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Abstract. Many applications involve hyperbolic systems of conservation laws with source terms.
The numerical solution of such systems may be challenging, especially when the source terms are
stiff. Uniform accuracy with respect to the stiffness parameter is a highly desirable property but
it is, in general, very difficult to achieve using underresolved discretizations. For such problems
we develop different second order uniformly accurate high-resolution nonoscillatory central schemes.
The schemes retain the simplicity of central schemes for hyperbolic conservation laws and avoid the
use of Riemann solvers. In particular, we show that these schemes possess a discrete analogue of the
continuous asymptotic limit and are able to capture the correct behavior even if the initial layer and
the small relaxation time are not numerically resolved.
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1. Introduction. Several physical phenomena important in applications are de-
scribed by hyperbolic systems with relaxation terms, for example, discrete kinetic
theory of rarefied gases [9], hydrodynamical models for semiconductors [19], viscoelas-
ticity [28], linear and nonlinear waves [32], multiphase and phase transitions [30], and
radiation hydrodynamics [20].

The development of efficient numerical schemes for such problems is challenging,
since in many applications the relaxation time varies from values of order 1 to very
small values if compared to the time scale determined by the characteristic speed of
the system. For small relaxation times the hyperbolic system with relaxation is said
to be stiff and, typically, its solutions are well approximated by solutions of a suitably
reduced set of conservation laws known as an equilibrium system [7].

Usually it is extremely difficult, if not impossible, to split the problem into sep-
arate regimes and to use different solvers in the stiff and nonstiff regions. Thus one
has to use the original relaxation system in the entire computational domain. The
construction of a scheme that works for all ranges of the relaxation time, using coarse
grids that do not resolve the small relaxation time, has been studied mainly in the
context of upwind methods using a method of lines approach combined with suitable
operator splitting techniques [6, 13, 26, 27]. Alternatively, approaches based on the
method of characteristics also have been considered [1, 24]. Most of these schemes are
based on the solution to the Riemann problem and, except for the scheme proposed
in [6], do not provide uniform second order accuracy with respect to the relaxation
parameter without resolving the small scales or the initial layer. Numerical schemes
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for hyperbolic systems with more general stiff relaxation terms have been studied
in [14, 22].

Recently, Riemann solver free numerical methods for hyperbolic conservation laws
were proposed (see [23, 15, 11, 29]). These methods have attracted much attention,
mainly because of their simplicity and robustness. The extension of these methods to
the nonhomogeneous case can be done in a straightforward way for Jin–Xin relaxation
schemes (see [22] for a more general treatment), and it is more delicate for Nessyahu–
Tadmor (NT) central schemes or, more generally, for staggered schemes (see [8, 18]).
We remark that other central schemes for treating stiff source terms was studied in [4].

In this paper we present different uniformly second order accurate, central dif-
ference approximations to nonlinear systems of hyperbolic conservation laws with
relaxation.

Following [6, 13, 18] we call our schemes robust in the sense described above. They
have the following properties:

• They possess a stability constraint independent of the small relaxation time.
The CFL condition should be determined only by the convection part.

• They are uniformly second order accurate, in conserved as well as in noncon-
served variables, with respect to the relaxation parameter, and provide the
correct zero relaxation limit behavior using coarse grids that do not resolve
the small relaxation time or the initial layer.

• They are high-resolution shock-capturing schemes that can properly handle
the discontinuous features of the solution, yielding correct shock location and
speed without numerical oscillations.

• They do not require the solution, exact or approximate, to the Riemann
problem or the knowledge of the characteristic feature of the Jacobian matrix.

In addition to the aforementioned properties, although our schemes contain im-
plicit terms in many circumstances—thanks to the special structure of the source
term—one can avoid solving nonlinear algebraic equations. In particular, at vari-
ance with the schemes presented in [18], the schemes use only two evaluations of the
relaxation term, which in some cases may represent the most expensive part of the
computations. Both these aspects are of great importance in practical applications.

The schemes are built on a staggered grid and are based on the NT reconstruction
strategy. Nonstaggered versions of the schemes can easily be obtained if one adapts
the projection technique developed in [12]. In particular we will focus not only on
conserved variables as in previous works [6, 13, 18] but also on nonconserved variables
of the hyperbolic system with relaxation. We will show that in the small relaxation
limit a reduction of accuracy may occur also on these variables independently on the
initial layer, and we show how to fix this problem.

Finally, we remark that the time discretizations derived here can be effectively
used also in the context of stiff ODEs of the type studied in [2, 3] and in combination
with other space discretizations.

The rest of the paper is organized as follows. In section 2 we recall the bases of
the mathematical models that characterize the hyperbolic systems with relaxation.
In section 3 we introduce our discretization and derive different schemes with the
desired second order accuracy. A detailed analysis of the stability properties of the
schemes together with their small relaxation limit is presented in section 4. Finally,
in section 5 we present several numerical examples which confirm the efficiency and
robustness of the present approach.
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2. Hyperbolic systems with relaxation. We consider one-dimensional hy-
perbolic systems with relaxation of the form

∂tU + ∂xF (U) =
1

ε
R(U), x ∈ R,(1)

where U = U(x, t) ∈ R
N , F : R

N → R
N , the Jacobian matrix F ′(U) has real

eigenvalues, and ε > 0 is the relaxation time.

The operator R : R
N → R

N is said to be a relaxation operator, and consequently
(1) defines a relaxation system in the sense of Whitham [32] and Liu [17] if there
exists a constant n×N matrix Q with rank(Q) = n < N such that

QR(U) = 0 ∀ U ∈ R
N .(2)

This gives n independent conserved quantities v = QU . Moreover, such conserved
quantities uniquely determine a local equilibrium value

U = E(v) such that R(E(v)) = 0.(3)

The image of E represents the manifold of local equilibria of the relaxation operator R.

Using (2) in (1) we obtain a system of n conservation laws which is satisfied by
every solution of (1),

∂t(QU) + ∂x(QF (U)) = 0.(4)

For small values of the relaxation parameter ε from (1) we get R(U) = 0 which
by (3) implies U = E(v). In this case system (1) is well approximated by the reduced
system

∂tv + ∂xG(v) = 0,(5)

where G(v) = QF (E(v)).
We refer to [32, 17, 7] for a theoretical study of these relaxation problems.

