
Adaptive appli
ation of 
hara
teristi
proje
tion for Central s
hemesGabriella Puppo1Dip. di Matemati
a, Polite
ni
o di Torino, Corso Du
a degli Abruzzi 24, 10129Torino, Italy puppo�
alvino.polito.itAbstra
t In this work, the appli
ation of 
entral s
hemes to systems of 
onser-vation laws is studied. A 
omparison between the 
omponentwise implemen-tation of these s
hemes and the algorithm exploiting 
hara
teristi
 proje
tionis 
arried out, studying the behaviour of the weights appearing in the re
on-stru
tion. Next, a more eÆ
ient adaptive strategy that employs 
hara
teristi
proje
tions only 
lose to dis
ontinuities is proposed.1 Introdu
tionCentral s
hemes based on staggered grids have proved to be e�e
tive andeÆ
ient tools for the integration of systems of 
onservation laws. Their mainadvantage is the simpli
ity of the resulting 
odes and their high speed. As a
onsequen
e, they have rea
hed a wide range of appli
ations, see for instan
ethe review in [5℄.The pri
e paid for these advantages is weaker monotoni
ity preservingproperties, with respe
t to the best upwind s
hemes, at least in some test
ases for high order 
entral s
hemes: 
ompare for instan
e the tests in [1℄ andin [2℄. An e�e
tive 
ure was re
ently proposed in [4℄. It 
onsists in applying
entral s
hemes proje
ting the equations along 
hara
teristi
 dire
tions. Thisdevi
e however 
onsiderably slows down the 
ode, and it also mars the sim-pli
ity of 
entral s
hemes: while before it was only ne
essary to know the 
uxfun
tion of the system of equations, now it is ne
essary to know and 
omputethe eigenstru
ture of the system.In this work, we �rst investigate the behaviour of the re
onstru
tion ap-pearing in [4℄, and next we propose an adaptive strategy whi
h permits tore
over the speed of traditional 
entral s
hemes, while enjoying the la
k ofos
illations obtained with the s
heme in [4℄.We apply these ideas to the re
ently proposed Central Runge Kuttas
heme of order 4, [3℄. The same te
hniques 
an be extended to other 
entrals
hemes.2 Des
ription of the s
hemeWe 
onsider the system of equations:



2 G. Puppo ut + fx(u) = 0; (1)with u 2 Rm, f : Rm ! Rm 
ontinuously di�erentiable. We suppose thatthe Ja
obian of f , A(u) = f 0(u) has real eigenvalues and a 
omplete set ofeigenve
tors.Let �t and h be the mesh widths in time and spa
e, with � = �t=h. LetIj = [xj � h2 ; xj + h2 ℄ be the interval of width h 
entered around the gridpoint xj . Let �unj be the 
ell average of the fun
tion u(x; t) on the interval Ijat time tn = t0 + n�t.We brie
y des
ribe the 4-th order Central Runge Kutta s
heme on whi
hwe will perform all numeri
al tests. For more details, see [3℄.Given the 
ell averages f�unj g of the solution at time tn, we re
onstru
t thefun
tion u(x; tn) with a suitable fourth order non os
illatory re
onstru
tionoperator R: un(x) = R(x; f�ung) =Xj P dj (x)�Ij (x); (2)where P dj (x) are polynomials of degree d = 2 (for CRK4). The re
onstru
tionis pie
ewise smooth, with jumps at the end points of the interval Ij .Following the philosophy of Central S
hemes, [5℄, we integrate the 
on-servation law (1) on the staggered interval Ij+1=2 = [xj ; xj+1℄. We obtain theexa
t equation: d�udt ����j+1=2 = � 1h [f(u(xj+1; t))� f(u(xj ; t))℄ : (3)As in all CRK s
hemes [3℄, this equation is �rst dis
retized in time with aRunge-Kutta s
heme. The updated solution is given by:�un+1j+1=2 = �unj+1=2 � � �Xi=1 biK(i)j+1=2; (4)where � is the number of steps of the RK s
heme, b and a (appearing below)are the ve
tor and the matrix de�ning the RK s
heme, and:K(i)j+1=2 = f(u(i�1)j+1 )� f(u(i�1)j ) with u(0)j = un(xj): (5)The term �unj+1=2 in (4) is 
omputed dire
tly using the re
onstru
tion (2).To evaluate the intermediate states, u(i)j , we exploit the fa
t that the re
on-stru
tion un(x) is smooth ex
ept for jumps at the 
ell walls, xj�1=2. Thus,u(xj ; t) remains smooth for t 2 [tn; tn + �t℄, if �t is small enough. As inall 
entral s
hemes based on staggered grids, we 
an therefore evaluate theintermediate states u(i)j integrating the 
onservation law (1) in its di�erentialform, namely: ut = �fx(u). Thus:u(i)j = u(0)j +�t iXl=1 ai;lK̂(l)j ; K̂(l)j = ��f(ul�1)�x ����j (6)



