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Abstract. In this paper we investigate the accuracy of two numerical procedures commonly
used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes
are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered
fast, relatively easy to implement, and applicable to complex geometries, but are somewhat inferior
in accuracy compared to spectral schemes. Using two study cases at high Reynolds number, the
merging of two equally signed Gaussian vortices in a periodic box and dipole interaction with a
no-slip wall, we will demonstrate that the accuracy of FD schemes can be significantly improved
if one is careful in choosing an appropriate FD scheme that reflects conservation properties of the
nonlinear terms and in setting up the grid in accordance with the problem.
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1. Introduction. The solution of nonlinear advection problems by numerical
means is a well-established procedure used either to augment analytical results or
to obtain results when there is no analytical solution at hand. The advection prob-
lem appears in a broad context of physical problems, from pure fluid applications
and magneto-hydrodynamics of space plasmas to electromagnetic turbulence in mag-
netically confined fusion plasmas. For many systems the convection is driven by
some instability, which saturates into turbulence in the presence of dissipation. It
is sometimes argued that accuracy in the evaluation of the convective nonlinearity
can be sacrificed in favor of the stability and robustness of the code, properties often
achieved by dynamically adjusting local smoothing operators to avoid the creation
of small scales not resolved by the finite resolution of the scheme. However, in a
number of problems the accurate modeling of the flow of energy between different
scales is rather important, as this can crucially influence the evolution of structures
in the turbulence as, e.g., global shear flows. These structures drastically affect prop-
erties of the turbulence, such as transport, and their accurate modeling is therefore
of importance.

Spectral methods for unbounded (periodic) squared domains using Fourier modes
have been used for some decades now. These methods have the advantage that they
converge fast toward the solution as the number of modes is increased—the so-called
spectral convergence. The same fast convergence can be obtained for bounded flows
using expansion functions such as Chebyshev polynomials [3, 4]. Our goal in this
paper is to compare results obtained from two different classes of finite difference
(FD) schemes with results from spectral schemes, with a focus on the high Reynolds
number regime.
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We consider the following two different FD discretizations of the nonlinearity: one
classical going back to Arakawa [1] and a modern third order essentially nonoscilla-
tory (ENO) central scheme as suggested by Kurganov and Levy [15]. For any energy
conserving FD discretization of the nonlinearity the viscous damping of small struc-
tures has to be faster than the speed by which the nonlinearity creates these small
scales in order for the scheme to be stable. ENO and upwind schemes, however, avoid
the creation of grid scale structures intrinsically by switching between different dis-
cretizations of the differential operators and possibly employing a limiting function
on the flux. One should note that this leads to numerical viscosity acting on the
grid length-scale that has some resemblance to the method used in so-called large
eddy simulations (LES). In LES the turbulence on scales finer than the grid scale
is basically modeled as a damping of the larger structures. However, attempts to
combine upwind and LES methodologies showed that the combination does not have
significant advantages over LES used with centered FDs [18].

Here, we first demonstrate that even for high Reynolds numbers FD schemes
can, with good accuracy, produce the detailed evolution of convection problems. We
will discuss the necessary ingredients for this—mainly the appropriate choice of grid
points and conservation properties of the numerical schemes. Another motivation for
benchmarking these different numerical schemes is to compare their behaviors under
the implementation of nontrivial boundary conditions. For two different boundary
conditions, periodic and no-slip, we have chosen model problems, which have recently
been investigated using spectral methods. A more detailed description of the setup of
these problems can be found in [9, 12, 20]. Both problems demand high accuracy at
these high Reynolds numbers, stressing the nonlinear nature of the advection problem.

The paper is organized as follows. In section 2 we briefly discuss the underlying
model. The FD schemes will be described in section 3.

Special attention will be given to the implementation of no-slip boundary con-
ditions. In section 4 we describe the spectral schemes based on Fourier modes, for
periodic domains, and Chebyshev polynomials/Fourier modes for the case where one
of the coordinates is bounded by no-slip walls.

In section 5 we display our results. For the periodic case we study the merging
of two equally signed Gaussian monopoles. In the bounded case we study the dipole-
wall interaction in a periodic annulus geometry. Both situations pose a different set
of difficulties to the codes, as fine scale vorticity sheets are created by either vortex-
vortex or vortex-wall interaction. We will not only discuss overall error estimates
but also perform a detailed pointwise comparison of the solutions obtained using the
different schemes, as this gives better insight into the accuracy of the solution.