A simple prototype of a relaxation system in the case N = 2 is given by the
p-system

∂tu+ ∂xv = 0,

∂tv + ∂xp(u) = −1

ε
(v − f(u)),

(6)

which corresponds to taking U = (u, v), F (U) = (v, p(u)), and R(U) = (0, f(u)− v).

For small values of ε from the second equation in (6) we get the local equilibrium

v = f(u)(7)

and, under Liu’s subcharacteristic condition p′(u) > f ′(u)2, solutions to (6) converge
to the solution of the scalar conservation law

∂tu+ ∂xf(u) = 0.(8)
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3. Central schemes.

3.1. Derivation. For simplicity we derive the schemes in the case of the single
scalar equation

ut + f(u)x =
1

ε
g(u).(9)

For the construction of our schemes we will use a staggered grid as in the NT approach.
To this aim we introduce the grid points

xj = j∆x, xj+1/2 = xj +
1

2
∆x, j = . . . ,−2,−1, 0, 1, 2, . . .(10)

and use the standard notation

un+1
j+1/2 =

1

∆x

∫ xj+1

xj

u(x, tn+1) dx.(11)

Now if we integrate (9) over the cell [xj , xj+1]× [tn, tn+1] we obtain

un+1
j+1/2 =

1

∆x

∫ xj+1

xj

u(x, tn) dx+
1

∆x

∫ tn+1

tn
f(u(xj , t))− f(u(xj+1, t)) dt

+
1

ε∆x

∫ tn+1

tn

∫ xj+1

xj

g(u(x, t)) dx dt.

Following [23] at each time level tn = n∆t we reconstruct a piecewise linear approxi-
mation of u(x, t) of the form

Lj(x, t) = uj(t) + (x− xj)
u′
j

∆x
, xj−1/2 < x < xj+1/2,(12)

where u′
j is a numerical derivative such that

u′
j

∆x
= ux(x, t)|x=xj

+O(∆x).(13)

This gives

un+1
j+1/2 =

1

∆x

(∫ xj+1/2

xj

Lj(x, t
n) dx+

∫ xj+1

xj+1/2

Lj+1(x, t
n) dx

)

+
1

∆x

∫ tn+1

tn
f(u(xj , t))− f(u(xj+1, t)) dt+

1

ε∆x

∫ tn+1

tn

∫ xj+1

xj

g(u(x, t)) dx dt

=
1

2
(un

j + un
j+1) +

1

8
(u′

j − u′
j+1) +

1

∆x

∫ tn+1

tn
f(u(xj , t))− f(u(xj+1, t)) dt

+
1

ε∆x

∫ tn+1

tn

∫ xj+1

xj

g(u(x, t)) dx dt.

The semidiscrete approximation can be rewritten in the form

un+1
j+1/2 =

1

2
(un

j + un
j+1)− λ(fj+1 − fj) +

∆t

ε
gj+1/2,(14)
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where λ = ∆t/∆x and

fj =
1

∆t

∫ tn+1

tn
f(u(xj , t)) dt+

1

8λ
u′
j ,(15)

gj+1/2 =
1

∆t

∫ tn+1

tn

1

∆x

∫ xj+1

xj

g(u(x, t)) dx dt.(16)

Clearly, the main issue is the time integration of (16) which should guarantee both
stability and second order accuracy.

As we will see, however, this time discretization has to be considered together
with the time discretization of the flux term (15) in order to obtain an efficient and
uniformly second order accurate scheme.

Remark 3.1. We point out that, to achieve second order accuracy in space for
smooth solutions and to be consistent with the staggered grid, for the space discretiza-
tion of (16) we can use a standard midpoint rule on the terms at t = tn+1,

1

∆x

∫ xj+1

xj

g(un+1(x)) dx ≈ g(un+1
j+1/2),(17)

and a trapezoidal rule on all other terms with t ∈ [tn, tn+1[,

1

∆x

∫ xj+1

xj

g(u(x, t)) dx ≈ 1

2
[g(uj+1(t)) + g(uj(t))] .(18)

Clearly, suitable predictors for the values of uj(t) with t ∈ ]tn, tn+1[ may be required
by both time discretizations of (16) and (15).

To conclude this section we report some simple examples of nonoscillatory TVD
numerical derivatives [23],

u′
j = MM(∆uj+1/2,∆uj−1/2),

u′
j = MM

(
γ(∆uj+1/2),

1

2
(uj+1 − uj−1), γ(∆uj−1/2)

)
, 1 ≤ γ ≤ 2,

(19)

where ∆uj+1/2 = uj+1 − uj , ∆uj−1/2 = uj − uj−1, and MM is the multivariable
MinMod function given by

MM(x1, x2, . . .) =

{
minj{xj} if xj > 0 ∀j,
maxj{xj} if xj < 0 ∀j,
0 otherwise.

(20)

Another possible choice is the UNO [10] numerical derivative

u′
j = MM

(
∆uj−1/2 +

1

2
MM(∆2uj−1,∆

2uj),∆uj+1/2 − 1

2
MM(∆2uj ,∆

2uj+1)

)

with ∆2uj = uj+1 + uj−1 − 2uj .

3.1.1. Predictor-corrector (PC) time discretizations. First we recall that
for g ≡ 0 a fully second order scheme was obtained in [23] applying the midpoint rule
to the flux

fj ≈ f(u
n+1/2
j ) +

1

8λ
u′
j(21)
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and predicting the value u
n+1/2
j by Taylor expansion

u
n+1/2
j = un

j − 1

2
λf ′

j ,(22)

where f ′
j/∆x is at least a first order approximation of f(u(x, tn))x|x=xj , computed,

for example, using the same MinMod limiter.
This is equivalent to using a standard second order PC scheme for the ODE

y′ = f(y),(23)

where the predictor is the explicit Euler method and the corrector the midpoint
method

yn+1/2
p = yn +

1

2
∆tf(yn),

yn+1 = yn +∆tf(yn+1/2
p ).

