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Shock formations are observed in granular avalanches when supercritical flow
merges into a region of subcritical flow. In this paper we employ a shock-capturing
numerical scheme for the one-dimensional Savage–Hutter theory of granular flow
to describe this phenomenon. A Lagrangian moving mesh scheme applied to the
nonconservative form of the equations reproduces smooth solutions of these free
boundary problems very well, but fails when shocks are formed. A nonoscillatory
central (NOC) difference scheme with TVD limiter or WENO cell reconstruction for
the conservative equations is therefore introduced. For the avalanche free boundary
problems it must be combined with a front-tracking method, developed here, to prop-
erly describe the margin evolution. It is found that this NOC scheme combined with
the front-tracking module reproduces both the shock wave and the smooth solution
accurately. A piecewise quadratic WENO reconstruction improves the smoothness
of the solution near local extrema. The schemes are checked against exact solutions
for (1) an upward moving shock wave, (2) the motion of a parabolic cap down an
inclined plane, and (3) the motion of a parabolic cap down a curved slope end-
ing in a flat run-out region, where a shock is formed as the avalanche comes to a
halt. c© 2002 Elsevier Science

Key Words:granular avalanche; shock-capturing; nonoscillatory central scheme;
free moving boundary; front-tracking.

1. INTRODUCTION

Snow avalanches, landslides, rock falls, and debris flows are extremely dangerous and de-
structive natural phenomena, and their occurrence has increased during the past few decades.
Their human impact has become so significant that the United Nations declared 1990–2000
the International Decade for Natural Disaster Reduction. Research on the protection of
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habitants from floods, debris flows, and avalanches is under way worldwide, and many
institutions focus on the numerical prediction of such flows under ideal as well as realistic
conditions.

One of the models that has become popular in recent years is the Savage–Hutter (SH)
avalanche theory for granular materials [33, 34]. In the past decade numerical techniques
were developed to solve the SH-governing differential equations for typical moving bound-
ary value problems [6–10, 13, 14, 16, 19, 33, 34, 41]. These techniques are based on a
Lagrangian moving mesh finite-difference scheme in which the granular material is divided
into quadrilateral cells (2D) or triangular prisms with flat tops (3D). Exact similarity solu-
tions of the SH equations were constructed in spatially one-dimensional chute flows [32,
33, 35] and for two-dimensional unconfined flows [12, 15]. In the case of chute flows it was
shown that the solutions obtained by the Lagrangian integration procedure approximate the
exact parabolic similarity solution very accurately, and these theoretical and numerical re-
sults are in good agreement with experimental avalanche data. Similar agreement between
theoretical, numerical, and experimental data was also obtained for the two-dimensional
flow configurations (cf. above references). In these Lagrangian schemes explicit, artificial
numerical diffusion was incorporated to maintain stability. In doing so the quality of reso-
lution deteriorates. In fact, the adequacy of these numerical solutions can be challenged
because of uncontrolled spreading due to this diffusion. It was also observed that the
Lagrangian schemes lose their stability (or else unjustified artificial diffusion must be ap-
plied) whenever internal shocks are formed. This appears to occur whenever the avalanche
moves from an extending to a contracting flow configuration. These shocks are travelling
waves which form bumps with steep gradients on the free surface, which is thicker on
the downslope side. It is therefore natural to develop conservative, high-resolution, shock-
capturing numerical techniques that are able to resolve the steep surface gradients and
identify the shocks often observed in experiments but not captured by the Lagrangian finite
difference scheme.

The development of high-resolution shock-capturing schemes has a long history which
we cannot even sketch here (see, e.g., the classical references [3, 11, 40, 42] or the recent
textbooks [4, 20, 25, 39]. The most common approach is to first develop a one-dimensional,
total-variation-diminishing (TVD) upwind scheme for a scalar conservation law and then
apply it to systems using one-dimensional characteristic decompositions or approximate
Riemann solvers. Upwind schemes have been used very successfully for gas dynamical
calculations, where the Riemann problem can be solved exactly and many approximate
Riemann solvers are available. For more complicated systems like the granular flow model
considered here characteristic decompositions are often not available, and the Riemann
problem cannot be solved analytically. Therefore we have chosen an alternative approach to
high-resolution shock-capturing, namely the recent nonoscillatory central (NOC) schemes
first introduced by Nessyahu and Tadmor [30]. While upwind schemes are higher order
extensions of the classical Godunov scheme, central schemes build upon the (also classi-
cal) Lax–Friedrichs scheme [23]. This scheme avoids characteristic decompositions and
Riemann solvers by the use of a staggered grid. When used together with piecewise con-
stant spatial reconstructions, the Lax–Friedrichs scheme is more diffusive than Godunov’s
scheme. However, when one combines the scheme with TVD-type piecewise linear recon-
structions, it becomes competitive with the upwind schemes. Recently, central schemes have
been extended in many directions; see, e.g., [1, 2, 18, 27] for multidimensional extensions,
[31] for an adaptive staggered scheme, [26, 28] for third- and higher order schemes, and
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[21, 22] for central schemes on nonstaggered grids, which are precisely at the borderline of
central and upwind schemes.

