) ≤ η(ueij ) = aQ + b
√

Q, (10)

where a = 2 + 2ω, ω = 0.5, b = 4 + 2d, d = 3,

Q =
1
2

ne∑
eij=1

heij Vol(Leij )
∑

τ∈Tij

Vol(Leij ∩ Ci ∩ τ)
Vol(Leij )

Vol(Leij ∩ Cj ∩ τ)
Vol(Leij )

|ui − uj |

+
ne∑

eij=1

Vol(Leij )

∣∣∣∣∣∣
ueij −

∑

j∈K(i)

Vol(Leij ∩ Ci)
Vol(Leij )

ueij

∣∣∣∣∣∣

+6
ne∑

eij=1

heij

∑

τ∈Tij

Area(∂Ci ∩ ∂Cj ∩ τ)|ui − uj |

(11)
heij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2, and ne is the number of edges of

the original finite element triangulation Th.
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Marking strategy:

In this subsection, we introduce the maximum strategy to determine the set
T̃h in the general adaptive algorithm.

Algorithm 1 (Maximum strategy) This algorithm determines the set T̃h.

(a) Given: a partition Th, error estimates ηeij
for the edges eij ∈ Th, and a

threshold θ ∈ (0, 1).
Sought: a subset T̃h of marked edges that should be refined.

(b) Compute ηTh,max = maxeij∈Th
ηeij .

(c) If ηeij
≥ θηTh,max, then mark the edge eij for refinement and put it

into the set T̃h =
{
eij ∈ Th|ηeij

≥ θηTh,max, θ ∈ (0, 1)
}

.

Refinement strategy:

The set of marked edges is examined, tetrahedron by tetrahedron, and addi-
tional edges are marked in an attempt to maintain the grid quality and to
get a conforming mesh (see Fig. 2). The final set of marked edges results in
tetrahedra with one edge, three edges on one face, or all six edges. A tetrahe-
dron with all six marked edges is shown in Fig. 2. The mesh is then refined by
inserting new nodes on the midpoints of the marked edges and reconnecting
these nodes into new tetrahedra and boundary faces. For the last configura-

1 edge
marked

2 children

2 edges on
a same

surface are
marked

3rd edge is
automatically

marked

4 children

3 edges on
a same

surface are
marked

more than
2 edges on
different

surfaces are
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more than
4 edges are

marked
6 edges are
automatically

marked

8 children

Fig. 2. Refinement strategies for a tetrahedron

tion, cutting off tetrahedra on all four corners leaves an octahedron which
can be split into four tetrahedra by adding an inner edge connecting two di-
agonally opposite corners of the octahedron. To minimize distortions of the
created tetrahedra, the shortest of the three possible inner diagonals should
be chosen.
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Tetrahedral mesh improvement using face and edge swapping

The edge and face swapping techniques effectively improve shape measures.
The swapping algorithm minimizes a shape function, such as the aspect ratio,
AR = 1

3

ρout
ρin

, for tetrahedra [LJ94] as follows. where ρout is the tetrahedral

circumsphere radius, ρin is the tetrahedral in-sphere radius. The value of
the aspect ratio varies from 1, for an ideal element, to ∞, for badly shaped
elements. Reconnections of tetrahedra with undesirable shape measures are
investigated and new local configurations for tetrahedra are selected with
more desirable shape measures. Edges on boundary faces can also be swapped.
Details of the way in which the face swapping can be implemented in practice
can be found in [Joe95].

Boundary modification

The inserted boundary nodes my not be located on the surface geometry of
the model to be simulated because they were inserted at the midpoints of ex-
isting edges.To address this issue, we have implemented a boundary curvature
correction based on Hermite interpolation [Loh96].

5 Numerical experiments

5.1 Transonic NACA0012

A NACA0012 wing configuration has been employed to demonstrate the tran-
sonic shock capturing capability of the present adaptive grid solution method.
The flow condition is at a free stream Mach number of 0.85 and incidence an-
gle of 3.5 degrees. A reasonably coarse grid with a chordwise nearly uniform
point distribution was generated to serve as the initial grid for adaptation.
The grid, contains 76 125 points and 395 203 tetrahedral cells. An inviscid flow
computation on this grid reveals the presence of a weak shock wave on the
upper surface of the wing. The Mach and Cp contours are also illustrated in
Fig. 3. As expected, the shock wave is diffused due to the grid coarseness and
excessive numerical viscosity. Using the local remeshing procedures described
earlier, four levels of adaptive refinement were performed in this case. The
final grid contains 305 458 points and 1 675 668 tetrahedra. A threshold value
θ = 0.5 is used. Figure 3 shows the adapted grid and the corresponding Mach
and Cp contours. As evidenced, the grid is efficiently refined at the shock
location, which shows a sharp shock definition. Figure 3 illustrates the chord-
wise distributions of the surface pressure coefficient Cp for the initial coarse
and adapted grids. As expected, there are significant differences between the
adapted and the initial grid results. From the Cp distribution, it appears that
the shock location of adapted grids is well captured compared to that of coarse
grids. Furthermore, this example emphasizes the advantage of grid adaptation
in providing more accurate flow solutions economically.
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Fig. 3. Mach and Cp contours at M∞ = 0.85 and α = 3.5◦ for the initial grid and
adapted grid

References

[AVM97] P. Arminjon, M.C. Viallon and A. Madrane, A finite volume exten-
sion of the Lax–Friedrichs and Nessyahu–Tadmor schemes for conservation
laws on unstructured grids, revised version with numerical applications, Int.
J. of Comp. Fluid Dynamics 9, No. 1 (1997), pp. 1–22.

[AMS01] P. Arminjon, A. Madrane and A. St-Cyr, Numerical simulation of
3D flows with a non-oscillatory central scheme on staggered unstructured
tetrahedral grids, in H. Freistuehler, G. Warnecke, Birkhauser, Eds., Pro-
ceedings of the Eighth International Conference on Hyperbolic Problems,
Int. Series of Num Math. 140 (2001), pp. 59–68.

[BJ89] T.J. Barth and D.C. Jespersen, (1989), The design and application of
upwind schemes on unstructured meshes, AIAA Paper No. 89-0366, 27th
Aerospace Sciences Meeting, January 9–12, 1989, Reno, Nevada.

[HB98] A. Haselbacher and J. Blazek, On the accurate and efficient discreti-
sation of the Navier–Stokes equations on mixed grids, AIAA J., 99–33552,
(1998).

[Joe95] B. Joe, Construction of three-dimensional improved quality triangulations
using local transformations, SIAM J. Sci. Comput., 16, 1292-1307, 1995.
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