
Adaptive appliation of harateristiprojetion for Central shemesGabriella Puppo1Dip. di Matematia, Politenio di Torino, Corso Dua degli Abruzzi 24, 10129Torino, Italy puppo�alvino.polito.itAbstrat In this work, the appliation of entral shemes to systems of onser-vation laws is studied. A omparison between the omponentwise implemen-tation of these shemes and the algorithm exploiting harateristi projetionis arried out, studying the behaviour of the weights appearing in the reon-strution. Next, a more eÆient adaptive strategy that employs harateristiprojetions only lose to disontinuities is proposed.1 IntrodutionCentral shemes based on staggered grids have proved to be e�etive andeÆient tools for the integration of systems of onservation laws. Their mainadvantage is the simpliity of the resulting odes and their high speed. As aonsequene, they have reahed a wide range of appliations, see for instanethe review in [5℄.The prie paid for these advantages is weaker monotoniity preservingproperties, with respet to the best upwind shemes, at least in some testases for high order entral shemes: ompare for instane the tests in [1℄ andin [2℄. An e�etive ure was reently proposed in [4℄. It onsists in applyingentral shemes projeting the equations along harateristi diretions. Thisdevie however onsiderably slows down the ode, and it also mars the sim-pliity of entral shemes: while before it was only neessary to know the uxfuntion of the system of equations, now it is neessary to know and omputethe eigenstruture of the system.In this work, we �rst investigate the behaviour of the reonstrution ap-pearing in [4℄, and next we propose an adaptive strategy whih permits toreover the speed of traditional entral shemes, while enjoying the lak ofosillations obtained with the sheme in [4℄.We apply these ideas to the reently proposed Central Runge Kuttasheme of order 4, [3℄. The same tehniques an be extended to other entralshemes.2 Desription of the shemeWe onsider the system of equations:



2 G. Puppo ut + fx(u) = 0; (1)with u 2 Rm, f : Rm ! Rm ontinuously di�erentiable. We suppose thatthe Jaobian of f , A(u) = f 0(u) has real eigenvalues and a omplete set ofeigenvetors.Let �t and h be the mesh widths in time and spae, with � = �t=h. LetIj = [xj � h2 ; xj + h2 ℄ be the interval of width h entered around the gridpoint xj . Let �unj be the ell average of the funtion u(x; t) on the interval Ijat time tn = t0 + n�t.We briey desribe the 4-th order Central Runge Kutta sheme on whihwe will perform all numerial tests. For more details, see [3℄.Given the ell averages f�unj g of the solution at time tn, we reonstrut thefuntion u(x; tn) with a suitable fourth order non osillatory reonstrutionoperator R: un(x) = R(x; f�ung) =Xj P dj (x)�Ij (x); (2)where P dj (x) are polynomials of degree d = 2 (for CRK4). The reonstrutionis pieewise smooth, with jumps at the end points of the interval Ij .Following the philosophy of Central Shemes, [5℄, we integrate the on-servation law (1) on the staggered interval Ij+1=2 = [xj ; xj+1℄. We obtain theexat equation: d�udt ����j+1=2 = � 1h [f(u(xj+1; t))� f(u(xj ; t))℄ : (3)As in all CRK shemes [3℄, this equation is �rst disretized in time with aRunge-Kutta sheme. The updated solution is given by:�un+1j+1=2 = �unj+1=2 � � �Xi=1 biK(i)j+1=2; (4)where � is the number of steps of the RK sheme, b and a (appearing below)are the vetor and the matrix de�ning the RK sheme, and:K(i)j+1=2 = f(u(i�1)j+1 )� f(u(i�1)j ) with u(0)j = un(xj): (5)The term �unj+1=2 in (4) is omputed diretly using the reonstrution (2).To evaluate the intermediate states, u(i)j , we exploit the fat that the reon-strution un(x) is smooth exept for jumps at the ell walls, xj�1=2. Thus,u(xj ; t) remains smooth for t 2 [tn; tn + �t℄, if �t is small enough. As inall entral shemes based on staggered grids, we an therefore evaluate theintermediate states u(i)j integrating the onservation law (1) in its di�erentialform, namely: ut = �fx(u). Thus:u(i)j = u(0)j +�t iXl=1 ai;lK̂(l)j ; K̂(l)j = ��f(ul�1)�x ����j (6)