2. Navier–Stokes equations. We consider the 2D, unforced, incompressible
Navier–Stokes equations

∂�v

∂t
+ (�v · ∇)�v = ν∇2�v −∇p,(2.1)

with the incompressibility condition

∇ · �v = 0.(2.2)

Here p is the kinematic pressure, �v = (u, v) is the 2D flow velocity, and ν the kinematic
viscosity. Equations (2.1) and (2.2) have to be solved using appropriate boundary
conditions. These can be easily formulated in terms of the velocities but are difficult
to express in terms of the pressure or the vorticity.
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Taking the rotation of (2.1) transforms it into the vorticity-stream function for-
mulation

∂ω

∂t
+ [ω, ψ] = ν∇2ω,(2.3)

where ω ≡ (∇ × �v) · ẑ is the pseudoscalar vorticity, ψ (∇ψ × ẑ ≡ �v) is the stream
function, and [.,.] denotes the Jacobian. The stream function is related to the vorticity
by the Poisson equation

∇2ψ = −ω.(2.4)

This formulation has the advantage that the pressure, p, is absent from the equations.
Furthermore it is a scalar equation, as opposed to the vector equation (2.1).

In order to solve (2.3)–(2.4) we have to apply boundary conditions. For a periodic
domain these conditions are trivial. For bounded domains the boundary conditions
are usually far from simple. In the case considered here we use a periodic annulus
with inner boundary r− = A− 1 and outer boundary r+ = A+ 1 with A = 1.5. The
azimuthal direction is periodic. In the radial direction we apply no-slip boundary
conditions, e.g.,

vr |r=r±= 0 and vθ |r=r±= 0,(2.5)

or in terms of the stream function,

∇ψ |r=r±= (0, 0).(2.6)

One of these two sets of conditions can be applied directly to the Poisson equation,
(2.4), whereas the other set of conditions has to be applied to the discretized form
of (2.3), resulting in a Helmholtz equation. Note that the boundary conditions for
the quantity ω inferred from the stream function are not trivial. The corresponding
conditions originating from different approaches to the problem will be discussed in
sections 3 and 4.

To ease comparison and restrict it to the spatial discretization used we employ the
same timestep algorithm for all codes, a third order “stiffly stable” scheme as described
in [13]. The convection term is evaluated explicitly, while the viscous/diffusive term is
treated implicitly. The viscous operator splitting is necessary, as it is well known that
the use of explicit schemes with an operator containing an even number of derivatives
poses severe restrictions on the timestep, as numerical instabilities have to be avoided.

2.1. Temporal evolution of global quantities. In the absence of viscosity
and physical walls, (2.3)–(2.4) possess an infinite number of conserved quantities,
including the energy, E, and enstrophy, Ω:

E ≡ 1

2

∫
D

�v2 dA,(2.7)

Ω ≡ 1

2

∫
D

ω2 dA.(2.8)

In the presence of viscosity and physical boundaries the time evolution of energy and
vorticity is obtained from (2.1)–(2.4) via multiplying (2.3) by ψ and ω, respectively,
and subsequent integration over the domain:

dE

dt
= −νΩ(t)(2.9)
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and

dΩ

dt
= 2ν

∫
∂D

ω∇ω · n̂ds− 2ν
∫
D

(∇ω)2 dA,(2.10)

where n̂ is the outgoing normal to the boundary. We have assumed that the wall
velocities are zero and that therefore the energy in (2.9) will always decay. However,
the boundary can act as a source of vorticity, as the first term on the right-hand side
of (2.10) can be positive. Note that in case of periodic boundary conditions this term
will vanish and enstrophy will consequently decay in time.

In order to check the accuracy of our numerical solutions, we have included global
error estimates based on these integral quantities. Let F denote either E or Ω; at fixed
time intervals we calculate a time-centered, fourth order accurate value of the time
derivative of F , denoted (dF/dt)num, by evaluating F at five sequential timesteps.
By employing a fourth order estimation, we ensure consistency in approximation
level with the third order accurate, stiffly stable time integration scheme [13]. This
numerical time derivative is compared to the theoretical value (dF/dt)theor evaluated
from the instantaneous fields entering on the right-hand sides of (2.9)–(2.10). As an
error estimate, δF , we employ the relative difference per time unit of these two time
derivatives values, so

δF (t) =

∣∣∣∣ (dF/dt)num − (dF/dt)theor

F (t)

∣∣∣∣ .(2.11)

This function is evaluated in our schemes and used to compare the accuracy of the
simulations with different resolutions and different schemes.

One should note that these global errors only reflect the conservation properties
of the nonlinear term. The Arakawa and Fourier spectral schemes exactly conserve
energy and enstrophy for zero viscosity. Thus the calculated error will include only
time-stepping errors, errors in evaluating the viscosity related terms, and errors due
to finite number precision. For the ENO scheme, as well as the Chebyshev–Fourier
spectral scheme, this will be different, as the ENO discretization of the nonlinear term
does not have the built-in conservation property for quadratic integral invariants.
Thus, the error as defined above will, for the ENO case, be a measure of the amount
of dissipation introduced by the discretization.

3. FD schemes. The FD discretization of partial differential equations for nu-
merical purposes has a long tradition. FD schemes are usually relatively easy to im-
plement, rather fast, and adaptable to complex geometries and boundary conditions.
A drawback is that they offer only limited accuracy, as they approximate derivatives
using a finite local stencil. In past years there has been widespread activity in the
construction of so-called modern algorithms for the numerical solution of nonlinear
conservation laws; see, e.g., [16, 5, 19]. These activities are often connected with
the problems of shocks in compressible flows, but the methods are also applied to
incompressible flow dynamics [23].