Here we adapt the second-order NOC scheme of Nessyahu and Tadmor to include an earth
pressure coefficient, which has a jump discontinuity as the flow travels from an expanding
into a contracting region, and to treat the source term, which is due to the spatially varying
topography and the gravitational force. The resulting scheme works well both in smooth
regions and at shocks, which are captured within two mesh cells and without any oscillations.

Besides the formation of shock fronts in the interior, avalanches may have a vacuum
front at their margins. Similarly as for the equations of gas dynamics, the hyperbolic system
degenerates at the vacuum state. Many shock-capturing upwind schemes produce negative
heights at these points and subsequently break down or become completely unstable. While
our NOC scheme is remarkably stable at the margins, it does not capture the vacuum
front as well as the Lagrangian moving mesh scheme. To overcome this imperfection, we
augmented the NOC scheme with an algorithm that tracks the vacuum front. The combined
front-tracking, nonoscillatory central scheme is accurate and robust both at shocks and at
the margins of the granular avalanche.

The ensuing analysis commences in Section 2 with the presentation of the governing SH
equations in conservative and nonconservative form; then the jump conditions of mass and
momentum at singular surfaces are stated and the solution to a single shock wave (a hydraulic
jump) are presented. Section 2 closes with the construction of exact similarity solutions
of a parabolic heap moving down a rough incline. Section 3 introduces the numerical
techniques. At first the Lagrangian integration technique is described; it is followed by
the presentation of the nonoscillatory central scheme. In Section 4 we augment the NOC
scheme (which uses a fixed Eulerian grid) with a Lagrangian-type front-tracking method
in the marginal cells. Section 5 elaborates on numerical results. The travelling shock wave
cannot be handled by the Lagrangian method, but the NOC scheme can handle it with
very little diffusion across the shock. On the other hand, the parabolic similarity solution
is well produced by the Lagrangian integration technique, but much less accurately by the
NOC schemes unless Lagrangian front-tracking is introduced for the marginal cells. It is
also shown that the NOC scheme with piecewise linear spatial reconstructions applying
standard TVD-type slope limiters exhibits some oscillations near smooth local maxima.
We remove these oscillations by incorporating a piecewise quadratic weighted essentially
nonoscillatory (WENO) reconstruction into our scheme. Our final numerical experiment
combines all the difficulties treated in the paper: an avalanche with a vacuum front at
the margins expands as it flows downhill and contracts as it hits the flat runout (so the
earth pressure coefficient changes discontinuously at the transition point). As the avalanche
comes to a halt at the bottom, a shock wave develops and propagates upslope. Our NOC
front-tracking scheme handles this challenging flow very satisfactorily. Section 6 presents
conclusions and gives an outlook for further work.

2. GOVERNING EQUATIONS

A detailed derivation of the Savage–Hutter theory has been given in [33, 34]. Here we
confine ourselves to a brief description. Although cohesionless granular materials exhibit
dilatancy effects numerous experiments have confirmed that during rapid dense flow it is
reasonable to assume that the avalanche is incompressible with constant uniform densityρ0.
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During flow a body behaves as a Mohr–Coulomb plastic material at yield. As the avalanche
slides over the rigid basal topography a Coulomb dry friction force resists the motion.
The basal shear stress is therefore equal to the normal basal pressure multiplied by a
coefficient of friction tanδ, whereδ is termed the basal friction angle [19]. Scaling analysis
isolates the physically significant terms in the governing equations and identifies those
terms that can be neglected. Plane flow configurations are our focus in this paper, so depth
integration reduces the theory to one spatial dimension. The leading order, dimensionless,
depth-integrated equations for the local thickness of the avalancheh and the momentumhu
(u is the downslope velocity) reduce to

∂h

∂t
+ ∂

∂x
(hu) = 0, (1)

∂(hu)

∂t
+ ∂

∂x
(hu2+ βxh2/2) = hsx (2)

with net driving force

sx = sinζ − sgn(u) tanδ(cosζ + λκu2)− ε cosζ
∂zb

∂x
, (3)

wherex is the arc length measured along the avalanche track,zb denotes the height of the
basal topography relative to the track (usuallyzb = 0 in one spatial dimension), andζ and
λκ are the local slope inclination angle and curvature of the track, respectively. The term
sgn(u) selects the orientation of the dry Coulomb drag friction, andε ¿ 1 is the aspect ratio
of a typical thickness and length of the avalanche. Note that Eqs. (1) and (2) are written in
conservative form [8], while in the original SH theory the smoothness assumption allows
the momentum balance equation to transform to an evolution equation for the velocity, viz.,

du

dt
= sx − βx

∂h

∂x
− 1

2
h
∂βx

∂x
. (4)

The factorβx is defined asβx = ε cosζKx and the earth pressure coefficientKx is given
by the ad hoc assumption

Kx =
{

Kxact for ∂u/∂x > 0,

Kxpass for ∂u/∂x < 0,
(5)

with

Kxact/pass= 2(1∓
√

1− cos2 φ/ cos2 δ) sec2 φ − 1, (6)

andφ is the internal friction angle of the granular material. Note that the values of the earth
pressure coefficientKx are based on the postulation of Mohr–Coulomb plastic behaviour
for the cohesionless yield on the basal sliding surface; see Savage and Hutter [33, 34] for
details. In this theory the earth pressure coefficientKx is assumed to be a function of the
velocity gradient; i.e.,Kx = Kx(∂u/∂x).