(24)

Of course this is not the unique possible choice to obtain second order accuracy in
time.

For example, another second order accurate scheme is obtained using the trape-
zoidal rule on the fluxes

fj ≈ ∆t

2

(
f(un+1

j ) + f(un
j )
)
+

1

8λ
u′
j(25)

and predicting the value un+1
j by

un+1
j = un

j − λf ′
j(26)

corresponding to the PC scheme

yn+1
p = yn +∆tf(yn),

yn+1 = yn +
1

2
∆t(f(yn+1

p ) + f(yn)).
(27)

More generally, any other two-level explicit Runge–Kutta method for (23) applies
provided that the first level is used as a predictor and the second as the time integrator
in the corrector. We mention here other Runge–Kutta methods proposed in the
context of central schemes in [5] and a more general treatment recently developed
in [25].

3.2. Implicit-explicit central schemes. Since (9) contains stiff terms for small
values of ε it is natural to use an implicit time discretization for the stiff relaxation
term (16) combined with an explicit time discretization for the fluxes (15). In partic-
ular the combination of both time integrators should result in a scheme for which the
overall accuracy is second order and, moreover, the accuracy should not deteriorate
in the stiff limit as ε goes to zero.

In order to derive such time discretizations we consider the simple ODE

y′ = f(y) +
1

ε
g(y).(28)

Several Runge–Kutta schemes for this kind of equation, based on implicit discretiza-
tions of g and explicit discretizations of f , were derived recently for advection-diffusion
problems in [2, 3].
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3.2.1. Previous methods. First attempts to develop uniformly accurate sec-
ond order methods in the context of central schemes were previously made in [8, 18].
Both methods were based on using directly the NT scheme, i.e., fixing the midpoint
rule for the flux integration, and considering only the problem of the integration of
the stiff source term.

In [8] a θ-method was constructed of the form

yn+1/2
p = yn +

1

2
∆tf(yn) +

1

2ε
∆t g(yn+1/2

p ),

yn+1 = yn +
1

2
∆tf(yn+1/2

p ) +
1

ε
∆t((1− θ)g(yn) + θg(yn+1)),

(29)

where θ = θ(ε) ∈ [0, 1] is s.t. θ(ε = O(1)) = 1/2 and θ(ε � 1) ≈ 1. The scheme is
quite efficient since only two evaluations of f and, except for the first time step, of g
are used. However, the derivation of the parameter θ that gives uniform second order
accuracy is problem dependent and quite difficult in general.

At variance the method developed in [18] results in the three-level scheme

yn+1/2
p = yn +

1

2
∆tf(yn) +

1

2ε
∆t g(yn+1/2

p ),

yn+1/3
p = yn +

1

3
∆tf(yn) +

1

3ε
∆t g(yn+1/3

p ),

yn+1 = yn +∆tf(yn+1/2
p ) +

1

4ε
∆t(3g(yn+1/3

p ) + g(yn+1)),

(30)

which gives uniform second order accuracy but is not efficient since it requires three
evaluations of g at every time step. Moreover, when g ≡ 0 or f ≡ 0, the result of one
of the two predictors is not used by the corrector.

3.2.2. Second order PC schemes. Here we are aiming to find a more general
two-level PC scheme of the form

yn+α
p = yn + α∆tf(yn) + α

1

ε
∆t g(yn+α

p ),

yn+1 = yn +∆t(µf(yn) + νf(yn+α
p )) +

1

ε
∆t(ξg(yn+α

p ) + ηg(yn+1)).
(31)

Second order accuracy conditions for the scheme can be derived by considering the
exact solution

Y (∆t) = exp((A+B)∆t)Y (0)(32)

in the time interval [0,∆t] to the linear system

∂tY = AY +BY,(33)

where Y ∈ R
N and A, B are two constant matrices.

Applying (31) to (33) and equating the Taylor expansions up to order 2 of the
resulting numerical solution and of (32), we obtain the following set of nonlinear
algebraic equations for the weights:

µ+ ν = 1, ξ + η = 1, α ν =
1

2
,

α ξ + η(µ+ ν) =
1

2
, αξ + η(ξ + η) =

1

2
.

(34)
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xj xj+1

tn

tn+1

xj+1/2

tn+α

Fig. 1. Quadrature points for the flux (◦) and the source term (×) in scheme PCC.

The family of real solutions to (34) can be expressed in terms of the parameter α �=
0, 1 as

1− µ = ν =
1

2α
, 1− η = ξ =

1

2(1− α)
.(35)

For example, taking α = 1/3 we get

µ = −1

2
, ν =

3

2
, ξ =

3

4
, η =

1

4
,(36)

whereas for α = 2/3 we have

µ =
1

4
, ν =

3

4
, ξ =

3

2
, η = −1

2
.(37)

Note that for α > 1/2 the discretization contains negative parameters in the implicit
terms which may cause numerical breakdown in the intermediate regime ∆t = O(ε).

This creates the following family of second order PC central schemes (PCC) for (9)
(see Figure 1):

un+α
j = un

j − λαf ′
j +

∆t

ε
αg(un+α

j ),(38)

un+1
j+1/2 =

1

2
(un

j + un
j+1) +

1

8
(u′

j − u′
j+1)

− λ

2α

[
(2α− 1)(f(un

j )− f(un
j+1)) + (f(un+α

j )− f(un+α
j+1 ))

]
(39)

+
∆t

2(1− α)ε

[
1

2
(g(un+α

j ) + g(un+α
j+1 )) + (1− 2α)g(un+1

j+1/2)

]
.

We remark that a method based on the usual NT PC scheme (24) coupled with a
midpoint quadrature rule on the stiff source term is obtained for α = 1/2. Unfortu-
nately, as we will see in section 4, L-stability of the stiff integrator will be guaranteed
only if 0 < α < 1/2.
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Remark 3.2. The second order conditions (34) are equivalent to the usual second
order conditions of Runge–Kutta methods for the differential equation (28) (see [2]).
This is not the case if one considers higher order methods.