3.1. Discretization of the nonlinearity. A main ingredient in solving (2.3)
is the evaluation of the Jacobian. This quadratic nonlinearity produces new scales
that might not be representable on the finite resolution grid underlying the numerical
computation. An accurate representation of this term is therefore of utmost impor-
tance. Here we will use two different FD versions of the nonlinearity following different
philosophies on how to treat the appearance of nonresolved structures produced by
the nonlinearity.
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In his classical paper from 1966, Arakawa [1] introduced a discretization of the
Jacobian type of nonlinearity that not only is accurate to third order in space dis-
cretization, h, (the error is of order h4), but also respects that circulation, energy,
and enstrophy are conserved under the action of the nonlinearity. These conservation
properties determine the redistribution of the energy between different length-scales.
Here we use the discretization given as (46) in [1], which we will write down for
completeness for dx = dy = h:

(3.1)

[ω, ψ] = − 1

12h2
[(ψi,j−1 + ψi+1,j−1 − ψi,j+1 − ψi+1,j+1)(ωi+1,j + ωi,j)

− (ψi−1,j−1 + ψi,j−1 − ψi−1,j+1 − ψi,j+1)(ωi,j + ωi−1,j)

+ (ψi+1,j + ψi+1,j+1 − ψi−1,j − ψi−1,j+1)(ωi,j+1 + ωi,j)

− (ψi+1,j−1 + ψi+1,j − ψi−1,j−1 − ψi−1,j)(ωi,j + ωi,j−1)

+ (ψi+1,j − ψi,j+1)(ωi+1,j+1 + ωi,j)

− (ψi,j−1 − ψi−1,j)(ωi,j + ωi−1,j−1)

+ (ψi,j+1 − ψi−1,j)(ωi−1,j+1 + ωi,j)

− (ψi+1,j − ψi,j−1)(ωi,j + ωi+1,j−1)].

This discretization of the convective term exactly conserves energy, enstrophy, and
circulation. Thus, as smaller scales are produced by the nonlinearity, the numeri-
cal solution can be correct only as long as dissipation removes energy at the scale
of the grid resolution faster than the nonlinear term transports energy into these
scales. Note that generalizations to anisotropic grids (dx �= dy) or nonequidistant
grids (dx, dy �= constant) can often be easily derived using the analytical form of
[A, B] with appropriate variable transformations before discretization. If this is not
possible, there exist generalizations of the Arakawa scheme as found in [19].

Harten et al. [11] introduced the ENO technique in 1987. Its goal is to prevent
spurious oscillations in the solution of the advection problem in a robust way; that
means the technique is made not to produce new local maxima or minima. Spurious
high amplitude oscillations on the grid scale are usually observed in FD schemes
as a result of insufficient resolution. ENO schemes monitor the smoothness of the
underlying velocity functions and switch to a one-sided lower order representation of
the differential operators in the presence of a “discontinuity,” e.g., a steep gradient,
which ensures that no oscillations on the scale of the underlying grid are produced.
We have implemented a third order ENO scheme based on a piecewise continuous
polynomial interpolation with central weights in the semidiscrete form, as described
in broad detail in [14].

3.2. Nonequidistant grid. In the case of the annular domain (A − 1 ≤ r ≤
A + 1, 0 ≤ θ ≤ 2π) with no-slip walls at r = A ± 1, the largest gradients are likely
to develop near the walls. It is therefore useful to increase the numerical resolution
at the boundary. One way to increase the resolution in the vicinity of the walls is
by using the Chebyshev collocation points, located at ri = cos(πi/M) + A. With
this choice of collocation points the grid in the interior of the domain becomes only
slightly deformed. Note that for fitting an arbitrary function, which is at least M +
1 times differentiable in the interval {−1 : 1}, by a polynomial of degree M , the
Chebyshev polynomial of order M will minimize the ∞-norm of the error, according
to the Chebyshev minimal amplitude theorem; see [3]. According to this theorem
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the choice of Chebyshev polynomials as expansion functions for a spectral code on a
bounded domain will thus be the most accurate. In the FD case differential operators
are discretized by using a finite stencil, fitting as in the ENO scheme a lower order
polynomial. The scheme is consequently of fixed order in space, compared to a spectral
scheme where the order of approximation increases as the grid spacing is refined,
resulting in spectral accuracy. However, we still need a grid that is dense near the
wall and has a smooth transition to a nearly equidistant grid in the interior of the
domain. The Chebyshev collocation points conveniently satisfy both criteria.