The governing equations look like the shallow-water equations, but because of the jump
in the earth pressure coefficientsKxact/pass, the source termsx, and the free boundary at
the front and rear margins, it becomes much more complicated to develop an appropriate
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numerical scheme to describe the flow. The original Lagrange finite-difference scheme [33]
is implemented for the equation Systems (1) and (4) in Lagrangian form, with primitive
variablesh andu. The shock-capturing scheme developed here is applied to the system in
conservative form (1) and (2), where the conserved quantities are the avalanche thickness
h and the depth-integrated momentumm= hu.

In vector notation, Eqs. (1) and (2) take the form

wt + f x = s, (7)

where

w=
(

h

m

)
, f =

(
m

m2/h+ βxh2/2

)
, and s=

(
0

hsx

)
. (8)

This form is more convenient for mathematical analysis than that of (1) and (2).

2.1. Jump Condition and Travelling Wave

The Savage–Hutter theory can be used to model the upslope propagating travelling shock
wave observed in experiments [5, 7] by introducing the jump conditions (see Fig. 1) of the
balance equations (1) and (2) for mass and momentum,

[[h(u− Vn)]] = 0, (9)[[
hu(u− Vn)+ 1

2
βxh2

]]
= 0, (10)

whereVn is the normal speed of the singular surface. Let us suppose that [[βx]] = 0 (for
example, this is always satisfied ifφ = δ; i.e.,Kxact = Kxpass). Substituting (9) into (10) (i.e.,
eliminatingVn) yields the following relation between the depth ratio,H := h−/h+, and
the velocity difference:

(u+ − u−)2 = βxh−
H + 1

2

(
H − 1

H

)2

. (11)

FIG. 1. The plane travelling shock wave can be interpreted as a jump in thickness and velocity separating the
body of the avalanche into two parts on a plane with inclined angleζ . h+ andh− are the thicknesses of both sides
andu+ andu− are the velocities, respectively, whereas this jump travels with velocityVn up slopes.
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For an upslope travelling shock wave with travelling wave speedVn and corresponding
depth ratioH , the factorβx is a function of material and topographic parameters,φ, δ, and
ζ , which are given by the selected material and topography. Provided that the depths before
and after the shock,h+ andh−, are known (they can be determined by experiment) and the
downslope velocity is also given (it is normally equal to zero), the upslope velocity can be
determined by using (11):

u+ = u− ± H − 1

H

[
βxh−

H + 1

2

]1/2

. (12)

Note that the term under the square root is positive for all positiveH . If H = 1 then
u+ = u−, which indicates that no shock wave (discontinuity) takes place. Thus, velocity
jumps and depth jumps occur together.

By inspection of the mass balance equation (9), the velocity of the shock is given by

Vn = Hu− − u+

H − 1
= u− ∓

[
βxh−

H + 1

2H2

]1/2

. (13)

Note that ash+ tends toh = h−, u+ tends tou = u− and

Vn→ u∓ [βxh]1/2, (14)

so we have recovered the characteristic speeds of the shallow-water equations. Now we
apply Lax shock inequalities [24] to single out the physically relevant branches of the shock
curves: for the first family, with characteristic speedu−√βxh, we require that

u+ − [βxh+]1/2 > Vn = u− −
[
βxh−

H + 1

2H2

]1/2

> u− − [βxh−]1/2,

which impliesH > 1 (recall that the upslope state “+” lies to the left of the shock). Anal-
ogously, for the second family, with characteristic speedu+√βxh, we obtainH < 1. For
example, an upward jump (h+< h−) can only be carried by a shock of the first family,
and in this caseu+ > u− > Vn, so particles which cross the shock are condensed and slow
down.