Adaptive Chara
teristi
 Proje
tion 3for i = 1; � � � ; � � 1. Here, the standard fourth order Runge-Kutta s
heme isused; with our notation: b = (1=6; 1=3; 1=3; 1=6), while a is a diagonal matrix,with a(1; 1) = a(2; 2) = 1=2 and a(3; 3) = 1.We now 
onsider spa
e dis
retization, whi
h plays a parti
ularly impor-tant role in the extension to systems of equations.At the beginning of ea
h time step, we need a re
onstru
tion algorithmto 
ompute �unj+1=2 and u(0)j . Next, we need a re
onstru
tion s
heme whi
h
omputes fx(u(i)), starting from the point values f(u(i)), for i = 0; � � � ; ��1.We use the CWENO re
onstru
tion [2℄, outlined below.The re
onstru
tion from 
ell averages at the beginning of ea
h time stepis a non-linear 
onvex 
ombination of three parabolas. On the interval Ij :un(x)jIj = Rj(x) = !�1j Pj�1(x) + !0jPj(x) + !+1j Pj+1(x); (7)where the !kj are the non linear weights, whi
h satisfyPk !kj = 1. The 
oeÆ-
ients of the parabola Pj+k are 
omputed interpolating the data �unj+k+l; l =�1; 0; 1 in the sense of 
ell averages.The weights !kj are determined in order to maximize a

ura
y in smoothregions and to prevent the onset of spurious os
illations. As in [1℄, we de�nethe weights with the following formulae:!kj = �kjP1l=�1 �lj �kj = Ck��+ ISkj�2 : (8)In the present 
ase, C�1 = C1 = 3=16, while C0 = 5=8. The parameter �prevents a vanishing denominator. For the CRK4 s
heme, we always have� = 10�6.Finally, ISkj ; k = �1; 0; 1 are 
alled smoothness indi
ators. They measurethe regularity of the polynomial Pj+k on the interval Ij . Following [1℄, wetake: ISkj = 2Xl=1 Z xj+1=2xj�1=2 h2l�1�dlPk+jdxl �2 dx; k = �1; 0; 1: (9)Thus !kj = Ck + O(h2) on smooth regions, while !kj = O(h4) if the data inthe sten
il of the polynomial Pj+k 
ontain a jump dis
ontinuity.Finally, for 
ux derivatives, the polynomials Pj+k are determined interpo-lating the data f(u(xj+k+l)) in the sense of point values. The re
onstru
tionin this 
ase must yield a

urate estimates of the derivatives of f . The stru
-ture of the non linear weights does not 
hange, but we must use a di�erentset of 
onstants, namely: C�1 = C1 = 1=6, while C0 = 1=3, see [2℄.3 Systems of equationsWe 
onsider two extensions of 
entral s
hemes to systems of equations. Wetest the resulting algorithms on two 
lassi
al problems from 1D gas dynami
s,