Since we need to evaluate derivatives on the boundaries and utilize ghost points
outside the integration domain in order to enforce the boundary conditions, the
Chebyshev collocation points are not directly usable, as the distance between them
goes to zero at the boundaries. We thus map the equidistantly sampled domain,
denoted by the variable x on the interval {−1, 1} of Chebyshev collocation points.
Subsequently we stretch this to real physical coordinates (denoted r) as follows:

r =
r+ − r−
x+ − x− cos(πx) +A.(3.2)

Here x is discretized equidistantly as

xi =
(i+ 1

2 )

N + 2L
,

with N being the number of points inside the domain, L corresponding to the num-
ber of ghost points outside the domain, and i ∈ {0;N − 1} being the index of the
corresponding grid point. The boundaries that are at r+ = A+1 and r− = A− 1 are
at locations

x+ = cos

(
(N + L)π

N + 2L

)
and x− = cos

(
Lπ

N + 2L

)

in terms of the coordinate x. Introducing g = r+−r−
x+−x− and A = r++r−

2 , we find for the
inverse mapping

x = arccos

(
r −A
g

)
.(3.3)

Defining metric coefficients

H(r) = −1
g

1√
1− r−A

g

and G(r) =
1

g2

r−A
g(

1− ( r−A
g )2

)3/2
,

the Laplacian in the coordinates x, θ reads

∇2
x,θf =

(
G(r) +

H(r)

r

)
∂xf +H

2(r)∂xxf +
1

r2
∂θθf,(3.4)

and the Jacobian transforms as

[a, b]r,θ =
H(r)

r
[a, b]x,θ.(3.5)

Note that we left the dependence on r in the metric coefficients and operators. By
using (3.2), however, r is readily replaced by x. Instead of the original equation (2.3)
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in poloidal coordinates (r, θ), we then are able to consider the system in the new set
(x, θ),

∂ω

∂t
+
H(r)

r
[ω, ψ]x,θ = ν∇2

x,θω,(3.6)

∇2
x,θψ = −ω.(3.7)

We thus can use the equidistant (x, θ) grid with the Arakawa discretization of the
nonlinearity without experiencing more complications using a nonequidistant grid.

3.3. Boundary conditions. In the double periodic case boundary conditions
are trivial. Solution of the Poisson equation (2.4), as well as the Helmholtz-type
equation that arises from the implicit part of the code, is performed using Fourier
modes, as this reduces inversion of the operator to a simple multiplication.

In the bounded case Fourier modes still can be used in the periodic direction.
In the nonperiodic direction second order centered FDs are used to discretize the
differential operators. The tridiagonal matrices appearing for each Fourier mode are
then efficiently solved by pivoted Gaussian elimination.

Inferring boundary conditions on the vorticity ω from the no-slip velocities at
the wall, ∇ψ |r=r±= (vθ,−vr) |r=r±= (0, 0), is a difficult and somewhat controversial
task [10]. Here we will use the fact that our time-stepping scheme is already split
between the convection part, which is explicit and thus does not need boundary
information for ti+1 = ti + ∆t, and the implicit solution of the Helmholtz problem
associated to viscosity. It is interesting to note that this is somewhat natural, since
no-slip boundary conditions imply a finite viscosity. Here we use a variant of the
computational boundary method (CBM) [10]: After having completed the explicit
part of the time stepping we use the intermediate vorticity at the new time ti+1 ω̃i+1

to determine the azimuthal velocity ṽi+1
θ at time ti+1. The predicted values of ṽi+1

θ

include the effects of convection but miss the corrections arising from the viscosity
operator. In a corrector-like step the predicted values of the poloidal velocity are then
used to determine the amount of vorticity on the wall using ṽθ |r=r±= 0 for no-slip
boundary conditions:

ω̃i+1 |r=r±= −∂rṽi+1
θ |r=r± .

These approximated boundary values are then used as boundary values for ωi+1 in
the implicit part of the timestep. The first predictor–corrector step already converges
to numerical accuracy, so iterating this scheme further does not produce any different
results.

4. Spectral schemes. As described above, FD schemes are local schemes that
evaluate the derivatives using values of nearby points. In the spectral approach, (2.3)–
(2.4) are solved by expanding the solution into a series of orthonormal functions,
resulting in a coupled system of equations for the time evolution of the expansion
coefficients. We will follow the time evolution of a finite number of these coefficients.
Such schemes are denoted “global,” as derivatives are expressed using analytical rela-
tionships between the expansion functions. The simplest spectral scheme uses Fourier
modes for each direction on a periodic domain. Such schemes are very easy to im-
plement, partly explaining the widespread use of periodic boundary conditions in
numerical simulations. As the derivative of a given Fourier mode only involves a



SPECTRAL AND FD SCHEMES IN 2D ADVECTION PROBLEMS 111

multiplication of that same mode, solving the Poisson, and likewise the Helmholtz,
equation is trivial. Note that generally for other kinds of spectral expansions and FD
schemes the Poisson operator is not diagonal and the solution is a difficult operation
involving the solution of large linear systems of equations. The boundary conditions
for Fourier schemes are, by nature of the expanding functions, periodic. We note that
periodic boundary conditions imply zero circulation of the flow,

Γ =

∫
D

ωdr = −
∮
∂D

∇Ψd�S = 0(4.1)