Remark 3.3. We point out that schemes (38), (39) can be easily written in
operator splitting form as

u
(1)
j = un

j − λαf ′
j ,

un+α
j = u

(1)
j +

∆t

ε
αg(un+α

j ),

u
(2)
j+1/2 =

1

2
(un

j + un
j+1) +

1

8
(u′

j − u′
j+1)(40)

− λ

2α

[
(2α− 1)(f(un

j )− f(un
j+1)) + (f(un+α

j )− f(un+α
j+1 ))

]
,

un+1
j+1/2 = u

(2)
j+1/2 +

∆t

2(1− α)ε

[
1

2
(g(un+α

j ) + g(un+α
j+1 )) + (1− 2α)g(un+1

j+1/2)

]
.

This form is useful since it allows an efficient implementation of the methods and, as
we will see in section 4, simplifies the analysis of the small relaxation limit.

3.2.3. Second order schemes with initial layer fix. From the split form
(40) it is clear that PCC schemes do not possess the correct initial layer behavior
since, except for α = 1/2, the corrector contains the value f(un

j ), and un
j in the

very first time step is not a projection over the local equilibrium as ε → 0. This
will introduce an initial error of O(∆t) if the initial layer is not well resolved and
the initial data are not in local equilibrium (see section 4.2.1). Hence, extra care
must be taken to properly handle the initial layer. A possible way to overcome this
problem is to use a Richardson extrapolation technique only in the first time step, as
in [6]. More precisely, if we denote by u∆t

j+1/2 the numerical solution obtained with a

first iteration of the scheme, and by u
∆t/2
j the numerical solution obtained with two

half-steps iterations, taking care of the staggered grid with a suitable reconstruction
technique, our first time step solution will be given by

u
∆t/2
j+1/2 =

1

2
(u

∆t/2
j + u

∆t/2
j+1 ) +

1

8
(u

′
j − u

′
j+1),

u1
j+1/2 = 2u

∆t/2
j+1/2 − u∆t

j+1/2,

(41)

where u
′
j/∆x denotes a first order approximation of ux(x,∆t/2)|x=xj

.
We will denote by PCCF the PC central scheme (38), (39) with this simple initial

layer fix.
However, since in order to have the correct behavior the numerical scheme should

have a projection on the very first step, one may try to find a scheme of the form

y∗p = yn + β
1

ε
∆t g(y∗p),

y∗∗p = yn + α∆tf(y∗p) +
1

ε
∆t (ξg(y∗p)) + ηg(y∗∗p )),

yn+1 = yn +∆t(µf(y∗p) + νf(y∗∗p )) +
1

ε
∆t(γg(y∗p) + σg(y∗∗p )).

(42)

Note that this Runge–Kutta scheme is still a two-level method since only two evalu-
ations of f and g are used; however, it does not possess a natural PC interpretation
since y∗p solves only an equation in g.
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Applying the same asymptotic technique to satisfy our second order accuracy
requirement, we obtain the following set of nonlinear algebraic equations:

µ+ ν = 1, γ + σ = 1,

α ν =
1

2
, α σ =

1

2
,

β µ+ ν(ξ + η) =
1

2
, βγ + σ(ξ + η) =

1

2
.

(43)

A family of solutions to (43) that satisfies the condition ξ + η = 1 can be expressed
in terms of α �= 0, 1/2, and ξ as

β =
α− 1

2α− 1
, µ = γ =

2α− 1

2α
, ν = σ =

1

2α
, η = 1− ξ.(44)

Nonpositive parameters in the implicit terms are avoided if 0 < α < 1/2 or α > 1.

Hence, we have the following family of second order Runge–Kutta central schemes
(RKC) for (9):

u∗
j = un

j +
∆t

(2α− 1)ε
(α− 1)g(u∗

j ),(45)

u∗∗
j = un

j − λαf ′(u∗
j ) +

∆t

ε
[ξg(u∗

j ) + (1− ξ)g(u∗∗
j )],(46)

un+1
j+1/2 =

1

2
(un

j + un
j+1) +

1

8
(u′

j − u′
j+1)

− λ

2α

[
(2α− 1)(f(u∗

j )− f(u∗
j+1)) + (f(u∗∗

j )− f(u∗∗
j+1))

]
(47)

+
∆t

2αε

[
(2α− 1)

2
(g(u∗

j ) + g(u∗
j+1)) +

1

2
(g(u∗∗

j ) + g(u∗∗
j+1))

]
.

Remark 3.4. A splitting form of this scheme is given by

u∗
j = un

j +
∆t

(2α− 1)ε
(α− 1)g(u∗

j ),

u
(1)
j = un

j − λαf ′(u∗
j ),

u∗∗
j = u

(1)
j +

∆t

ε
[ξg(u∗

j ) + (1− ξ)g(u∗∗
j )],

u
(2)
j+1/2 =

1

2
(un

j + un
j+1) +

1

8
(u′

j − u′
j+1)

− λ

2α

[
(2α− 1)(f(u∗

j )− f(u∗
j+1)) + (f(u∗∗

j )− f(u∗∗
j+1))

]
,

un+1
j+1/2 = u

(2)
j+1/2 +

∆t

2αε

[
(2α− 1)

2
(g(u∗

j ) + g(u∗
j+1)) +

1

2
(g(u∗∗

j ) + g(u∗∗
j+1))

]
.

(48)

We point out that this splitting, as well as (40), can be effectively used also in the
context of upwind schemes. Compared to the Runge–Kutta splittings proposed in
[13, 6], the splitting (48) has the advantage of avoiding negative weights on the stiff
terms and avoiding Richardson extrapolation in the first time step.
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4. Analysis of the schemes.

4.1. Stability analysis. The stability of the previous schemes will be studied
from the split forms (40) and (48) by considering separately the stability of the implicit
steps, which involve the solution of a stiff ODE, and the stability of the explicit steps,
which involve the solution of a conservation law.