4 G. Pupponamely: Lax' Riemann Problem and Woodward and Colella blast wave prob-lem, whi
h des
ribes the intera
tion of two Riemann problems, 
hara
terizedby strong sho
ks. These test problems have been widely used in the literature.The initial and boundary 
onditions and the details of the implementationfor 
entral WENO s
hemes 
an be found in [2℄.We now des
ribe the two algorithms we are 
ompairing. The simplestapproa
h to the solution of systems of equations is to apply the s
heme 
om-ponent by 
omponent, following the s
alar re
ipe. It was found in [2℄ that theresults improve if all 
omponents of the solution share the same smoothnessindi
ator. At the beginning of ea
h time step a Global Smoothness indi
atoris 
omputed, namely:ISjk = 1m mXr=1 1jj�urjj2  2Xl=1 ZIj h2l�1�dlPj+k;rdxl �2 dx! ; (10)for k = �1; 0; 1. Here r denotes the r-th 
omponent of the solution and of theve
tor-valued interpolating polynomial. Compairing with (9), we see that theGlobal Smoothness Indi
ator is just a weighted average of the SmoothnessIndi
ators given by ea
h 
omponent.These quantities are then used to 
ompute the non linear weights through-out the time step. This will be 
alled Componentwise Implementation (CW)of Central s
hemes.In the CW approa
h, very little information on the physi
s of the systemof equations is required. It is enough to provide the 
ux fun
tion f and anestimate of the 
hara
teristi
 speeds of propagation, to satisfy the stability
ondition, whi
h, for the CRK4 s
heme, is � � 12=25 � 1=max j�(u)j, where� are the eigenvalues of the Ja
obian of f , see [3℄.The solution 
omputed in this fashion is fast and simple to program.However small wiggles may appear. These spurious os
illations de
rease inamplitude as the grid is re�ned. See for instan
e the left part of Fig. 1.A se
ond approa
h was suggested in [4℄. It 
onsists in applying to the
entral framework a te
hnique that is widely employed in s
hemes based on
ux splitting. Spe
i�
ally, the 
omputation of the weights in the WENO re-
onstru
tion is performed 
omponent by 
omponent but using 
hara
teristi
dire
tions, instead of 
onserved variables.Let Q(u) be the non-singular matrix whose 
olumns are the right eigen-ve
tors of A(u). At ea
h grid point j, 
ompute Q(�unj ). Let f�unj+lg be thedata in the sten
il of the jth 
ell. For CRK4, the sten
il of the re
onstru
tion
onsists of 5 points; thus l = �2; � � � ; 2. Map ea
h 
ell average belonging tothe sten
il of the jth 
ell along the 
hara
teristi
 dire
tions, i.e. 
ompute theve
tors: �vj+l = Q�1(�unj )�unj+l l = �2; � � � ; 2:Constru
t the 
onservative interpolant �jv for the data f�vj+lg, using theCWENO re
ipe des
ribed above 
omponentwise. Then de�ne the interpolantfor the 
onserved variables u through the equation:



Adaptive Chara
teristi
 Proje
tion 5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2

1.4
Componentwise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4
Characteristic Projection

0.7 0.75 0.8 0.85 0.9 0.95
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0.7 0.75 0.8 0.85 0.9 0.95
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Fig. 1. Lax' Riemann problem. Componentwise (left) and Chara
teristi
 Proje
tion(right) implementation of CRK4 s
heme, for various grid sizes. Bottom: Detail ofthe density peak. N = 200 (dots), N = 400 (dash), N = 800 (dash-dot).�ju(x� xj) = Q(�unj )�jv(x� xj):Finally, use this fun
tion to evaluate the two staggered half-
ell averages:�unj;� = 1h Z xjxj�h2 �ju(x� xj) dx �unj;+ = 1h Z xj+h2xj �ju(x� xj) dx;with �unj+1=2 = �unj;+ + �unj+1;� and the point value u(xj ; tn) = �ju(0). Noti
ethat be
ause the mapping between 
onservative and 
hara
teristi
 variablesis linear, then a 
onservative re
onstru
tion in v will provide a 
onservativere
onstru
tion in u.A

ording to the results in [4℄ it is ne
essary to perform this 
omputationonly at the beginning of ea
h time step, to evaluate �unj+1=2. Our results 
on-�rm this �nding. When we use 
hara
teristi
 proje
tion, the derivatives ofthe 
uxes are still 
omputed with the non linear weights obtained with theGlobal Smoothness indi
ator. This algorithm will be 
alled Chara
teristi
Proje
tion (CP) s
heme.