(see (2.4)).
For bounded domains an expansion into Fourier modes is not appropriate: as

the periodic extension exhibits discontinuities, the Fourier expansion suffers from
the Gibbs phenomenon and converges very slowly unless the solution vanishes to
sufficiently high order near the boundary. In order to solve (2.3)–(2.4) in a periodic
annular domain, we use a product basis comprised of Chebyshev polynomials for the
radial direction and Fourier modes for the azimuthal direction,

g(r, θ, t) =

M∑
m=0

N/2−1∑
n=−N/2

gmn(t) Tm(r) e
inθ,(4.2)

where M and N are the orders of truncation and Tm(r) (with normalized r) is the
mth degree Chebyshev polynomial. (For further information see [2, 3, 4, 6].)

For each timestep two elliptic equations, the Poisson equation (2.4) and the
Helmholtz equation originating from the implicit term, must be solved. These equa-
tions are solved by an invertible integral operator method [7], which very efficiently
solves the equations in O(MN) operations with high accuracy even at high trunca-
tions (M ∼ N ∼ 1024). The invertible integral operator method is developed for
ordinary differential equations with varying, rational function coefficients. It decom-
poses the solution into a particular and homogeneous solution, with the homogeneous
chosen to satisfy the boundary conditions.

The no-slip boundary condition on the fluid velocity

�u(r±, θ) = (0, 0)(4.3)

requires the stream function to satisfy the Neumann boundary conditions

∂ψn

∂r

∣∣∣∣
r±
= 0,(4.4)

as well as the Dirichlet boundary conditions

ψ0(r
±) = F±(t),

ψn(r
±) = 0 ; n �= 0,(4.5)

where F±(t) are arbitrary functions of time and n denotes the Fourier mode.
The boundary conditions (4.4) and (4.5) will cause the Poisson equation (2.4) to

be overdetermined unless the ωn(r) are restricted to ensure that both sets of con-
ditions are fulfilled simultaneously. Although this apparent overdeterminacy can be
adequately addressed by solving the ω and ψ equations simultaneously, this leads to
the inversion of matrices of size 2n× 2n, in which the banded character of the opera-
tors of the uncoupled, constraint-based formulation is lost. An accurate and efficient
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method for determining these “solvability constraints” is presented in [9, 8], and a
description of how this method is adapted to annular geometry is given in [2, 6]. The
result is a set of self-consistent no-slip boundary conditions

∂ψ0

∂r

∣∣∣∣
r=r±

= 0,

ψn(r
±) = 0, n �= 0 ,(4.6)

together with

∂ω0

∂r

∣∣∣∣
r=r±

= 0(4.7)

and

M∑
m=0

B±
nm ωnm = 0, n �= 0 .(4.8)

The constraint coefficients, B±
nm, can be determined accurately and efficiently by

several equivalent methods. These coefficients are independent of the value of the
viscosity, ν, and they need only be calculated once for each different geometry; i.e.,
they depend only on the main radius, A, in addition to M and N . Values of B±

nm

obtained for high values of M and/or N can be used directly in calculations with
lower resolution.

In the explicit calculation of the nonlinear convection term, the products are
calculated in configuration space and the result fully de-aliased using the standard
2/3 truncation scheme.

5. Results.

5.1. Doubly periodic flow. First, we present results for a doubly periodic
situation. As an initial condition we start from two Gaussian-shaped monopoles with
a maximum vorticity of one, half-width of R = 0.8, and placed 3.0 length units
apart. The size of the domain is 10 × 10 length units. To ensure zero circulation a
constant, negative vorticity ωcorr = −1/102 ∫ winitialdr has been added to the initial
condition. We performed numerical simulations for local Reynolds numbers based on
the maximum initial velocity V � 0.25 and R as Re ≡ RV

ν . The results we discuss
are for two different Reynolds numbers: a moderate number of Re = 8.000 and a very
high number of 100.000. In both cases we use resolutions of M = N = 128, 256, 512,
and 1024. Note that the resolution will always be of the form M = N .

In Figure 5.1 we display the vorticity field at T = 100.0 for Re = 8.000 and
Re = 100.000 and for all three schemes using the highest resolution. Initially, the
vortices are placed so close that they merge after encircling each other for about half
a rotation. In order to conserve angular momentum during the merging, fine scaled
filaments are sheared off the vortices. Due to the shear flow setup of the vortex
core these filaments will be continuously stretched until they reach a size where the
kinematic viscosity dominates. Please consult, e.g., [20] for further information about
this merging process.

For the moderate Reynolds number, Re = 8.000, the spectral and the Arakawa
schemes produce (nearly) identical results. The position and tightness of the filaments
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Fig. 5.1. Vorticity at T = 100.0 for the spectral scheme (top row), Arakawa scheme (middle
row), and the ENO run (bottom row). Initial condition: two Gaussian monopoles with Re = 8.000
(left column) and Re = 100.000 (right column) in a doubly periodic domain using a resolution of
M = N = 1024. Note that only 875× 875 points are shown.



