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Abstract In this work, the application of central schemes to systems of conser-
vation laws is studied. A comparison between the componentwise implemen-
tation of these schemes and the algorithm exploiting characteristic projection
is carried out, studying the behaviour of the weights appearing in the recon-
struction. Next, a more efficient adaptive strategy that employs characteristic
projections only close to discontinuities is proposed.

1 Introduction

Central schemes based on staggered grids have proved to be effective and
efficient tools for the integration of systems of conservation laws. Their main
advantage is the simplicity of the resulting codes and their high speed. As a
consequence, they have reached a wide range of applications, see for instance
the review in [5].

The price paid for these advantages is weaker monotonicity preserving
properties, with respect to the best upwind schemes, at least in some test
cases for high order central schemes: compare for instance the tests in [1] and
in [2]. An effective cure was recently proposed in [4]. It consists in applying
central schemes projecting the equations along characteristic directions. This
device however considerably slows down the code, and it also mars the sim-
plicity of central schemes: while before it was only necessary to know the flux
function of the system of equations, now it is necessary to know and compute
the eigenstructure of the system.

In this work, we first investigate the behaviour of the reconstruction ap-
pearing in [4], and next we propose an adaptive strategy which permits to
recover the speed of traditional central schemes, while enjoying the lack of
oscillations obtained with the scheme in [4].

We apply these ideas to the recently proposed Central Runge Kutta
scheme of order 4, [3]. The same techniques can be extended to other central
schemes.

2 Description of the scheme

We consider the system of equations:
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ug + fo(u) =0, (1)

with w € R™, f : R™ — R™ continuously differentiable. We suppose that
the Jacobian of f, A(u) = f'(u) has real eigenvalues and a complete set of
eigenvectors.

Let At and h be the mesh widths in time and space, with A = At/h. Let
I; = [z; — %,x; + 2] be the interval of width h centered around the grid
point z;. Let @} be the cell average of the function u(z,t) on the interval I;
at time " = tg + nAt.

We briefly describe the 4-th order Central Runge Kutta scheme on which
we will perform all numerical tests. For more details, see [3].

Given the cell averages {u} } of the solution at time ", we reconstruct the
function u(z,t"™) with a suitable fourth order non oscillatory reconstruction
operator R:

u"(z) = R(z;{u"}) = ZPd (2)

where P]d(x) are polynomials of degree d = 2 (for CRK4). The reconstruction
is piecewise smooth, with jumps at the end points of the interval I;.

Following the philosophy of Central Schemes, [5], we integrate the con-
servation law (1) on the staggered interval I; 1/, = [, 2;11]. We obtain the
exact equation:

u 1
= (e, ) ~ Flula ). )
i+1/2

As in all CRK schemes [3], this equation is first discretized in time with a
Runge-Kutta scheme. The updated solution is given by:

aﬁﬁ/z +1/2 A bi K]+1/2’ (4)
i=1

where v is the number of steps of the RK scheme, b and a (appearing below)
are the vector and the matrix defining the RK scheme, and:

K

e =TT = f@f™) with ul® = un(ay). (5)

The term 7 in (4) is computed directly using the reconstruction (2).

j+1/2

To evaluate the intermediate states, uy), we exploit the fact that the recon-
struction u"(x) is smooth except for jumps at the cell walls, ;4 /5. Thus,
u(z;,t) remains smooth for ¢t € [t",t" + A¢], if At is small enough. As in
all central schemes b(a;sed on staggered grids, we can therefore evaluate the
1

intermediate states u; integrating the conservation law (1) in its differential

form, namely: u; = — f,(u). Thus:

| . ) A -1
ug") = u;o) + At Z ai,zK]('l)u KJ('I) - _% ©
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for¢ =1,---,v — 1. Here, the standard fourth order Runge-Kutta scheme is
used; with our notation: b = (1/6,1/3,1/3,1/6), while a is a diagonal matrix,
with a(1,1) = a(2,2) =1/2 and a(3,3) = 1.

We now consider space discretization, which plays a particularly impor-
tant role in the extension to systems of equations.

