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In this work, we propose an algorithm to measure the numerical entropy pro-
duction of several high order central schemes. The results obtained on a numer-
ical test indicate that this quantity permits to estimate the local error, in regions
of smooth flow, and to detect and locate shocks.
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1. INTRODUCTION

In this work, we describe the behaviour of the numerical cell entropy pro-
duction for several schemes. The numerical results we show indicate that
numerical entropy production can be used to estimate the local error in
regions of smoothness and to locate shocks. Thus the numerical entropy
production can be computed at each time step to monitor the numerical
solution produced by a scheme. The information gained in this fashion can
be used in strategies of grid adaptivity and/or to enhance the resolution of
discontinuities. We also describe how, at least for central schemes, the
evaluation of numerical entropy production does not result in a substantial
extra computational cost.
We consider the one-dimensional system of conservation laws:

ut+fx(u)=0 (1.1)

endowed with an entropy function g(u) which satisfies the entropy
inequality:

gt+kx [ 0, with NTuk=NTu g(u) fŒ(u) (1.2)



where fŒ(u) is the Jacobian of f. We cover the computational region with
control volumes Vnj=Ij×[t

n, tn+1], where tn+1=tn+Dt, Ij=[xj−h/2,
xj+h/2] and xj+1=xj+h.
Integrating the conservation laws (1.1) over the control volumes Vnj ,

we find the finite volume formulation:

ū n+1j =ū
n
j −
1
h
F
tn+1

tn
[f(u(I+j , y))−f(u(I

−
j , y))] dy (1.3)

Here I+j and I
−
j denote the right and left end points of the interval Ij and

ū nj=
1
h >Ij u(x, t

n) is the cell average at time tn=n Dt. Finally, l=Dt/h will
denote the mesh ratio.
Integrating the entropy inequality over the same control volume, we

find the finite volume formulation of the entropy inequality:

ḡ n+1j − ḡ nj+
1
h
F
tn+1

tn
[k(u(I+j , y))−k(u(I

−
j , y))] dy [ 0 (1.4)

where ḡ nj is the cell average of the function g(u(x, t)) in the cell Ij at time t
n.

In smooth regions, equality holds, both in (1.3) and (1.4). If a shock crosses
the Vnj control volume, (1.3) is satisfied, but (1.4) will not be zero, instead
its sign characterizes the physically relevant unique solution to (1.1).
In finite volume schemes the updated cell averages at time tn+1 are

computed through a discretization of (1.3). However the discretized version
of the entropy inequality will not be zero, even on smooth flows.
Let:

Snj=
1
Dt
3 ḡ n+1j − ḡ nj+

1
h
F
tn+1

tn
[k(u)|I+j −k(u)|I −j ] dy

4 (1.5)

be the density of numerical entropy production in the Vnj control volume
(in the following it will be called entropy production, for short, when no
ambiguities arise). Here u denotes the computed numerical solution of the
finite volume scheme.
Central schemes based on staggered grids yield a natural way for the

evaluation of Snj . In fact in these schemes the solution is smooth on the
walls of control volumes, see for instance [4]. This enables the evaluation
of the time integrals of the entropy fluxes, using data already computed in
order to find ū n+1.
In this work, we continue the study we started in [5]. We compute

the entropy production on a gas dynamic test problem for several central
schemes. The test chosen was described in [6]. It consists of the interaction
of a Mach 3 shock with an acoustic wave. The numerical solution has a
very rich structure, which better shows the advantages of high order schemes.
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We will see that the numerical entropy production indeed signals the
presence of discontinuities in the solution. Moreover, in regions of smooth
flow, the spurious numerical entropy production mimics the behaviour of
the local error.
In the following section, we review the construction of central schemes

based on staggered grids. Next we define the numerical entropy production
for these schemes. In the last section, we compare the numerical entropy
production of several schemes with the behaviour of the corresponding
numerical solutions.
The schemes studied in this work are the second order Nessyahu–

Tadmor scheme (NT) described in [4], the third order Compact Central
WENO (C-CW3) scheme of [3] and the fourth order Central WENO
(CW4) method introduced in [2].