6 G. PuppoThe results obtained with this re
ipe 
an be seen on the right of Fig. 1.The spurious os
illations in the density peak of the solution of Lax' RiemannProblem have disappeared.
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Fig. 2. Global Weights for N = 400. From left to right: Left, Central and Rightweight. Solution 
omputed with CW (top) and CP (bottom) algorithms.The improvement is due to a better separation of the e�e
ts of the 
onta
tand the sho
k wave on the weights. Fig. 2 shows a 
omparison of the nonlinear global weights whi
h result from the solution to Lax' problem 
omputedwith the CW (top) and the CP (bottom) algorithms. The weights shown inthe �gure are 
omputed using (10), and they are needed to evaluate the
ux derivatives, in both strategies. If we 
ompare with the 
orrespondingsolution given in Fig. 1, we see that the 
u
tuations in all weights 
learlysignal the lo
ation of the sho
k, the 
onta
t, and the head and tail of therarefa
tion wave. However in the CW implementation, between the sho
kand the 
onta
t the weights have a very irregular behaviour. This e�e
t isabsent in the results obtained with the CP implementation. This is probablythe origin of the wiggles appearing on the left of Fig. (1).Further insight in the behaviour of the weights 
an be obtained plottingthe weights 
omputed with the CP algorithm along ea
h 
hara
teristi
 �eld,see Fig. 3. Here 
orre
tly the 
onta
t wave appears only in the se
ond 
hara
-teristi
 �eld, belonging to the eigenvalue � = v of the Ja
obian A(u), wherev is the gas velo
ity. The head and tail of the rarefa
tion appear only invery small wiggles in the weights 
omputed for the �rst 
hara
teristi
 �eld,belonging to the eigenvalue � = v � 
 (here 
 is the sound speed). Thus wesee that, even if the CP algorithm 
orresponds to a simple lo
al linearizationof the system of equations, still it is quite e�e
tive in separating all wavesthus preventing the os
illatory behaviour of the CW s
heme.
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Fig. 3. Weights 
omputed with 
hara
teristi
 proje
tion for N = 400. From left toright: Left, Central and Right weight. From top to bottom: �rst, se
ond and third
hara
teristi
 �eld.4 Adaptive 
hara
teristi
 proje
tionTable 1. CPU timeN CW CP Adaptive200 5.69 15.74 6.50400 22.45 62.74 25.44800 90.34 250.34 101.901600 359.24 1002.66 409.32We have seen that the CP implementation is quite e�e
tive in the pre-vention of spurious os
illations. However this pro
edure is quite 
ostly, asis apparent from reading the �rst two 
olumns of Table 1. Here the CPUtime required for the solution of Lax' Riemann Problem is reported for theCW and the CP algorithms for various grid sizes. These data were obtainedrunning the 
ode on a Pentium II 266 Mz pro
essor, with the F77 Linux