At the beginning of each time step, we need a reconstruction algorithm

h 0 . .
to compute w7, , and ug ). Next, we need a reconstruction scheme which

computes f,(u(?), starting from the point values f(u(?), fori =0,---,v— 1.
We use the CWENO reconstruction [2], outlined below.

The reconstruction from cell averages at the beginning of each time step
is a non-linear convex combination of three parabolas. On the interval I;:

(@)l = Ry(2) = w; Pyt (&) + W2Py(2) 4w P (), (7)

where the w/ are the non linear weights, which satisfy Y, w¥ = 1. The coeffi-
cients of the parabola Pj; are computed interpolating the data [ l=
—1,0,1 in the sense of cell averages.

The weights wf are determined in order to maximize accuracy in smooth
regions and to prevent the onset of spurious oscillations. As in [1], we define
the weights with the following formulae:

o

Ck
== =0 (8)
D=1 (e + Isf)

In the present case, C~1 = C! = 3/16, while C° = 5/8. The parameter e
prevents a vanishing denominator. For the CRK4 scheme, we always have
e=1076.

k
Wi

Finally, IS;?, k= —1,0,1 are called smoothness indicators. They measure
the regularity of the polynomial P;i s on the interval I;. Following [1], we
take:

k - PR dlpkﬂ' ’
ISk = Z/ h (W) de, k=-1,0,1. (9)
1=1 " %i-1/2

Thus w¥ = C* + O(h?) on smooth regions, while w# = O(h*) if the data in
the stencil of the polynomial P, contain a jump discontinuity.

Finally, for flux derivatives, the polynomials P; are determined interpo-
lating the data f(u(xj4+x+)) in the sense of point values. The reconstruction
in this case must yield accurate estimates of the derivatives of f. The struc-
ture of the non linear weights does not change, but we must use a different

set of constants, namely: C~! = C' = 1/6, while C° = 1/3, see [2].

3 Systems of equations

We consider two extensions of central schemes to systems of equations. We
test the resulting algorithms on two classical problems from 1D gas dynamics,
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namely: Lax’ Riemann Problem and Woodward and Colella blast wave prob-
lem, which describes the interaction of two Riemann problems, characterized
by strong shocks. These test problems have been widely used in the literature.
The initial and boundary conditions and the details of the implementation
for central WENO schemes can be found in [2].

We now describe the two algorithms we are compairing. The simplest
approach to the solution of systems of equations is to apply the scheme com-
ponent by component, following the scalar recipe. It was found in [2] that the
results improve if all components of the solution share the same smoothness
indicator. At the beginning of each time step a Global Smoothness indicator
is computed, namely:

m 2 2
; 1 1 . d'P; ke
IS] == — Ej/hz’*(ﬂ) dr |, 10
om = Ml (11 I; da! 1o

for K = —1,0, 1. Here r denotes the r-th component of the solution and of the
vector-valued interpolating polynomial. Compairing with (9), we see that the
Global Smoothness Indicator is just a weighted average of the Smoothness
Indicators given by each component.

These quantities are then used to compute the non linear weights through-
out the time step. This will be called Componentwise Implementation (CW)
of Central schemes.

In the CW approach, very little information on the physics of the system
of equations is required. It is enough to provide the flux function f and an
estimate of the characteristic speeds of propagation, to satisfy the stability
condition, which, for the CRK4 scheme, is A < 12/25 % 1/ max |u(u)|, where
e are the eigenvalues of the Jacobian of f, see [3].

The solution computed in this fashion is fast and simple to program.
However small wiggles may appear. These spurious oscillations decrease in
amplitude as the grid is refined. See for instance the left part of Fig. 1.

A second approach was suggested in [4]. Tt consists in applying to the
central framework a technique that is widely employed in schemes based on
flux splitting. Specifically, the computation of the weights in the WENO re-
construction is performed component by component but using characteristic
directions, instead of conserved variables.