4.1.1. Stability of PCC schemes. To study the stability of the implicit time
integrator we will apply, in the case f ≡ 0, the schemes (31) with the weights given
by (35) to the model problem

y′ = λy, y(0) = 1.(49)

This gives

yn+1 = R(z)yn,

where R is the function of absolute stability

R(z) =
1 + αz

(1− z(1− α))(1− z(2α− 1))
,(50)

and z = ∆tλ.
It is easy to show that these schemes are L-stable for 0 < α < 1/2. Thus the

value α = 1/2 (corresponding to the standard NT scheme for the fluxes) does not
satisfy the L-stability requirements. In particular, the maximum damping of (50) is
obtained for α = 1−√

2/2 ≈ 0.3.
Therefore, for 0 < α < 1/2 a sufficient CFL condition will be given only by the

convective part since the stiff source terms are treated by L-stable integrators.
For the scalar problem (9) in the case g ≡ 0, using the same arguments as in [23],

we can prove the following.
Proposition 4.1. Let the numerical derivatives be chosen such that

0 ≤ u′
jsign(∆uj±1/2) ≤ A|MM(∆uj+1/2,∆uj−1/2)|,(51)

0 ≤ f ′
jsign(∆uj±1/2) ≤ C|MM(∆uj+1/2,∆uj−1/2)|,(52)

where A and C are positive constants.
Then the family of PC schemes (38), (39) with g ≡ 0 and 0 < α < 1/2 is TVD if

the following CFL condition is satisfied:

λmax
j

|a(uj)| ≤ B,(53)

B ≡ λ
C

A
≤ 1

2αA
(2(α− 1) +

√
α2(4A−A2 + 4)− 8α+ 4),(54)

where a(uj) = ∂uf(u = uj).
Proof. The schemes are TVD if their modified numerical flux satisfies [23]

λ

∣∣∣∣ fj+1 − fj
uj+1 − uj

∣∣∣∣ = λ

∣∣∣∣∆fj+1/2

∆uj+1/2

∣∣∣∣ ≤ 1

2
,

where in our case

fj =
1

2α
((2α− 1)f(un

j ) + f(un+α
j )) +

1

8λ
u′
j , 0 < α < 1/2.(55)
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Thus

λ

∣∣∣∣∆fj+1/2

∆uj+1/2

∣∣∣∣ ≤ λ
(1− 2α)

2α

∣∣∣∣f(un
j+1)− f(un

j )

∆uj+1/2

∣∣∣∣
+ λ

1

2α

∣∣∣∣∣f(u
n+α
j+1 )− f(un+α

j )

∆uj+1/2

∣∣∣∣∣+ 1

8

∣∣∣∣∣
∆u′

j+1/2

∆uj+1/2

∣∣∣∣∣ .
From the CFL condition we have

λ

∣∣∣∣f(un
j+1)− f(un

j )

∆uj+1/2

∣∣∣∣ ≤ B

and

λ

∣∣∣∣∣f(u
n+α
j+1 )− f(un+α

j )

∆uj+1/2

∣∣∣∣∣ ≤ λ

∣∣∣∣∣f(u
n+α
j+1 )− f(un+α

j )

un+α
j+1 − un+α

j

∣∣∣∣∣
∣∣∣∣∣u

n+α
j+1 − un+α

j

∆uj+1/2

∣∣∣∣∣
≤ B

∣∣∣∣∣u
n+α
j+1 − un+α

j

∆uj+1/2

∣∣∣∣∣ ≤ B

(
1 + αλ

∣∣∣∣f ′
j+1 − f ′

j

∆uj+1/2

∣∣∣∣
)
,

where the last term has been estimated using the predictor (38).
Now, as in [23], from our assumptions we have the bounds

∣∣∣∣f ′
j+1 − f ′

j

∆uj+1/2

∣∣∣∣ ≤ AB

λ
,

∣∣∣∣∣
∆u′

j+1/2

∆uj+1/2

∣∣∣∣∣ ≤ A.

Collecting all the previous estimates, we obtain that our TVD requirement results in
the quadratic inequality

B

2α
(2− 2α+ αAB) +

1

8
A ≤ 1

2
,

which gives the CFL limitation (54).
Remark 4.1. The right-hand side of (54) is an increasing function of α, and hence

the final CFL limitation for the TVD property is stronger than that of the original
NT scheme which corresponds to taking α = 1/2. For example, in the case A = 1 we
have for α = 1/3 the limitation B ≤ (

√
19−4)/2 ≈ 0.18, whereas for α = 2/5 we have

B ≤ (
√
12 − 3)/2 ≈ 0.23. However, as already pointed out in [23], these constraints

are sufficient, but not necessary, conditions for the TVD property, and in practice one
may use higher values of B (typically up to 0.5).

4.1.2. Stability of RKC schemes. For schemes (42) with the weights given
by (44) the function of absolute stability of the stiff integrator is given by

R(z) = −1

2

(2α ξ + 1− 2α) z2 + (4α ξ − 2α− 2 ξ + 2) z − 2 + 4α

(1 + (ξ − 1) z) ((−1 + α) z + 1− 2α)
.(56)

Thus this class of schemes is L-stable only if

lim
z→∞R(z) = −1

2

2α ξ + 1− 2α

(ξ − 1) (−1 + α)
= 0.(57)
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Taking

ξ = µ = γ =
2α− 1

2α
,(58)

we have a class of L-stable schemes for α �= 0, 1/2, 1. The maximum damping of
(56) is then obtained for α = 1 ±√

2/2. However, we have fully positive parameters
only for α > 1; thus the value α = 1 +

√
2/2 should be considered “optimal” in stiff

regimes. For example, for α = 5/3 we have

β =
2

7
, µ = ξ = γ =

7

10
, ν = η = σ =

3

10
,(59)

whereas for α = 2 we have

β =
1

3
, µ = ξ = γ =

3

4
, ν = η = σ =

1

4
.(60)

In this case, since all the parameters of the schemes are positive, the CFL condi-
tion for TVD stability in the case g ≡ 0 is independent of α and is exactly the same
as in NT schemes. This is stated by the following.