Adaptive Charateristi Projetion 3for i = 1; � � � ; � � 1. Here, the standard fourth order Runge-Kutta sheme isused; with our notation: b = (1=6; 1=3; 1=3; 1=6), while a is a diagonal matrix,with a(1; 1) = a(2; 2) = 1=2 and a(3; 3) = 1.We now onsider spae disretization, whih plays a partiularly impor-tant role in the extension to systems of equations.At the beginning of eah time step, we need a reonstrution algorithmto ompute �unj+1=2 and u(0)j . Next, we need a reonstrution sheme whihomputes fx(u(i)), starting from the point values f(u(i)), for i = 0; � � � ; ��1.We use the CWENO reonstrution [2℄, outlined below.The reonstrution from ell averages at the beginning of eah time stepis a non-linear onvex ombination of three parabolas. On the interval Ij :un(x)jIj = Rj(x) = !�1j Pj�1(x) + !0jPj(x) + !+1j Pj+1(x); (7)where the !kj are the non linear weights, whih satisfyPk !kj = 1. The oeÆ-ients of the parabola Pj+k are omputed interpolating the data �unj+k+l; l =�1; 0; 1 in the sense of ell averages.The weights !kj are determined in order to maximize auray in smoothregions and to prevent the onset of spurious osillations. As in [1℄, we de�nethe weights with the following formulae:!kj = �kjP1l=�1 �lj �kj = Ck��+ ISkj�2 : (8)In the present ase, C�1 = C1 = 3=16, while C0 = 5=8. The parameter �prevents a vanishing denominator. For the CRK4 sheme, we always have� = 10�6.Finally, ISkj ; k = �1; 0; 1 are alled smoothness indiators. They measurethe regularity of the polynomial Pj+k on the interval Ij . Following [1℄, wetake: ISkj = 2Xl=1 Z xj+1=2xj�1=2 h2l�1�dlPk+jdxl �2 dx; k = �1; 0; 1: (9)Thus !kj = Ck + O(h2) on smooth regions, while !kj = O(h4) if the data inthe stenil of the polynomial Pj+k ontain a jump disontinuity.Finally, for ux derivatives, the polynomials Pj+k are determined interpo-lating the data f(u(xj+k+l)) in the sense of point values. The reonstrutionin this ase must yield aurate estimates of the derivatives of f . The stru-ture of the non linear weights does not hange, but we must use a di�erentset of onstants, namely: C�1 = C1 = 1=6, while C0 = 1=3, see [2℄.3 Systems of equationsWe onsider two extensions of entral shemes to systems of equations. Wetest the resulting algorithms on two lassial problems from 1D gas dynamis,



4 G. Pupponamely: Lax' Riemann Problem and Woodward and Colella blast wave prob-lem, whih desribes the interation of two Riemann problems, haraterizedby strong shoks. These test problems have been widely used in the literature.The initial and boundary onditions and the details of the implementationfor entral WENO shemes an be found in [2℄.We now desribe the two algorithms we are ompairing. The simplestapproah to the solution of systems of equations is to apply the sheme om-ponent by omponent, following the salar reipe. It was found in [2℄ that theresults improve if all omponents of the solution share the same smoothnessindiator. At the beginning of eah time step a Global Smoothness indiatoris omputed, namely:ISjk = 1m mXr=1 1jj�urjj2  2Xl=1 ZIj h2l�1�dlPj+k;rdxl �2 dx! ; (10)for k = �1; 0; 1. Here r denotes the r-th omponent of the solution and of thevetor-valued interpolating polynomial. Compairing with (9), we see that theGlobal Smoothness Indiator is just a weighted average of the SmoothnessIndiators given by eah omponent.These quantities are then used to ompute the non linear weights through-out the time step. This will be alled Componentwise Implementation (CW)of Central shemes.In the CW approah, very little information on the physis of the systemof equations is required. It is enough to provide the ux funtion f and anestimate of the harateristi speeds of propagation, to satisfy the stabilityondition, whih, for the CRK4 sheme, is � � 12=25 � 1=max j�(u)j, where� are the eigenvalues of the Jaobian of f , see [3℄.The solution omputed in this fashion is fast and simple to program.However small wiggles may appear. These spurious osillations derease inamplitude as the grid is re�ned. See for instane the left part of Fig. 1.A seond approah was suggested in [4℄. It onsists in applying to theentral framework a tehnique that is widely employed in shemes based onux splitting. Spei�ally, the omputation of the weights in the WENO re-onstrution is performed omponent by omponent but using harateristidiretions, instead of onserved variables.Let Q(u) be the non-singular matrix whose olumns are the right eigen-vetors of A(u). At eah grid point j, ompute Q(�unj ). Let f�unj+lg be thedata in the stenil of the jth ell. For CRK4, the stenil of the reonstrutiononsists of 5 points; thus l = �2; � � � ; 2. Map eah ell average belonging tothe stenil of the jth ell along the harateristi diretions, i.e. ompute thevetors: �vj+l = Q�1(�unj )�unj+l l = �2; � � � ; 2:Construt the onservative interpolant �jv for the data f�vj+lg, using theCWENO reipe desribed above omponentwise. Then de�ne the interpolantfor the onserved variables u through the equation:
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Fig. 1. Lax' Riemann problem. Componentwise (left) and Charateristi Projetion(right) implementation of CRK4 sheme, for various grid sizes. Bottom: Detail ofthe density peak. N = 200 (dots), N = 400 (dash), N = 800 (dash-dot).�ju(x� xj) = Q(�unj )�jv(x� xj):Finally, use this funtion to evaluate the two staggered half-ell averages:�unj;� = 1h Z xjxj�h2 �ju(x� xj) dx �unj;+ = 1h Z xj+h2xj �ju(x� xj) dx;with �unj+1=2 = �unj;+ + �unj+1;� and the point value u(xj ; tn) = �ju(0). Notiethat beause the mapping between onservative and harateristi variablesis linear, then a onservative reonstrution in v will provide a onservativereonstrution in u.Aording to the results in [4℄ it is neessary to perform this omputationonly at the beginning of eah time step, to evaluate �unj+1=2. Our results on-�rm this �nding. When we use harateristi projetion, the derivatives ofthe uxes are still omputed with the non linear weights obtained with theGlobal Smoothness indiator. This algorithm will be alled CharateristiProjetion (CP) sheme.