2.2. Similarity Solution

Consider the motion of a finite mass of granular material along a flat plane, i.e.ζ is
constant andλκ = 0 in (3). In [33] one particular similarity solution to a moving boundary
problem of finite mass was derived; this solution is now generalised (see [36]). To this end
we introduce a moving coordinate system with velocity

u0(t) = u0(0)+
∫ t

0
(sinζ − tanδ cosζ ) dt (15)

on a plane with inclination angleζ . This velocity is due to the net driving forcesx in
(3), where we assume that the velocity is positive for positive times; i.e., sgn(u) = 1. The
relative velocityŭ in the moving coordinate system is then given by

ŭ = u− u0(t). (16)
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A symmetric bulk is considered and the origin of the moving coordinate system is selected
to lie at the centre where the surface gradient,∂h/∂x, is zero. To keep the symmetric depth
profile during the motion the relative velocity is further assumed to be skew–symmetric,
ŭ(ξ, t) = −ŭ(−ξ, t), where

ξ = x −
∫ t

0
u0(t

′) dt′ (17)

indicates the distance from the origin in the moving coordinates. Provided thatg(t) is the
distance from the coordinate origin to the margin at timet , the physical domain occupied
by the granular mass can be mapped from [−g(t), g(t)] to the fixed domain [−1, 1] by

η = 1

g(t)

{
x −

∫ t

0
u0(t

′) dt′
}
, whereη ∈ [−1, 1]. (18)

With this coordinate mapping,(x, t)→ (η, τ ), the model equations (1) and (2) reduce to

∂h

∂t
− ηg′

g

∂h

∂η
+ 1

g

∂

∂η
(hŭ) = 0, (19)

∂ŭ

∂t
− ηg′

g

∂ŭ

∂η
+ 1

g

(
ŭ
∂ŭ

∂η
+ βx

∂h

∂η

)
= 0, (20)

where theτ is again replaced byt and we have usedg′ = dg/dt = −u0/η.
Now we assume that̆u(η, t) varies linearly inη. Since the margins move with relative

speeds±g′(t), this yields ŭ(η, t) = ηg′(t). Now the evolution equations (19) and (20)
reduce to

∂h

∂t
+ g′

g
h = 0, (21)

ηg′′ + βx

g

∂h

∂η
= 0, (22)

whereg′′ = d2g/dt2. Integrating (22) subject to the boundary condition eitherh(η = 1) = 0
or h(η = −1) = 0, it follows that the thickness is described by

h(η, t) = g(t)g′′(t)
2βx

(1− η2). (23)

This implies that the avalanche body keeps a parabolic thickness distribution during the
motion. With the thickness distribution (23) one can easily obtain the total massM to be

M =
∫ ξFt

ξ f

h(ξ, t) dξ =
∫ 1

−1
h(η, t)g(t) dη = 2

3

g′′g2

βx
. (24)

Since mass is conserved,

0= d

dt
M = 2g

3βx
(2g′g′′ + gg′′′). (25)

This relation can also be derived directly from the mass balance equation (21).
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Changing the independent variablet to g(t) and lettingp(t) = g′(t), Eq. (24) can be
written as

p
dp

dg
= K

g2
, (26)

where 3βx M = 2K . The similarity solution is then obtained by solving (26) with initial
conditions,g(0) = g0 and p(0) = p0:

p2(t) = 2K

(
1

g0
− 1

g(t)

)
+ p2

0. (27)

With the definitionαg = 2K
g0

, βg = p2
0, andG = (αg + βg)g it follows that

√
GG′√

G− 2K
= (αg + βg)

3/2. (28)

We now use the relation

d

dG
[
√

G
√

G− 2K + 2K ln(
√

G+√G− 2K )] =
√

G√
G− 2K

and integrate Eq. (28) to yield

√
G
√

G− 2K + 2K ln(
√

G+√G− 2K )

−[
√

G
√

G− 2K + 2K ln(
√

G+√G− 2K )]t=0 = (αg + βg)
3/2t. (29)

With g0 = 1, p0 = 0 we obtain the Savage–Hutter solution [33]

√
g
√

g− 1+ ln(
√

g+
√

g− 1) =
√

2Kt, (30)

for whichg(t) > 1. Both (29) and (30) are implicit evolution equations forg(t). Onceg(t)
is deduced, with the presumptionŭ(η, t) = ηg′(t), the complete solution is then given by
(23) and (27),

ŭ(η, t) = η
{

2K

(
1

g0
− 1

g(t)

)
+ p2

0

}1/2

, h(η, t) = 3M

4g(t)
(1− η2), (31)

whereη is defined in (18). In the present similarity solution it is presumed thatu/|u| = 1,
which means thatu > 0 for all t ≥ 0. From (16) and the presumption thatŭ(η, t) = ηg′(t)
it follows that

u(t) = u0(t)+ ŭ(t) > 0⇒ g′(t) < u0(t), for all t ≥ 0. (32)

It is very important to verify that the velocity is consistent with condition (32) to keep the
parabolic similarity solution valid. The generalisation (29) of (30) was needed to have exact
solutions with nonvanishing initial velocities (for further details see [36]).
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3. NUMERICAL SCHEME

The numerical schemes employed in this paper are designed to explicitly solve the system
of equations in 1D and we here introduce a Lagrangian algorithm and an Eulerian shock-
capturing NOC scheme.

In the Lagrangian technique [33, 34] the avalanche body is divided into several cells. The
purpose is to find the velocity of the cell boundaries in order to determine the cell boundary
locations for each time step, so it is a moving-grid method, whereas the NOC scheme is
built on a stationary uniform grid and gives a high resolution of the shock solutions without
any spurious oscillations near a discontinuity.