8 G. Puppo
ompiler. It is 
lear that CP is roughly 3 times as expensive as CW. HoweverFig. 1 and Fig. 2 show that the CW algorithm needs to be improved only
lose to dis
ontinuities.
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Fig. 4. Top: solution with sele
tive appli
ation of 
hara
teristi
 proje
tion, forN = 200, N = 400 and N = 800. Middle: Logarithmi
 plot of ISTOTj vs x at �naltime. Bottom: Number of 
ells where 
hara
teristi
 proje
tion is used vs time.Thus it appears that the CP s
heme 
an be made mu
h more eÆ
ient, ifproje
tion along 
hara
teristi
 dire
tions is applied sele
tively, only in those
ells 
lose to dis
ontinuities, and 
omputing the solution in the remaining
ells with the CW re
ipe.The adaptive s
heme we propose 
omputes the Global Smoothness in-di
ator in ea
h 
ell, at the beginning of ea
h time step. Then we obtain ameasure of the smoothness of the data in the whole sten
il, by evaluating:ISTOTj = 1Xl=�1 ISlj ;where ISlj is given in (10). As for the Smoothness Indi
ator, ISlj , this quan-titity is O(h2) in smooth regions, while it is O(1) if a jump dis
ontinuity is
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tion 9present somewhere in the whole sten
il on whi
h the re
onstru
tion is based.Thus, we apply the CP s
heme only in those 
ells for whi
h:ISTOTj � 1; (11)while we use the CW s
heme in the remaining 
ells. The resulting s
hemewill be 
alled Adaptive s
heme.We show the results obtained with this strategy in Fig. 4 for Lax' RiemannProblem. In the �rst row, we show a 
omparison of the solution 
omputedwith the CP (dashed line) and the Adaptive (dotted line) s
hemes. The solidline is the exa
t solution. As is apparent from the �gure, for all grids tested,the two numeri
al solutions almost 
oin
ide.The se
ond row in Fig. 4 shows plots of the logarithm of ISTOTj for variousgrid sizes at �nal time. Compairing with the exa
t solution in the row above,it is apparent that the peaks of ISTOTj 
oin
ide with the lo
ation of thedis
ontinuities.Finally, the third row of Fig. 4 shows the number of 
ells NCP (t) on whi
hproje
tion along 
hara
teristi
 dire
tions was a
tually used, at time t, as afun
tion of time for various grid sizes. It is interesting to note that NCP (t)does not depend on the number of grid points. The quantity NCP (t) is largerfor small values of t, when the waves issueing form the initial dis
ontinuityhave not yet separated, and it de
reases as the waves separate. It is 
lear fromthese results that a 
onsiderable saving in 
omputing time 
an be obtainedthrough an adaptive appli
ation of proje
tion along 
hara
teristi
 dire
tions.
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Fig. 5. Solution to Woodward and Colella blast problem, at T = 0:038. Left: CWs
heme. Right: Adaptive CP s
heme.The last 
olumn of Table 1 shows the CPU time required by the Adaptivestrategy just des
ribed. The 
omputational 
ost of the Adaptive s
heme is
omparable to the CW 
ase, but now the 
ontrol of spurious os
illations isanalogous to what is a
hieved by the CP s
heme.To 
he
k the robustness of the adaptive strategy, we 
ompute the solutionof Woodward and Colella blast wave problem. The density obtained at T =



10 G. Puppo0:038 is shown in Fig. 5, for the CW (left) and the Adaptive (right) strategies.Again, the CW s
heme results in spurious os
illations, whi
h disappear whenthe Adaptive 
hara
teristi
 proje
tion is used. The numeri
al results obtainedby the Adaptive and the CP s
heme are indistinguishable.
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Fig. 6.Woodward and Colella blast problem. Number of 
ells labelled for proje
tionalong 
hara
teristi
 dire
tions as a fun
tion of time. From left to right: N = 400,N = 800, N = 1600.Finally, Fig. 6 shows the values of NCP (t) in the 
ase of Woodward andColella problem as a fun
tion of time, for various grid sizes. These plotsare quite irregular, due to the 
omplex behaviour in time of the solution.However we note that even in this 
ase NCP (t) depends only weekly on thenumber of grid points. This is even more apparent if we 
onsider the averageof NCP (t), < NCP >, over time. We �nd: < NCP >= 48:6, < NCP >= 51:9,< NCP >= 46:5 for N = 400, N = 800 and N = 1600 respe
tively.We 
on
lude that the adaptive strategy based on applying 
hara
teristi
proje
tion only in those 
ells for whi
h: ISTOTj � 1 is e�e
tive in preventingthe onset of spurious os
illations, without in
reasing signi�
antly the 
om-putational 
ost of the 
omponentwise algorithm. Moreover the strategy justdes
ribed is robust, sin
e it remains e�e
tive even on a problem involving a
omplex solution, with several wave intera
tions.Referen
es1. Jiang G.-S., Shu C.-W.: (1996): EÆ
ient Implementation of Weighted ENOS
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onstru
tion, 
omparison, and lo
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har-a
teristi
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entral WENO s
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