Proposition 4.2. Let the numerical derivatives be chosen such that relations
(51), (52) hold. Then the family of PC schemes (46), (47) with g ≡ 0 and α > 1 is
TVD if the following CFL condition is satisfied:

λmax
j

|a(uj)| ≤ B, B = λ
C

A
≤ 1

2A

(√
4A−A2 + 4− 2

)
.(61)

Proof. It is enough to observe that the modified numerical flux is the same as in
PC schemes but with α > 1:

fj =
1

2α
((2α− 1)f(un

j ) + f(un+α
j )) +

1

8λ
u′
j , α > 1.(62)

Hence, we get the quadratic inequality

B

2α
(2α− 1 + 1 + αAB) +

1

8
A ≤ 1

2
,

which after simplification gives the usual CFL limitation (61).
Once more, we observe that these sufficient TVD constraints are more restrictive

than the “practical” CFL limitation of B ≤ 0.5.
Remark 4.2. Alternatively, as in [18], one also can study the stability of the full

scheme applied to the model problem

y′ = λ1y + λ2y, y′(0) = 1.(63)

This gives

yn+1 = R(z1, z2)y
n,

where R is the function of absolute stability, R(0, z2) is the function of absolute
stability of the implicit scheme, and z1 = ∆tλ1, z2 = ∆tλ2.

Remark 4.3. More general TVD estimates can be proved for the full problem
(9) if one assumes that the relaxation operator g(u) is a nonincreasing function of u.
However, the study of the simplified case g ≡ 0 is particularly important since in the
zero relaxation limit, as we will see in the following sections, the schemes we obtain
for the limiting equilibrium conservation laws have the same structure of the schemes
we obtain for g ≡ 0.
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4.2. Zero relaxation limit. The most important issue when developing under-
resolved numerical schemes is the behavior of the method as ε → 0. To this aim we will
rewrite our schemes in splitting form for the hyperbolic system with relaxation (1).

4.2.1. PCC schemes. We have for 0 < α < 1/2

U
(1)
j = Un

j − λαF ′
j ,

Un+α
j = U

(1)
j +

∆t

ε
αRj(U

n+α),

U
(2)
j+1/2 =

1

2
(Un

j + Un
j+1) +

1

8
(U ′

j − U ′
j+1)(64)

− λ

2α

[
(2α− 1)(Fj(U

n)− Fj+1(U
n)) + (Fj(U

n+α)− Fj+1(U
n+α))

]
,

Un+1
j+1/2 = U

(2)
j+1/2 +

∆t

2αε

[
1

2
(Rj(U

n+α) +Rj+1(U
n+α)) + (2α− 1)Rj+1/2(U

n+1)

]
.

As ε → 0 from the second and the last equation in (64), we get

R(Un+α) = 0, R(Un+1) = 0.(65)

Thus by (3) both steps are projections of the solution towards its local equilibrium

Un+α = E(vn+α), Un+1 = E(vn+1).(66)

Multiplying system (64) by Q and using relations (66) in the first and second equation,
respectively, we have the limiting scheme

vn+α
j = vnj − λαQF ′

j ,

vn+1
j+1/2 =

1

2
(vnj + vnj+1) +

1

8
(v′j − v′j+1)(67)

− λ

2α

[
(2α− 1)(QFj(u

n)−QFj+1(u
n)) + (Gj(v

n+α)−Gj+1(v
n+α))

]
,

where G(v) = QF (E(U)).
Thanks to (66), scheme (67), except for the very first time step, will be equivalent

to applying directly the second order central schemes we get for R ≡ 0 to the reduced
system of equations (5), and Proposition 4.1 applies. Hence, the method provides
the correct equilibrium limit and it is asymptotic preserving. As already observed, a
suitable initial layer fix technique (41) is required in the first step to avoid degradation
of accuracy to first order if the initial data do not satisfy the equilibrium equation (3).

4.2.2. RKC schemes. In this case for α > 1 we can write

U∗
j = Un

j +
∆t

(2α− 1)ε
(α− 1)R(U∗

j ),

U
(1)
j = Un

j − λαF ′(U∗
j ),

U∗∗
j = U

(1)
j +

∆t

2αε
[(2α− 1)R(U∗

j ) +R(U∗∗
j )],

U
(2)
j+1/2 =

1

2
(Un

j + Un
j+1) +

1

8
(U ′

j − U ′
j+1)

− λ

2α

[
(2α− 1)(F (U∗

j )− F (U∗
j+1)) + (F (U∗∗

j )− F (U∗∗
j+1))

]
,

Un+1
j+1/2 = U

(2)
j+1/2 +

1

2

[
(U∗∗

j + U∗∗
j+1)− (U

(1)
j + U

(1)
j+1)

]
.

(68)
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As ε → 0 from the first and second equations in (68), we obtain

R(U∗) = 0, R(U∗∗) = 0.(69)

Thus by (3) both steps are projections of the solution towards its local equilibrium

U∗ = E(vn), U∗∗ = E(vn+α).(70)

After multiplication of system (68) by Q, since QU∗∗ = QU (1), using relations (70)
we have the limiting scheme

vn+α
j = vnj − λαG′

j ,

vn+1
j+1/2 =

1

2
(vnj + vnj+1) +

1

8
(v′j − v′j+1)(71)

− λ

2α

[
(2α− 1)(Gj(v

n)−Gj+1(v
n)) + (Gj(v

n+α)−Gj+1(v
n+α))

]
,

where G(v) = QF (E(U)).
Clearly, and independently of the initial data, (71) is a second order high-resolution

central scheme for (5) for which Proposition 4.2 holds.
Remark 4.4. From the split form (68) it is clear that the last step in the scheme

is not a projection towards the local equilibrium. This problem is less important than
the initial layer problem, since it will not affect the accuracy of the conserved variables
(typically the quantities of interest) but only the accuracy on the remaining N − n
variables in the very last step. In fact, this “final layer” will reduce to first order the
accuracy of the nonconserved variables, and hence their distance from equilibrium,
for small values of ε. However, using Richardson extrapolation in the very last step,
exactly as described in section 3.2.3, recovers the desired accuracy. This scheme will
be denoted by RKCF in what follows.

5. Numerical examples.

5.1. Broadwell model. To compare the accuracy of our approach with the
results presented in [6, 13, 18, 24, 1] we test our schemes for the Broadwell model
of rarefied gas dynamics. The kinetic model is characterized by a hyperbolic system
with relaxation of the form (1) for N = 3 with

U = (ρ, m, z), F (U) = (m, z, m), R(U) =

(
0, 0,

1

2
[ρ2 +m2 − 2ρz]

)
.