Let Q(u) be the non-singular matrix whose columns are the right eigen-
vectors of A(u). At each grid point j, compute Q(u}). Let {u},;} be the

J+l
data in the stencil of the jth cell. For CRK4, the stencil of the reconstruction
consists of 5 points; thus [ = —2,---,2. Map each cell average belonging to

the stencil of the jth cell along the characteristic directions, i.e. compute the
vectors:

Ujpr = Q_l(a;’l)a?-i-l l=-2,---,2.
Construct the conservative interpolant ITJ for the data {4}, using the
CWENO recipe described above componentwise. Then define the interpolant
for the conserved variables v through the equation:
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Componentwise Characteristic Projection
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Fig. 1. Lax’ Riemann problem. Componentwise (left) and Characteristic Projection
(right) implementation of CRK4 scheme, for various grid sizes. Bottom: Detail of
the density peak. N = 200 (dots), N = 400 (dash), N = 800 (dash-dot).

I (z — x;) = Q)T (z — ;).

Finally, use this function to evaluate the two staggered half-cell averages:

1 [% ) i+
E?ﬁzﬁ/ Il (z — z;) dz ﬂ?#:E/ Il (z — x;) dz,
Tj;— €T

iT2 J

with @}, , = @}, +a},, _ and the point value u(x;,¢") = II}(0). Notice
that because the mapping between conservative and characteristic variables
is linear, then a conservative reconstruction in v will provide a conservative
reconstruction in w.

According to the results in [4] it is necessary to perform this computation
only at the beginning of each time step, to evaluate ul g /2 Our results con-
firm this finding. When we use characteristic projection, the derivatives of
the fluxes are still computed with the non linear weights obtained with the
Global Smoothness indicator. This algorithm will be called Characteristic

Projection (CP) scheme.
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The results obtained with this recipe can be seen on the right of Fig. 1.
The spurious oscillations in the density peak of the solution of Lax’ Riemann
Problem have disappeared.
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Fig. 2. Global Weights for N = 400. From left to right: Left, Central and Right
weight. Solution computed with CW (top) and CP (bottom) algorithms.

L

The improvement is due to a better separation of the effects of the contact
and the shock wave on the weights. Fig. 2 shows a comparison of the non
linear global weights which result from the solution to Lax’ problem computed
with the CW (top) and the CP (bottom) algorithms. The weights shown in
the figure are computed using (10), and they are needed to evaluate the
flux derivatives, in both strategies. If we compare with the corresponding
solution given in Fig. 1, we see that the fluctuations in all weights clearly
signal the location of the shock, the contact, and the head and tail of the
rarefaction wave. However in the C'W implementation, between the shock
and the contact the weights have a very irregular behaviour. This effect is
absent in the results obtained with the CP implementation. This is probably
the origin of the wiggles appearing on the left of Fig. (1).

Further insight in the behaviour of the weights can be obtained plotting
the weights computed with the CP algorithm along each characteristic field,
see Fig. 3. Here correctly the contact wave appears only in the second charac-
teristic field, belonging to the eigenvalue p = v of the Jacobian A(u), where
v is the gas velocity. The head and tail of the rarefaction appear only in
very small wiggles in the weights computed for the first characteristic field,
belonging to the eigenvalue p = v — ¢ (here ¢ is the sound speed). Thus we
see that, even if the CP algorithm corresponds to a simple local linearization
of the system of equations, still it is quite effective in separating all waves
thus preventing the oscillatory behaviour of the CW scheme.
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Fig. 3. Weights computed with characteristic projection for N = 400. From left to
right: Left, Central and Right weight. From top to bottom: first, second and third

characteristic field.

4 Adaptive characteristic projection

Table 1. CPU time

N cw CP Adaptive
200 5.69 15.74 6.50
400 22.45 62.74 25.44
800 90.34 250.34 101.90

1600 359.24 1002.66 409.32

We have seen that the CP implementation is quite effective in the pre-
vention of spurious oscillations. However this procedure is quite costly, as
is apparent from reading the first two columns of Table 1. Here the CPU
time required for the solution of Lax’ Riemann Problem is reported for the
CW and the CP algorithms for various grid sizes. These data were obtained
running the code on a Pentium II 266 Mz processor, with the F77 Linux
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compiler. It is clear that CP is roughly 3 times as expensive as CW. However
Fig. 1 and Fig. 2 show that the C'W algorithm needs to be improved only
close to discontinuities.
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Fig. 4. Top: solution with selective application of characteristic projection, for
N =200, N = 400 and N = 800. Middle: Logarithmic plot of IS] °T vs z at final
time. Bottom: Number of cells where characteristic projection is used vs time.