114 VOLKER NAULIN AND ANDERS H. NIELSEN

as well as the very fine spiral structure inside the compound vortex are in close
agreement. The ENO scheme does, at first glance, look similar. On closer inspection
it is, however, obvious that most of the fine structure has been lost. In conclusion
only the larger scales are in agreement with the results obtained by the two other
schemes. For high Reynolds number, Re = 100.000, the Arakawa scheme and the
spectral scheme produce a certain amount of small scale noise, pushing the vorticity
amplitude slightly above one. We do not observe this noise for the ENO scheme, as
numerical viscosity is embedded into that scheme just for that reason. We observe
very little difference in the resulting dynamics as described by the ENO scheme, even
while increasing the Reynolds number by more than a factor of 10! In the ENO
scheme—strictly limiting the vorticity amplitude—the numerical viscosity dominates
over the physical effects of high Reynolds number leading to a different behavior of the
fine scale filaments when compared to the Arakawa and Fourier schemes. Efficiently,
the ENO scheme solves the problem for a different, resolution-dependent Reynolds
number.

In Figures 5.2–5.3 we present the temporal evolution of the enstrophy and the
error according to (2.11) for both Reynolds numbers. However, one should also note
that the differences in time evolution can be very different in size than indicated
by the error calculated from (2.11), as this reflects global quantities only. The ENO
calculations are dominated by dissipative effects inherent in the scheme. Consequently
the ENO scheme dissipates the more enstrophy the less resolution is used. The spectral
and the Arakawa schemes show the opposite behavior, losing slightly more enstrophy
with higher resolution. This is due to the fact that the higher resolution allows more
enstrophy to be transported into the dissipation range at high k values. Note that in
yet another class of numerical schemes this kind of behavior is modeled by introducing
“eddy viscosity” (LES) to account for the dissipative effect of the scales not resolved
by the numerical scheme [22].

Comparing the errors for the spectral and the Arakawa schemes shows that the
Arakawa scheme, as defined, conserves energy and enstrophy in the nonlinearity and
thus produces a very small error only. Due to the locality of the scheme the error
improves linearly with resolution. The spectral scheme performs very well, with larger
improvements in the error due to the globality of the code leading to “spectral accu-
racy” [4]. Both schemes additionally reproduce the dynamics of the merging dipoles
with strong agreement between details of the core and the filaments.

In Table 5.1 we show the CPU time per timestep for the different schemes and
for all the resolutions on an IBM RS6000-pSeries 690 computer. We observe that the
Arakawa scheme is approximately three times faster than both the ENO and spectral
schemes. This is independent of the resolution used here. Note that as the resolution
is increased by a factor of 2 the total number of timesteps also has to be increased by
a factor of 2.

The conclusion from this part of the comparison is that when solving the Navier–
Stokes equations, for Reynolds numbers used in this section, schemes with internally
adjusted numerical dissipation are ill suited to this task. The calculated solution due
to the ENO scheme always looks smooth and well behaved but is effectively solved
using some localized dissipation in space and time, which is often larger than the
viscosity according to the Reynolds number. Due to this restriction we will use only
the Arakawa and spectral schemes in the comparison for bounded flows, as there we
introduce additional sources for inaccuracy related to the use of nonequidistant grids
and the implementation of the no-slip boundary condition.
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Fig. 5.2. Time evolution of enstrophy for Re = 100.000 for the three numerical schemes in
the periodic domain. Resolutions: 128 (solid line), 256 (dotted line), 512 (dashed line), and 1024
(dashed-dotted line). Note the different y-range in the last figure.
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Fig. 5.3. Time evolution of the error calculated using the vorticity and (2.11), with the same
parameters as in Figure 5.2.
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Table 5.1
CPU time per timestep for the double periodic case (rows 2–4) and the bounded case (rows 5–6).

Resolution 128 256 512 768 1024

Arakawa per. 0.003 0.012 0.068 0.332
ENO per. 0.010 0.047 0.210 0.899
Spectral per. 0.011 0.065 0.301 0.970

Arakawa ann. 0.008 0.024 0.156 0.397 0.891
Spectral ann. 0.019 0.102 0.352 0.665 1.22

5.2. Flow with no-slip boundary conditions. In this section we will study
the case of flow-boundary interaction. We are considering a quarter of an annulus
with inner radius of r− = 0.5 and outer radius of r+ = 2.5. In the azimuthal direction
we employ periodic boundary conditions θ ∈ {0;π/2}, and in the radial direction
r ∈ {r−; r+} the flow is bounded by no-slip walls.