In the Lagrangian method the value of the depthhn
j is defined as the volume average

within the j th cell for timetn, which is bounded bybj−1(t) andbj (t), and the boundary
bj (t) moves with the velocityu j . Whilst, in the NOC scheme the value of the discretised
variableUn

j , U = h,m is defined on the mesh as the volume average within thej th mesh
cell centred at positionxj for time tn, where thej th cell is bounded byxj+1/2 andxj−1/2.

3.1. Lagrangian Method

In the Lagrangian method [33, 34] the avalanche body is divided intoN material cells,
wherex = bj−1(t) andx = bj (t) denote the boundaries of the cellj at timet ; see Fig. 2.
These boundaries move with the avalanche velocity; i.e.,

d

dt
bj (t) = u j (t) = u(bj (t), t).

Integrating the mass balance equation (1) over the cell yields

bj∫
bj−1

{
∂h

∂t
+ ∂

∂x
(hu)

}
dx = d

dt

bj∫
bj−1

h dx= 0⇒ d

dt
Vcellj = 0 (33)

and implies that the volume (mass) of the cell is conserved during the motion. Because of
this, the mean height of thej th cell can be determined by

hn
j =

Vcellj

bn
j − bn

j−1
. (34)

The computations proceed as follows. It is assumed thatbn
j , hn

j , andun+1/2
j are given as

initial values and the new location of the cell boundarybn+1
j after an elapsed time1t is

FIG. 2. The avalanche body is divided intoN elements with average depthhj , wherecj is the centre of the
j th element.
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given by

bn+1
j = bn

j +1tun+1/2
j . (35)

Note that here the velocityu j indicates the boundary velocity ofbj . The momentum balance
(4) allows the velocity of the cell boundary at timetn+1/2 to be determined,

un+1/2
j = un−1/2

j +1t

{
sn

j − ε cosζ j (Kx)
n
j

(
∂h

∂x

)n

j

− εhn
j+1/2

2

(
∂(cosζKx)

∂x

)n

j

}
. (36)

The net driving accelerationsn
j as given by (3) is

sn
j = sinζ j − sgn

(
un−1/2

j

)
tanδ

{
cosζ j + λκ j

(
un−1/2

j

)2
}
− ε cosζ j

(
∂zb

∂x

)
j

, (37)

whereζ j represents the local inclination angle,κ j is the local curvature, andzb denotes the
local basal topography. Note that the last term at the right-hand side of (36) contains the
gradient of the earth pressure coefficient, which is neglected in the numerical scheme of
Savage and Hutter [33, 34].

The earth pressure coefficientKx is determined by the ad hoc definition

(Kx)
n
j =

Kxact, for un−1/2
j+1 ≥ un−1/2

j ,

Kxpass, for un−1/2
j+1 < un−1/2

j

(38)

in [33, 34]. The surface (depth) gradients in (36) are determined by the depths of the adjacent
elements (

∂h

∂x

)n

j

=
(
hn

j+1− hn
j

)
cn

j+1− cn
j

= 2
(
hn

j+1− hn
j

)
bn

j+1− bn
j−1

, (39)

wherecn
j represents the centre of thej th cell, cn

j = (bn
j + bn

j−1)/2, at time t = tn; see
Fig. 2. The height at the cell boundary,h j+1/2, is given by their mean values in adjacent
cells,h j+1/2 = 1

2(h j + h j+1), and the gradient of the earth pressure coefficient is

(
∂(cosζKx)

∂x

)n

j

= cosζ j+1(Kx)
n
j+1− cosζ j (Kx)

n
j

cn
j+1− cn

j

. (40)

However, while this method is excellent for classical smooth solutions, it loses numerical
stability if shocks develop. Shocks are initiated when the avalanche velocity is faster than
its characteristic speed and the avalanche front reaches the base of the slope or a solid wall.
Many detailed investigations about granular shocks were made by Gray and Hutter [5], in
which the shock waves are considered to be an important property in the granular flows. To
avoid the numerical instability caused by the shocks, an artificial viscosity termµ∂2u/∂x2

is introduced and added to the right-hand side of (37) for numerical stability, e.g., [14, 33,
34], where the artificial viscosityµ was found to have values between 0.01 and 0.03.
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3.2. NOC Scheme

The nonoscillatory central difference scheme of Nessyahu and Tadmor [30] is a second-
order-accurate extension of the classical Lax–Friedrichs scheme [23]. Let us briefly review
the NOC scheme:

We consider the Savage–Hutter equations in the conservative form (7), (8) withw=
(h,m)T as basic variables. Let̄wn

j denote the cell average over the interval [xj−1/2, xj+1/2]
at timetn, and let

w̄(x, tn) = w̄n
j +

x − xj

1x
w̄′j (41)

be a piecewise linear reconstruction over the cell, wherew̄′j denotes the cell mean deriva-
tive determined by a TVD limiter [25] or a central WENO cell reconstruction [26]. The
main conceptual difference between the NOC schemes and standard, upwind, finite dif-
ference schemes is the use of a staggered grid. At timetn+1 = tn +1t , the cell averages
w̄n+1

j+1/2 are evaluated over the intervals [xj , xj+1]; see Fig. 3. As a consequence, the bound-
aries of the cells at the new time level are thecentersof the cells at the old time level,
namely the pointsxj and xj+1. At these points, the piecewise polynomial reconstruc-
tion (41) of the cell averages at the old time leveltn is smooth, and it remains so for
t < tn+1 under an appropriate restriction of the timestep (see (49) below). Therefore, the
flux across the boundaries of the cells at the new time level may be evaluated by Taylor
extrapolations using the differential equation and standard quadrature rules. Here we use
the midpoint rule in time to achieve second-order accuracy. The resulting update takes the
form

w̄n+1
j+1/2 =

1

2

(
w̄n

j+1/4+ w̄n
j+3/4

)− 1t

1x

(
f n+1/2

j+1 − f n+1/2
j

)+ 1t

2

(
sn+1/2

j+1/4 + sn+1/2
j+3/4

)
, (42)

as illustrated in Fig. 3b. The values ofw̄n
j+1/4 andw̄n

j+3/4 are determined by the reconstruc-
tion (41) over thej th and( j + 1)th cells; i.e.,

w̄n
j+1/4 = w̄n

j +
1

4
w̄′j , w̄n

j+3/4 = w̄n
j+1−

1

4
w̄′j+1. (43)

FIG. 3. Diagram of NOC-S scheme. (a) Grid points computed by the NOC-S method. (b) NOC-S computa-
tional diagram, whered indicates the grid points at time leveln andn+ 1, j represents the quadrature points
for the fluxesf across the cell boundaries,e shows the quadrature points for the source termss, and1 indicates
those for the staggered cell averages at the original timetn.
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The transport fluxf at the quadrature points(xj , tn+1/2) and(xj+1, tn+1/2) is approximated
by Taylor extrapolation in time,

f n+1/2
j = f

(
w̄ n+1/2

j

)
, w̄n+1/2

j = w̄n
j +

1t

2
(∂w̄/∂t)nj , (44)

and similarly, the source termssat the quadrature points(xj+1/4, tn+1/2) and(xj+3/4, tn+1/2)

are approximated by space–time Taylor extrapolation

sn+1/2
j+1/4 = s

(
w̄n+1/2

j+1/4

)
, w̄n+1/2

j+1/4 = w̄n
j +

1t

2
(∂w̄/∂t)nj +

1

4
w̄′j ,

(45)

sn+1/2
j+3/4 = s

(
w̄n+1/2

j+3/4

)
, w̄n+1/2

j+3/4 = w̄n
j+1+

1t

2
(∂w̄/∂t)nj+1−

1

4
w̄′j+1.

The temporal derivative(∂w̄/∂t)nj in (44) and (45) is determined by using (7),

(∂w̄/∂t)nj = −(∂f/∂x)nj + sn
j = −A j w̄′j /1x + sn

j , (46)

where

(∂f/∂x)nj = (A)nj (∂w/∂x)nj , A = ∂f/∂w =
(

0 1

−m2

h2 + βxh 2m
h

)
(47)

andA is the Jacobian off. Alternatively, one may also use the Jacobian-free approach of
Nessyahu and Tadmor [30] and set

(∂f/∂x)nj = f ′j /1x,

where the cell mean derivativef ′ of the flux is again determined by a TVD limiter. Letamax

be the maximum wave speed,

amax= max
all j

(|u j | +
√
β j h j ), u j = mj /h j for h j 6= 0. (48)

The CFL condition

1t

1x
|amax| < 1

2
, for all j (49)

is needed to guarantee that the solution remains smooth at the space–time quadrature points,
so that the Taylor expansions (44) and (45) are justified.

Note that the NOC scheme (41)–(49) completely avoids the expensive Riemann solvers
used in standard upwind schemes on nonstaggered grids. The resulting staggered schemes
are easy to code and computationally efficient and can be applied to general systems of
conservation laws, where the solution of the Riemann problem (i.e., the initial value problem
with piecewise constant data) may be complicated or even impossible.
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4. FRONT-TRACKING METHOD

In many applications, the region covered by the granular material has a finite extension
and is limited by a free boundary which moves with the flow velocity. Outside this region,
there is a vacuum, so the avalanche heighth and momentumm are zero, and the velocity
u = m/h is not well defined. The Lagrangian method handles this situation automatically,
since the computational domain moves with the material flow. The NOC scheme discretizes
the differential equations on a stationary uniform mesh. Note that in general the margin
pointsxn

Ft (the front margin) andxn
T l (the tail margin) lie between grid points, so that it

is impossible to point out the margin locations without extra treatment. Furthermore, it
is not straightforward to determine the proper cell reconstructions over the margin cells.
Figure 4 illustrates an example of depth reconstruction over the front margin cell determined
by various TVD limiters. Here and in the following we suppose that at timetn, the front
margin lies in the f th cell, x f−1/2 < xn