6 G. PuppoThe results obtained with this reipe an be seen on the right of Fig. 1.The spurious osillations in the density peak of the solution of Lax' RiemannProblem have disappeared.
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Fig. 2. Global Weights for N = 400. From left to right: Left, Central and Rightweight. Solution omputed with CW (top) and CP (bottom) algorithms.The improvement is due to a better separation of the e�ets of the ontatand the shok wave on the weights. Fig. 2 shows a omparison of the nonlinear global weights whih result from the solution to Lax' problem omputedwith the CW (top) and the CP (bottom) algorithms. The weights shown inthe �gure are omputed using (10), and they are needed to evaluate theux derivatives, in both strategies. If we ompare with the orrespondingsolution given in Fig. 1, we see that the utuations in all weights learlysignal the loation of the shok, the ontat, and the head and tail of therarefation wave. However in the CW implementation, between the shokand the ontat the weights have a very irregular behaviour. This e�et isabsent in the results obtained with the CP implementation. This is probablythe origin of the wiggles appearing on the left of Fig. (1).Further insight in the behaviour of the weights an be obtained plottingthe weights omputed with the CP algorithm along eah harateristi �eld,see Fig. 3. Here orretly the ontat wave appears only in the seond hara-teristi �eld, belonging to the eigenvalue � = v of the Jaobian A(u), wherev is the gas veloity. The head and tail of the rarefation appear only invery small wiggles in the weights omputed for the �rst harateristi �eld,belonging to the eigenvalue � = v �  (here  is the sound speed). Thus wesee that, even if the CP algorithm orresponds to a simple loal linearizationof the system of equations, still it is quite e�etive in separating all wavesthus preventing the osillatory behaviour of the CW sheme.
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Fig. 3. Weights omputed with harateristi projetion for N = 400. From left toright: Left, Central and Right weight. From top to bottom: �rst, seond and thirdharateristi �eld.4 Adaptive harateristi projetionTable 1. CPU timeN CW CP Adaptive200 5.69 15.74 6.50400 22.45 62.74 25.44800 90.34 250.34 101.901600 359.24 1002.66 409.32We have seen that the CP implementation is quite e�etive in the pre-vention of spurious osillations. However this proedure is quite ostly, asis apparent from reading the �rst two olumns of Table 1. Here the CPUtime required for the solution of Lax' Riemann Problem is reported for theCW and the CP algorithms for various grid sizes. These data were obtainedrunning the ode on a Pentium II 266 Mz proessor, with the F77 Linux