As an initial condition we used a so-called Lamb-dipole, with the vorticity given
by (see, e.g., [17] and [21])

ω =

{ 2λU
J0(λR)J1(λr) cos θ, r ≤ R,
0, r > R,

(5.1)

where U = 1.0 is the velocity of the Lamb-dipole, R = 0.25 is its radius, and
λR = 3.831 . . . is the first zero of J1. Using such a structure as an initial condi-
tion for studying complex flow-boundary interaction has several advantages. The
Lamb-dipole is known to be rather stable even when exposed to strong perturba-
tions. Due to its localized rotational interior and irrotational exterior, combined
with its linear momentum, the dipole minimizes the initial boundary layer. The cor-
responding local Reynolds number for the Lamb-dipole is defined as Re = UR/ν.
For the two different numerical schemes, we have investigated their accuracy for the
following Reynolds numbers: Re = 500, 1000, 2000, and 4000 using resolutions of
M = N = 128, 256, 512, 768, and 1024.

For a given Reynolds number we initialize a Lamb-dipole in the spectral code using
M = 1024 and integrate 100 timesteps so that any transient phenomena, especially
at the boundaries, have died out. For both schemes and for all resolutions we used
this relaxed state as an initial condition.

Figure 5.4 shows the time evolution for Re = 2.000 using the spectral Chebyshev–
Fourier code with a resolution of M = 1024. As the dipole approaches the no-slip
wall a strong boundary layer is formed. At time t ≈ 1.0 the boundary layer splits the
incoming dipole into two new dipoles, each of which consists of a strong monopole
originating from the boundary vorticity and half the original dipole. The newly formed
dipoles are asymmetric and their trajectory describes a circle making them collide in
front of the outer wall. As can be seen from Figure 5.4 several rebounds take place,
and we observe that each is associated with a significant production of vorticity at
the wall. In Figure 5.5 we display the enstrophy evolution for this case and the
three other Reynolds numbers considered. We observe that each rebound corresponds
to a production of enstrophy with the first impact having the strongest enstrophy
production. We also observe that the maximum enstrophy level is increased with
increasing Reynolds number.

We have performed two different kinds of comparisons. First, for a Reynolds
number of 2.000 we compared the pointwise values of the vorticity field from the
spectral scheme to the FD scheme using both equidistant distributed (FDe) and cosine
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Fig. 5.4. Time evolution of the vorticity field for the interaction of a Lamb-dipole with a no-slip
wall. The spectral scheme has been used with M = N = 1024 and Re = 2.000. Notice that only a
part of the computational domain is displayed.

distributed (FDc) radial points. Second, we compared the spectral scheme to the FDc
scheme using the global enstrophy evolution as a test of accuracy. We note here that
the other global quantity, the energy, showed much less variation, as it reflects the
larger scales more than the enstrophy.

A pointwise comparison is extremely sensitive to the path the vortices take af-
ter the collision with the wall and is therefore well suited to giving insight into the
convergence of the schemes as well as their detailed accuracy.

Figure 5.6 shows the vorticity distribution in a small area near the wall for T = 4.0.
The figure shows the results for resolutions of 512 and 1024 points and all three
schemes, that is, spectral, FDe, and FDc. The time shown corresponds to the re-
bounce of the dipole. There are several interesting features to be observed from these
figures. For the FDc the result is approximately identical to the spectral scheme using
the same resolution, with nearly a one-to-one correspondence for all the contours.
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Fig. 5.5. Time evolution of enstrophy for Re = 200 (solid line), Re = 1.000 (dotted line),
Re = 2.000 (dashed line), and Re = 4.000 (dashed-dotted line) for the spectral scheme and a
resolution of M = N = 1024.

The differences between 512 and 1024 points of resolution are also minor for both
schemes. If we, however, compare to the FDe we observe much larger differences.
For a resolution of 512 points we observe an additional vortical structure, visible on
the left side of the figure. Increasing the resolution to 1024 points does improve the
accuracy, but a ghost of this structure can still be seen. Second, we note that the
positions of the three remaining structures are not the same as the positions the two
other schemes depict. Finally, a close inspection of the boundary layer shows that
this layer is not resolved even with 1024 points of resolution. In general we conclude
that in the chosen case we gain accuracy corresponding to a factor from 2 to 4 in
resolution using the FDc compared to the FDe.

The time evolution of the vorticity at a given point, indicated by the black dot in
Figure 5.6, is displayed in Figure 5.7 for resolutions 256, 512, and 1024 and all three
schemes used above. It is obvious that all codes are able to calculate the propagation
of the Lamb vortex correctly, as is indicated by the excellent agreement between codes
as the positive part of the dipole passes between times 0.5 and 1.0. After collision
with the wall the evolution of the rebouncing vortex shows great differences in the
behaviors of the codes. First, it is seen that the spectral scheme at low resolution does
not capture the trail of the rebouncing vortex, but the large improvement in accuracy
with higher resolution leads to a good convergence of the 512 run with the 1024 run.
The FDe code captures the rebouncing vortex with 512 points of resolution, but at
later times. Using a resolution of 1024 increases the accuracy, but does not reach the
accuracy of the 512 spectral run, but shows some features of the latter, as the little
dent before the maximum value of vorticity is reached.