Ft ≤ x f+1/2, and the tail margin in thet th cell,
xt−1/2 ≤ xn

T l < xt+1/2.
Since our quadrature rule for the fluxes (44), (46), (47) uses a Taylor expansion of the

solution, different limiters will lead to different values of the integrals of the fluxes across
x f × [tn, tn+1] and xt × [tn, tn+1]. To complicate the situation even further, part of these
boundaries may lie in the vacuum region. Note that the fluxes across these boundaries
determine the outflow from the avalanche body, so inappropriate cell reconstructions over
the margin cell may cause too much outflow from the avalanche body or even result in a
negative depth around the margin; see Fig. 5a. Thus, the difficulty is not only in determining

FIG. 4. Example of the depth reconstruction (solid line) determined by different TVD limiters, where the
circles denote the cell average. The front margin lies in thef th cell. In the Eulerian scheme one cannot determine
where the margin lies. Outside the margin there is no material, so that the average depths of the cellsf + i, i ≥ 1
are equal to zero. Different limiters lead to different outflows from the avalanche body.
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FIG. 5. The reconstruction of the depth̄h f (x) within the margin f th cell. (a) Cell reconstructions based on
TVD limiters cannot determine the location of the margin point. Inappropriate reconstructions over the margin cell
may result in wrong values of the flux at the gridpointx f , which may cause too much outflow from the avalanche
body. (b) Our front-tracking method uses the unique piecewise linear reconstructionh̄ f (x) over the margin cell,
which vanishes at the margin pointxFt and preserves the cell average. Thus, a reasonable flux atx f is expected.

the correct numerical flux at the grid pointx f ; the wrong numerical flux may also cause vast
stability problems. Adding a thin layer over the whole computational domain can circumvent
the numerical stability problem, but it is then difficult to determine the locations of the
margins, and the numerical flux out of the avalanche body may even become unexpectedly
large, which results in large numerical diffusion, while there will be permanent outflow from
the avalanche body. Therefore, a more refined treatment of the evolution of the avalanche
margins is needed.

In [29], Munz developed a method for tracking vacuum fronts in gas dynamics. His
approach is based on appropriate reconstructions of cell averages behind the front and on
the solution of a vacuum Riemann problem, which is used to track the margin locations at
every time step. Here we develop an alternative front-tracking method, which is based on
a piecewise linear spatial reconstruction of the conservative variables up to the front and
Taylor extrapolations in time. Contrary to [29] our approach is Riemann-solver free and
therefore fits perfectly into the framework of central schemes.

The structure of our front-tracking algorithm is as follows: At the beginning of each
time step (at timetn), the cell averages̄wn

j of the conservative variables and the position
of the margin pointsxn

Ft (front) andxn
T l (tail) are given. In the first step, a piecewise linear

reconstruction of the data is defined, the front (tail) velocity is determined, and the front
(tail) is propagated from timetn to tn+1. In the second step, the conservative variables are
updated via

w̄n+1
j−1/2 =

1

1x

∫ xj

x j−1

w(x, tn) dx− 1

1x

∫ tn+1

tn

{f(xj , t)− f(xj−1, t)} dt

+ 1

1x

∫ tn+1

tn

∫ xj

x j−1

s(x, t) dx dt. (50)

Away from the front, the integrals are evaluated by the midpoint rule as in (42). Special
care has to be taken in the two margin cells (the cells containing the front and the tail). Each
of the integrals on the RHS of (50) may contain parts of the vacuum region. Therefore, we
need to replace the midpoint rule by more delicate quadrature rules over the region covered
by the granular material.

In order to guide the reader through the details of the algorithm, we give an outline
of the rest of this section. In Section 4.1, a particular piecewise linear reconstruction of
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the conservative variables near the front is derived. In Section 4.2, the front velocities are
computed, and the fronts are propagated to the new time level. In Section 4.3, four cases
are distinguished for the location of the front relative to the fixed underlying grid, and
their geometry is discussed. In Sections 4.4–4.6, the three integrals on the RHS of (50) are
treated: the data, the fluxes, and the source terms. In Section 4.7, a special space–time Taylor
extrapolation of the conservative variables near the front, which is needed to compute the
solution at the space–time quadrature points of the three integrals, is derived. Section 4.8
summarizes the algorithm.

4.1. Reconstructing the Conservative Variables

In the following we focus on the front margin. The rear margin can be treated completely
analogously. Suppose as before that the front margin is contained in thef th cell,

xn
Ft ∈ (x f−1/2, x f+1/2].

We require that the piecewise linear reconstructionw̄(x, tn)satisfy the following two criteria:

• first, it should vanish at the margin points, and
• second, it should preserve the cell averages.