Here ε represents the mean-free path of particles. The only conserved quantities are
the density ρ and the momentum m.

In the fluid-dynamic limit ε → 0 we have

z = zE ≡ ρ2 +m2

2ρ
,(72)

and the Broadwell system is well approximated by the reduced system (5) for n = 2
with

v = (ρ, ρu), G(v) =

(
ρu,

1

2
[ρ+ ρu2]

)
, u =

m

ρ
,

which represents the corresponding Euler equations of fluid dynamics.
We have considered a periodic smooth solution with initial data as in [6, 18]

given by
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ρ(x, 0) = 1 + aρ sin
2πx

L
,

u(x, 0) =
1

2
+ au sin

2πx

L
,(73)

z(x, 0) = az
ρ(x, 0)2 +m(x, 0)2

2ρ(x, 0)
.

Clearly, if az �= 1 the initial data is not in equilibrium and we have an initial layer.
In our computations we used the parameters

aρ = 0.3, au = 0.1, az = 0.2, L = 20,

and we integrate the equations for t ∈ [0, 30].

The results for the relative L∞ norm of the errors for the conserved quantity ρ
and for the nonconserved quantity z are reported in Table 1 and the corresponding
convergence rates are reported in Table 2. We have chosen α = 1/3 for scheme PCC
and α = 5/3 for scheme RKC. However, other values of α in the L-stability range
give similar results. The CFL condition is ∆t/∆x = 1/3 and the UNO limiter has
been used. The extrapolation in the first step for scheme PCCF and in the last step
for scheme RKCF have been implemented for simplicity directly using the schemes
themselves. As expected, a reduction of accuracy of schemes PCC and RKC in the
nonconserved variables is observed. It is evident that both the PCCF and RKCF
schemes provide the desired uniform second order accuracy in the conserved as well
as in the nonconserved variables. Note that RKCF is more accurate than scheme
PCCF which presents a slight degradation of accuracy in the intermediate regimes for
the nonconserved quantity. The magnitude of the errors for the conserved variables
is comparable to the results recently presented in [18] but with better computational
efficiency.

Next, we test the shock-capturing properties of the schemes in the case of non-
smooth solutions characterized by the following two Riemann problems [6]:

ρl = 2, ml = 1, zl = 1, x < 0.2,
(74)

ρr = 1, mr = 0.13962, zr = 1, x > 0.2,

ρl = 1, ml = 0, zl = 1, x < 0,
(75)

ρr = 0.2, mr = 0, zr = 1, x > 0.

The results are shown in Figures 2 and 3 for a CFL condition of ∆t/∆x = 1/3.
Both schemes, as expected, give an accurate description of the solution in all different
regimes also using coarse meshes that do not resolve the small scales. In particular
the shock formation in the fluid limit is well captured without spurious oscillations.
We refer to [6, 13, 18, 24, 1] for a comparison of the present results with previous ones.
Next, in Figure 4 we emphasize the different behavior of the schemes in the case of
initial layer and in evaluating the distance from equilibrium. The improvement of
accuracy due to the initial and final extrapolations is evident.
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Table 1
Accuracy test, L∞ norm errors (in units of 10−3).∗

ε 1.0 10−1 10−2 10−3 10−4 10−5 10−6

Scheme Relative errors for ρ N

PCC 0.156088 0.340207 0.414980 0.426457 0.427747 0.427876 0.427889 100
0.037920 0.115425 0.157950 0.162140 0.162666 0.162721 0.162726 200
0.009359 0.040442 0.070713 0.072268 0.072519 0.072548 0.072551 400

RKC 0.183913 0.248758 0.268285 0.274410 0.275367 0.275465 0.275475 100
0.043718 0.058525 0.062650 0.064783 0.065284 0.065336 0.065342 200
0.010614 0.014084 0.015113 0.015601 0.015832 0.015859 0.015862 400

PCCF 0.177767 0.248930 0.278652 0.281968 0.281309 0.281451 0.281461 100
0.042111 0.057579 0.071300 0.068225 0.066985 0.067095 0.067101 200
0.010208 0.013673 0.017737 0.017268 0.016255 0.016312 0.016317 400

RKCF 0.187796 0.255287 0.275393 0.282256 0.283302 0.283409 0.283420 100
0.044189 0.059333 0.063576 0.065751 0.066312 0.066371 0.066377 200
0.010669 0.014188 0.015233 0.015711 0.015941 0.015969 0.015971 400

Relative errors for z

PCC 0.316649 0.876426 0.982754 0.996487 0.998066 0.998226 0.998242 100
0.083132 0.341265 0.414507 0.417861 0.418347 0.418399 0.418404 200
0.021503 0.125947 0.191382 0.192039 0.192215 0.192239 0.192242 400

RKC 0.233554 0.318965 0.438123 0.558334 0.569924 0.570346 0.570376 100
0.055991 0.075030 0.112013 0.183210 0.196598 0.196977 0.196991 200
0.013737 0.018175 0.028674 0.064705 0.079302 0.079850 0.079861 400

PCCF 0.225721 0.310813 0.390588 0.346528 0.340753 0.341205 0.341222 100
0.053785 0.066234 0.128782 0.095851 0.079851 0.080403 0.080418 200
0.013156 0.014668 0.037960 0.031686 0.019124 0.019545 0.019565 400

RKCF 0.239403 0.310855 0.295029 0.326014 0.340293 0.340815 0.340835 100
0.056743 0.073544 0.059888 0.066784 0.077785 0.078566 0.078584 200
0.013832 0.017957 0.014577 0.012936 0.017799 0.018933 0.018955 400

∗Note: The underlined values indicate the smallest L∞ norm errors for fixed ε and N .

Table 2
Accuracy test, convergence rates.