120 VOLKER NAULIN AND ANDERS H. NIELSEN

FDe 512

FDc 512

Spectral 512 Spectral 1024

FDe 1024

FDc 1024

Fig. 5.6. A close-up of vorticity contours for runs with the same parameters as in Figure 5.4
at T = 4.0 and Re = 2.000. Top: Spectral scheme. Middle: Arakawa scheme using an equidistant
radial grid. Bottom: Arakawa scheme using cosine distributed radial grid points. Left resolution 512
and right resolution 1024. The dot in each frame locates the position where the time development is
compared; see Figure 5.7.
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Fig. 5.7. Time evolution of the vorticity at the point (r, θ) = (2.25, 0.83) (indicated by the
dots in Figure 5.6). Top: spectral scheme. Middle: Arakawa scheme with equidistant radial grid.
Bottom: Arakawa scheme with cosine distributed radial grid points. All three schemes are shown
for resolutions 1024 (full), 512 (dashed), and 256 (dashed/dotted). The dotted lines in the two lower
figures are taken for comparison from the spectral run at resolution 1024.
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Fig. 5.8. Time evolution of error calculated from (2.11). Top: FDc scheme. Bottom: spectral
scheme. Schemes are shown with resolutions 128 (solid line), 256 (dotted line), 512 (dashed line),
768 (dashed-dotted line), and 1024 (long dotted-dashed).

Finally the FDc performs, for a given resolution, better than the FDe run using
twice the number of grid points per direction. The 512 and 1024 runs show only
minor differences compared to the corresponding spectral runs, of which the 1024 run
results are shown for comparison as a dotted line.

In Figure 5.8 we display the error as calculated from (2.11). For the spectral
scheme, we observe that the lowest resolution, M = 128, has quite a large error and,
when examining the vorticity, we observed that the flow field is dominated by Gibbs
phenomena, i.e., by ringing. As the resolution increases, the error decreases quickly
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Fig. 5.9. Integrated error calculated from (5.2) versus resolution for the spectral scheme.
Reynolds number: 200 (solid line), 1.000 (dotted line), 2.000 (dashed line), 4.000 (dashed-dotted
line).

and the vorticity field, including the spatial position of the filaments, quickly con-
verges as the resolution increases. For the Arakawa scheme we also observe increasing
accuracy with increasing resolution, but here, as to be expected for a local scheme,
the increase is much more moderate than that for the spectral schemes.

As the Reynolds number increases, the flow field becomes more and more complex
and higher resolution is therefore needed. This behavior can be observed in Figures
5.9–5.10, where we display the integrated error for different Reynolds numbers and
different resolutions,

G(Re,M) =

∫ tend

0

δΩ(t)dt,(5.2)

with tend = 10.0. In Figure 5.9 we observe the spectral convergence as the error very
quickly decreases with nearly a factor of 10 as the resolution is doubled. For Re = 200,
it saturates at a level of 10−7, which reflects the accuracy of our diagnostics on the
enstrophy. The simulation for Re = 4.000, and the resolution M = 128 was not
possible to perform, as it became unstable.

Figure 5.10 displays the corresponding results for the Arakawa scheme. We ob-
serve again that the error decreases quickly; however, we need to quadruple the reso-
lution in order to decrease the error by a factor of 10.
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Fig. 5.10. Integrated error calculated from (5.2) versus resolution for the FDc scheme. Reynolds
number: 200 (solid line), 1.000 (dotted line), 2.000 (dashed line), 4.000 (dashed-dotted line).

6. Conclusion. We have compared two FD schemes and a spectral scheme for
the problem of two merging monopoles at moderate and high Reynolds numbers. We
observed that the ENO scheme is dominated by internal dissipation effects and does
not solve the problem for the prescribed Reynolds number. The ENO-based schemes
seem to be ill suited for such high Reynolds number calculations. The schemes
based on the Arakawa discretization of the nonlinearity and the Fourier spectral
code, however, showed strong agreement and consistent behavior at increasing spatial
resolution.

We then turned to the problem of a dipole interacting with a no-slip wall in a
periodic annular domain. Here additional stress is put on the numerical scheme due to
the evolution of fine structured boundary layers and the nontrivial implementation of
the no-slip boundary condition. We showed that, while not reaching spectral accuracy
as observed for the spectral scheme, the FD code can solve the problem with high
accuracy. We note, however, that in order to obtain this high accuracy for the Arakawa
scheme it is crucial to use nonequidistantly spaced grid points such as the Chebyshev
collocation points. Using equidistantly distributed grid points, we obtained results
with significantly lower accuracy, and needed about 2–4 times as many grid points in
each direction to obtain comparable results.
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In conclusion we note that for the solution of convection types of problems for a
given Reynolds number it is important to reflect the conservation properties of the
nonlinearities; otherwise the parameter dependence of the solution might be obscured
or lost.

Finally, while FD schemes do not show spectral convergence of the overall error
as spectral codes, they can nevertheless resolve the detailed dynamics of the problem.
For numerical convergence it seems, however, to be more important to investigate the
pointwise differences in the solutions rather than the integral error estimates.
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