2. ENTROPY PRODUCTION FOR CENTRAL SCHEMES
Central schemes are based on the integration of the conservation law

(1.1) on staggered cells. More precisely, starting from the cell averages {ū nj }
at time tn, we reconstruct the initial data:

un(x)=C
j
Pj(x) qIj (x) (2.1)

where Pj(x) is a non-oscillatory polynomial, interpolating the numerical
solution in the sense of cell averages, to ensure conservation, and qIj is the
characteristic function of the interval Ij. For the NT scheme, the recon-
struction is piece-wise linear, while for C-CW3 and CW4 schemes it is piece-
wise parabolic. See the references for the details of the algorithms defining
the reconstruction.
Once the reconstruction has been computed, the conservation law is

enforced on the staggered control volume Vnj+1/2=[xj, xj+1]×[t
n, tn+1].

Thus the interaction of the discontinuities in the initial data un(x) lie in the
middle of the control volumes. Therefore, the solution of the conservation
law remains smooth at the walls {xj}×[tn, tn+1] and {xj+1}×[tn, tn+1] of
the staggered control volume, if Dt is small enough, and the time integrals
of the fluxes appearing in (1.3) can be approximated by quadrature:

F
tn+1

tn
f(u(xj, y)) dy 4 Dt C

M

l=0
wlf(u(xj, tn+yl)) (2.2)

The midpoint rule,M=0, w0=1, y0=
Dt
2 , is enough for second order accu-

racy, and it is used for the NT scheme. Simpson’s rule is used for the C-CW3
and CW4 schemes:M=2, w0=w2=

1
6 , w1=

2
3 , and y0=0, y1=

Dt
2 , y2=Dt.

The values of u(xj, tn+yl) can be easily predicted using the local
smoothness of the numerical solution. For the NT scheme:

u 1xj, tn+
Dt
2
2 :=u(xj, tn)−

Dt
2
fŒ(u(xj, tn)) ux(xj, tn)
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where fŒ is the Jacobian of f and u(xj, tn) and ux(xj, tn) are computed via
the reconstruction (2.1).
For the C-CW3 and the CW4 schemes, the values of u(xj, tn+yl) are

evaluated applying a Runge–Kutta method to the system of equations
ut |xj=−fx(u)|xj . This again involves reconstruction steps to interpolate the
data f(u(xj, .)), in order to estimate fx(u)|xj .
The density of numerical entropy production can be defined as:

Sj+1/2=
1
Dt
3 ḡ n+1j+1/2− ḡ

n
j+1/2+l C

l
wl(k(u(xj+1, tn+yl)−k(u(xj, tn+yl))4

(2.3)

Here the averages of the entropies are given by:

ḡ nj+1/2=
1
h
F
xj+1

xj
g(un(x)) dx (2.4)

For the evaluation of ḡ n+1j+1/2 it is necessary to anticipate the reconstruction
step on the updated cell averages at the end of the previous time step.
Thus, the integral in (2.4) can be approximated both at t=tn and t=tn+1
by quadrature. Note that all quantities involved in the computation of
Sj+1/2 in (2.3) must be computed to update the cell averages of the numeri-
cal solution. Thus the evaluation of the entropy production does not add
a substantial overhead to the computation of the time advancement of the
solution.

3. NUMERICAL RESULTS

We are considering the one-dimensional Euler’s equations for an ideal
gas. The vector of unknowns is u=(r, rv, 12 rv

2+re)T, where r is the
density, v is the velocity and e is the internal energy, linked to the pressure
p by the equation of state p=re(c−1), with c=1.4. The entropy is
g=−r log(re/rc), and the entropy flux is k=vg, see [1].
The test we are studying is due to Shu and Osher, [6]. It consists of a

Mach 3 shock interacting with an acoustic wave. The initial condition is
u=uL for x [ 0.1, and u=uR for x > 0.1. The computational domain is
[0, 1], with free-flow boundary conditions. The left (L) and right (R) states
are given by:

R rv
p

S
L

=R 3.8571432.629369
10.3333

S R rv
p

S
R

=R1+0.2 sin(50x)0
1

S
The Courant number for this flow is c 4 0.219. The solution is printed at
T=0.18.
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Fig. 1. NT scheme: density; l=0.45c.