Thus it appears that the CP scheme can be made much more efficient, if
projection along characteristic directions is applied selectively, only in those
cells close to discontinuities, and computing the solution in the remaining
cells with the CW recipe.

The adaptive scheme we propose computes the Global Smoothness in-
dicator in each cell, at the beginning of each time step. Then we obtain a
measure of the smoothness of the data in the whole stencil, by evaluating:

1

TOT __ !
15,97 = ) 1,

I=-1

where IS; is given in (10). As for the Smoothness Indicator, IS?, this quan-
titity is O(h?) in smooth regions, while it is O(1) if a jump discontinuity is
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present somewhere in the whole stencil on which the reconstruction is based.
Thus, we apply the CP scheme only in those cells for which:

1S797 > 1, (11)

while we use the CW scheme in the remaining cells. The resulting scheme
will be called Adaptive scheme.

We show the results obtained with this strategy in Fig. 4 for Lax’ Riemann
Problem. In the first row, we show a comparison of the solution computed
with the CP (dashed line) and the Adaptive (dotted line) schemes. The solid
line is the exact solution. As is apparent from the figure, for all grids tested,
the two numerical solutions almost coincide.

The second row in Fig. 4 shows plots of the logarithm of IS]TOT for various
grid sizes at final time. Compairing with the exact solution in the row above,
it is apparent that the peaks of IS;POT coincide with the location of the
discontinuities.

Finally, the third row of Fig. 4 shows the number of cells N¢p(t) on which
projection along characteristic directions was actually used, at time ¢, as a
function of time for various grid sizes. It is interesting to note that Nop(t)
does not depend on the number of grid points. The quantity Nep(t) is larger
for small values of ¢, when the waves issueing form the initial discontinuity
have not yet separated, and it decreases as the waves separate. It is clear from
these results that a considerable saving in computing time can be obtained
through an adaptive application of projection along characteristic directions.

CRK4 componentwise CRK4 Characteristic Projection

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Fig. 5. Solution to Woodward and Colella blast problem, at T = 0.038. Left: CW
scheme. Right: Adaptive CP scheme.

The last column of Table 1 shows the CPU time required by the Adaptive
strategy just described. The computational cost of the Adaptive scheme is
comparable to the CW case, but now the control of spurious oscillations is
analogous to what is achieved by the CP scheme.

To check the robustness of the adaptive strategy, we compute the solution
of Woodward and Colella blast wave problem. The density obtained at T' =
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0.038 is shown in Fig. 5, for the CW (left) and the Adaptive (right) strategies.
Again, the CW scheme results in spurious oscillations, which disappear when
the Adaptive characteristic projection is used. The numerical results obtained
by the Adaptive and the CP scheme are indistinguishable.

Gons oo oo ok oo o 0om  om Goss o0

Fig. 6. Woodward and Colella blast problem. Number of cells labelled for projection
along characteristic directions as a function of time. From left to right: N = 400,
N =800, N = 1600.

Finally, Fig. 6 shows the values of N¢p(t) in the case of Woodward and
Colella problem as a function of time, for various grid sizes. These plots
are quite irregular, due to the complex behaviour in time of the solution.
However we note that even in this case Nop(t) depends only weekly on the
number of grid points. This is even more apparent if we consider the average
of Nop(t), < Nogp >, over time. We find: < Nop >=48.6, < Nop >=51.9,
< Negp >=46.5 for N =400, N = 800 and N = 1600 respectively.

We conclude that the adaptive strategy based on applying characteristic
projection only in those cells for which: IS;-FOT > 1 is effective in preventing
the onset of spurious oscillations, without increasing significantly the com-
putational cost of the componentwise algorithm. Moreover the strategy just
described is robust, since it remains effective even on a problem involving a
complex solution, with several wave interactions.
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