ε 1.0 10−1 10−2 10−3 10−4 10−5 10−6

Scheme Convergence rates for ρ N

PCC 2.041345 1.559460 1.393572 1.395157 1.394844 1.394794 1.394789 100–200
2.018553 1.513026 1.159427 1.165810 1.165483 1.165396 1.165387 200–400

RKC 2.072731 2.087625 2.098374 2.082638 2.076557 2.075912 2.075848 100–200
2.042282 2.054974 2.051493 2.053945 2.043920 2.042585 2.042449 200–400

PCCF 2.077721 2.112119 1.966498 2.047159 2.070245 2.068608 2.068527 100–200
2.044539 2.074181 2.007092 1.982191 2.042974 2.040301 2.040004 200–400

RKCF 2.087401 2.105205 2.114931 2.101917 2.095001 2.094265 2.094192 100–200
2.050203 2.064147 2.061288 2.065251 2.056496 2.055314 2.055192 200–400

Convergence rates for z

PCC 1.929399 1.360740 1.245435 1.253828 1.254434 1.254488 1.254493 100–200
1.950904 1.438073 1.114938 1.121625 1.121979 1.121974 1.121972 200–400

RKC 2.060491 2.087858 1.967665 1.607631 1.535524 1.533811 1.533782 100–200
2.027090 2.045509 1.965834 1.501554 1.309825 1.302670 1.302573 200–400

PCCF 2.069265 2.230395 1.600709 1.854098 2.093343 2.085328 2.085126 100–200
2.031510 2.174882 1.762384 1.596958 2.061907 2.040474 2.039201 200–400

RKCF 2.076925 2.079570 2.300517 2.287351 2.129206 2.117009 2.116772 100–200
2.036402 2.034042 2.038568 2.368099 2.127720 2.052993 2.051640 200–400
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Fig. 2. Numerical solution of the Broadwell equations with initial data (74) for ρ (◦), m (+),
and z (∗) at time t = 0.5. Left column: PCCF scheme. Right column: RKCF scheme. From top to
bottom: ε = 1.0, 0.02, 10−8.

5.2. Extended thermodynamics for a monoatomic gas. Finally, we apply
our second order central schemes to a more general relaxation system for which an
explicit analytical expression of the eigenvalues and eigenvectors is not known. We
consider the one-dimensional model of extended thermodynamics for a monoatomic
gas [21, 18]. In conservative form the equations can be written as a relaxation system
of type (1) for N = 5 with
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Fig. 3. Numerical solution of the Broadwell equations with initial data (75) for ρ (◦), m (+),

and z (∗) at time t = 0.25 for ε = 10−8. Left: PCCF scheme. Right: RKCF scheme.
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U = (ρ, m, z, w, h),

R(U) =

(
0, 0, 0,

2

3
m2 − wρ,

2

3

[
10

3
mz −mw − hρ

])
,

F (U) =

(
m,

2

3
z + w,

1

2
h,

1

ρ2

[
9

5
mwρ+

4

15
hρ2 − 4

5
m3

]
,

2

ρ3

{
ρ2

[
7

3
wz +

10

9
z2 +

8

5
mh

]
+m2

[
79

45
m2 − 16

3
ρz − 28

15
wρ

]})
.

For monoatomic gases ε is a constant proportional to the relaxation time of the
system. The conserved quantities are the density ρ, the momentum m, and the
energy z. Other quantities of physical interest are the pressure p, the heat flux q, and
the stress σ given by

p =
2ρz −m2

3ρ
, q =

3hρ2 + 6m3 − 10mzρ− 6mwρ

6ρ2 , σ =
3wρ− 2m2

3ρ
.
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Fig. 5. Numerical solution of the extended thermodynamics equations with initial data (77) for
ε = 10−4 at time t = 0.1. Left column: PCCF scheme. Right column: RKCF scheme. From top to
bottom: density ρ, velocity u, and pressure p.

As ε → 0 we obtain the equilibrium relations

w = wE ≡ 2m2

3ρ
, h = hE ≡ mw

ρ
+

10mz

3ρ
(76)

that correspond to σ = q = 0 and provide the usual Euler equations for a monoatomic
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Fig. 6. Numerical solution of the extended thermodynamics equations with initial data (77) for
ε = 10−4 at time t = 0.1. Left column: PCCF scheme. Right column: RKCF scheme. From top to
bottom: heat flux q and stress σ.

gas characterized by the reduced system (5) for n = 3 with

v =

(
ρ, ρu,

1

2
ρu2 +

3

2
p

)
, G(v) =

(
ρu, ρu2 + p,

1

2
ρu3 +

5

2
up

)
, u =

m

ρ
.

We test our schemes for a generalization of the classical Sod’s problem [31]

U = Ul = (1, 0, 5, 0, 0), x < 0.5,

U = Ur = (0.125, 0, 0.5, 0, 0), x > 0.5
(77)

that corresponds to the test problem used in [18] (except for the initial value of the
pressure).

The numerical results are presented in Figures 5 and 6 for a CFL condition of
∆t/∆x = 0.1. It appears that both schemes give a very accurate description of
the behavior of the system also using underresolved discretizations. Note that both
schemes fully resolve the shear stress and the heat flux profiles using 200 grid points.
We refer to [18] for a comparison of the present results.

6. Conclusions. We have presented a new class of efficient underresolved central
schemes for the accurate solution of hyperbolic conservation laws with stiff source
terms. The schemes use only two evaluations of the flux and the source terms and
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provide second order accurate solutions on both conserved as well as nonconserved
variables for a wide range of stiffness parameters even if the initial layer is not resolved.
Moreover, in the zero relaxation limit they provide a consistent high-resolution scheme
for the reduced equilibrium system of conservation laws. Although the schemes have
been developed in the context of one-dimensional centrally based space discretizations,
the results also apply to other spatial discretizations in more dimensions. For example,
the extension of the present schemes to higher dimensions in a staggered central
context can be done using the reconstruction strategy presented in [11, 12].

Finally, we remark that the strategy developed here applies to any kind of Runge–
Kutta method in a staggered context. For example, this allows us to construct more
efficient higher order schemes for systems of conservation laws with [16] or without
[25] source terms.

Acknowledgment. The author would like to thank G. Russo for many stimu-
lating discussions about the subject of this paper.
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