In this test, the acoustic wave is filtered by the shock. A region of smooth
flow with a complex structure occurs right behind the shock. A series of
weak waves emerges from this smooth region; these waves steepen into
shocks as they move away from the shock. At T=0.18, two shocks have
already formed behind the initial Mach 3 shock, trailed by a third wave,
which has not yet steepened into a shock.
In the following figures, the numerical solution is drawn with a dotted

line, and the solid line denotes the ‘‘exact ’’ solution, which was obtained
running the CW4 scheme with a grid of 1600 points. Finally, N is the
number of grid points.
We want to focus on two topics:

• the behaviour of the entropy production in the region of smooth
flow behind the main shock;

• the behaviour of the entropy production on shocks.

Figure 1 shows the density obtained with the NT scheme at T=0.18 for
several grid sizes. The numerical solutions due to the C-CW3 and CW4
schemes can be found in Figs. 4 and 6 respectively.
The corresponding plots for the density of entropy production behind

the main shock appear in Fig. 2 (NT scheme), Fig. 5 (C-CW3 scheme) and
Fig. 7 (CW4 scheme).
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Fig. 2. NT scheme: entropy behind the main shock, x ¥ [0, 0.73].

3.1. Entropy Production on a Smooth Transition

We first study the solution right behind the main shock, for values of
x ¥ (0.5, 0.7). We see that in this region, the NT scheme begins to show
details of the ‘‘exact ’’ solution around N=800. The numerical solution
seems to converge faster immediately behind the shock, and, for N=3200,
the numerical and the ‘‘exact ’’ solutions are very close. We now consider
the behaviour of the numerical entropy, see Fig. 2, which, in this region of
the flow, should converge to zero. The entropy dissipation is small, when
the numerical solution resolves well the details of the ‘‘exact ’’ solution, and
beyond that point it converges to zero fast, in the interval we are consid-
ering. Figure 3 shows both the local error and the entropy production for the
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0
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Error

0.6 0.62 0.64 0.66 0.68

- 0.4

- 0.2

0
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Fig. 3. NT scheme with N=1600. Left: error with respect to the ‘‘exact ’’ solution, for
x ¥ [0.6, 0.7]. Right: entropy production.
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Fig. 4. C-CW3 scheme: density; l=3
7 c.

Nessyahu–Tadmor scheme on the N=1600 grid in the region of smooth-
ness behind the main shock. We note that both quantities have a similar
behaviour and are of the same order of magnitude.
As soon as the local error becomes small, the spurious entropy pro-

duction decays for all schemes we are considering. The rate of decay is
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Fig. 5. C-CW3 scheme: entropy behind the main shock, x ¥ [0, 0.73].
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Fig. 6. CW4 scheme: density; l=2
7 c.

much faster for the more accurate C-CW3 scheme, and even faster for the
CW4 scheme. This behaviour is very clear in Figs. 5 and 7, and it shows
that these high order schemes maintain their high convergence rate, even
behind the strong shock.
Thus we see that in the region of smooth flow immediately behind the

main shock, the density of entropy production mimics the behaviour of the
local error: a high spurious entropy production suggests the need for grid
refinement when the ‘‘exact ’’ solution is still underresolved. However, if the
grid is so coarse that the numerical solution has no similarity with the
‘‘exact ’’ solution, (see for instance the plot corresponding to the C-CW3
scheme with N=200 in Fig. 4), the corresponding numerical entropy
production can be deceptively small.

3.2. Entropy Production on Shocks

For all schemes studied in this work, the entropy plots show that the
density of entropy production on shocks has a similar behaviour. The peaks
in the entropy production approximately double as the grid is refined. This
phenomenon was already noted in [5] for the scalar case and for shock
tube problems, and it permits to single out shocks in the numerical solu-
tion. We see therefore that even in the case of systems of equations, the
presence of shocks is characterized by sharp peaks in the entropy produc-
tion, with amplitude proportional to 1h .
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Fig. 7. CW4 scheme: entropy behind the main shock, x ¥ [0, 0.73].

Note the different behaviour of the third peak in the entropy produc-
tion, approximately located in the interval (0.4, 0.5). As the grid is fine
enough to resolve this wave, the entropy diminishes under grid refinement,
thus distinguishing this transition from the other shock waves.
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