8 G. Puppoompiler. It is lear that CP is roughly 3 times as expensive as CW. HoweverFig. 1 and Fig. 2 show that the CW algorithm needs to be improved onlylose to disontinuities.
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Fig. 4. Top: solution with seletive appliation of harateristi projetion, forN = 200, N = 400 and N = 800. Middle: Logarithmi plot of ISTOTj vs x at �naltime. Bottom: Number of ells where harateristi projetion is used vs time.Thus it appears that the CP sheme an be made muh more eÆient, ifprojetion along harateristi diretions is applied seletively, only in thoseells lose to disontinuities, and omputing the solution in the remainingells with the CW reipe.The adaptive sheme we propose omputes the Global Smoothness in-diator in eah ell, at the beginning of eah time step. Then we obtain ameasure of the smoothness of the data in the whole stenil, by evaluating:ISTOTj = 1Xl=�1 ISlj ;where ISlj is given in (10). As for the Smoothness Indiator, ISlj , this quan-titity is O(h2) in smooth regions, while it is O(1) if a jump disontinuity is



Adaptive Charateristi Projetion 9present somewhere in the whole stenil on whih the reonstrution is based.Thus, we apply the CP sheme only in those ells for whih:ISTOTj � 1; (11)while we use the CW sheme in the remaining ells. The resulting shemewill be alled Adaptive sheme.We show the results obtained with this strategy in Fig. 4 for Lax' RiemannProblem. In the �rst row, we show a omparison of the solution omputedwith the CP (dashed line) and the Adaptive (dotted line) shemes. The solidline is the exat solution. As is apparent from the �gure, for all grids tested,the two numerial solutions almost oinide.The seond row in Fig. 4 shows plots of the logarithm of ISTOTj for variousgrid sizes at �nal time. Compairing with the exat solution in the row above,it is apparent that the peaks of ISTOTj oinide with the loation of thedisontinuities.Finally, the third row of Fig. 4 shows the number of ells NCP (t) on whihprojetion along harateristi diretions was atually used, at time t, as afuntion of time for various grid sizes. It is interesting to note that NCP (t)does not depend on the number of grid points. The quantity NCP (t) is largerfor small values of t, when the waves issueing form the initial disontinuityhave not yet separated, and it dereases as the waves separate. It is lear fromthese results that a onsiderable saving in omputing time an be obtainedthrough an adaptive appliation of projetion along harateristi diretions.
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Fig. 5. Solution to Woodward and Colella blast problem, at T = 0:038. Left: CWsheme. Right: Adaptive CP sheme.The last olumn of Table 1 shows the CPU time required by the Adaptivestrategy just desribed. The omputational ost of the Adaptive sheme isomparable to the CW ase, but now the ontrol of spurious osillations isanalogous to what is ahieved by the CP sheme.To hek the robustness of the adaptive strategy, we ompute the solutionof Woodward and Colella blast wave problem. The density obtained at T =



10 G. Puppo0:038 is shown in Fig. 5, for the CW (left) and the Adaptive (right) strategies.Again, the CW sheme results in spurious osillations, whih disappear whenthe Adaptive harateristi projetion is used. The numerial results obtainedby the Adaptive and the CP sheme are indistinguishable.
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Fig. 6.Woodward and Colella blast problem. Number of ells labelled for projetionalong harateristi diretions as a funtion of time. From left to right: N = 400,N = 800, N = 1600.Finally, Fig. 6 shows the values of NCP (t) in the ase of Woodward andColella problem as a funtion of time, for various grid sizes. These plotsare quite irregular, due to the omplex behaviour in time of the solution.However we note that even in this ase NCP (t) depends only weekly on thenumber of grid points. This is even more apparent if we onsider the averageof NCP (t), < NCP >, over time. We �nd: < NCP >= 48:6, < NCP >= 51:9,< NCP >= 46:5 for N = 400, N = 800 and N = 1600 respetively.We onlude that the adaptive strategy based on applying harateristiprojetion only in those ells for whih: ISTOTj � 1 is e�etive in preventingthe onset of spurious osillations, without inreasing signi�antly the om-putational ost of the omponentwise algorithm. Moreover the strategy justdesribed is robust, sine it remains e�etive even on a problem involving aomplex solution, with several wave interations.Referenes1. Jiang G.-S., Shu C.-W.: (1996): EÆient Implementation of Weighted ENOShemes. J. Comput. Phys., 126, pp.202{228.2. Levy D., Puppo G., Russo G.: (1999) Central WENO Shemes for HyperboliSystems of Conservation Laws. Math. Model. and Numer. Anal., 33, no. 3,pp.547{571.3. Pareshi L., Puppo G., Russo G., (2002): Central Runge-Kutta Shemes forConservation Laws, in preparation.4. Qiu J, and Shu C.W.: (2002) On the onstrution, omparison, and loal har-ateristi deomposition for high order entral WENO shemes, submitted toJ. Comput. Phys.
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