These criteria uniquely determine the reconstruction in the margin cells. If we denote the
cell-averaged depths of the front margin cell byh f , then the depth reconstruction is defined
by

h̄ f (x) = x − xFt

1x
h̄′f ; h̄′f =

−2h f

(1xFt/1x)2
, for x ∈ (x f−1/2, xFt ]. (51)

Outside the margin the depth is equal to zero. ThexFt andx f−1/2 represent the locations of
the front and the internal boundary of the front margin cell, respectively (see Fig. 5), and
1xFt := xFt − x f−1/2 is its length. The reconstruction ofm= hu, m̄(x), is defined anal-
ogously. Note that in (51), the denominator1xFt/1x may in principle become arbitrarily
small which could cause numerical instability. However, we will see in Section 4.7 that in
those cases where the numerical derivativesh̄′f andm̄′f are actually used,1xFt/1x will be
bounded away from zero.

4.2. Propagating the Front

Our definition of the reconstructions of the conservative variablesh andmover the margin
cells leads to a constant reconstruction of the velocity over the margin cells,

u(x, tn) = m̄ f (x)

h̄ f (x)
= m̄′f (x − xFt )/1x

h̄′f (x − xFt )/1x
= mf

h f
,

so it would seem natural to define the margin velocity by the constant value

un
Ft =

mf

h f
. (52)

However, this assignment would have two disadvantages: first, it is only first-order accurate.
Second, as can be seen from (51), the termsmf andh f are on the order of

O(1x)O((1xFt/1x)2).
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Depending on the location of the front relative to the grid, the latter term can become
arbitrarily small. Dividing these small numbers in (52) may result in large errors for the
front velocity.

Therefore we replace (52) by the simple Taylor extrapolation

un
Ft = u f−1+ (1x/2+1xFt )(u f−1− u f−2), (53)

whereu j := mj /h j . This assignment is both numerically stable and second-order accurate
in space. In order to obtain second-order accuracy in time, as well, we approximate the
margin velocity at timetn+1/2. Using the evolution equation (4) for the velocity we define

un+1/2
Ft = un

Ft +
1t

21x

(
sn

f1x − βxh̄′f
)
. (54)

Here we have used the fact thath vanishes at the front. The location of the margin at the
new time level is then given by

xn+1
Ft = xn

Ft +1t un+1/2
Ft . (55)

4.3. Intersecting the Front and the Grid

Once the new location of the margin is given, the new margin cell at the next time step is
then determined. The CFL condition (49) guarantees that|un

Ft/T l1t | < 1x/2, so the margin
point xFt/T l can at most pass through gridpointx f/t during one time step. For example,
with this condition the front can only lie in one of the two cells adjacent to the marginf th
cell, which are the( f − 1

2)th and( f + 1
2)th cells; see Fig. 6. There are four possible cases

for the motion of the front margin point,

• case I:xn
Ft ≤ x f andx f−1 < xn+1

Ft ≤ x f ,
• case II:xn

Ft > x f andx f < xn+1
Ft ≤ x f+1,

• case III:xn
Ft ≤ x f andx f < xn+1

Ft ≤ x f+1/2,
• case IV:xn

Ft > x f andx f−1/2 < xn+1
Ft ≤ x f ,

wherexn
Ft andxn+1

Ft are the front locations attn andtn+1, respectively. In cases I and II, the
front does not pass gridpointx f , while in cases III and IV it does; see Fig. 6. In each case we
have to determine the cell averages of the relevant cellsw̄n+1

f−1/2 andw̄n+1
f+1/2 by integrating the

governing equations over [x f−1, x f ] × [tn, tn+1] and [x f , x f+1] × [tn, tn+1], respectively;
i.e., we have to evaluate the three integrals on the RHS of (50). These integrals involve the
dataw, the fluxesf, and the source terms. In the following, we derive quadrature rules
which are exact for linear functions. The tail margin can be treated completely analogously.

4.4. The Integral of the Data

First we integrate the linear reconstructionw(x, tn) of the data at timetn over the interval
[x f−1, x f ]. In cases I and III, this interval contains the front, while it does not in cases II
and IV. We obtain

1

1x

∫ x f−1

x f

w(x, tn) dx =
{

1
2w̄ f−3/4+ W̄n

f in cases I and III

1
2

(
w̄ f−3/4+ w̄n

f−1/4

)
in cases II and IV.

(56)
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FIG. 6. The four cases for the propagation of the front margin.
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Herew̄ f−3/4 is given by (43) andwn
f−1/4 by (51). With a given front locationxn

Ft andw̄n
f

it is

wn
f−1/4 = 2w̄n

f

{
1−

(
xn

Ft − x f

xn
Ft − x f−1/2

)2
}
. (57)

Next we consider the integral over the interval [x f , x f+1]. Using (51) once more we obtain

1

1x

∫ x f

x f+1

w(x, tn) dx =
0 in cases I and III

w̄n
f

(
xn

Ft−x f

xn
Ft−x f−1/2

)2
in cases II and IV.

(58)

4.5. The Integral of the Fluxes

Due to the restriction of the time step, the only grid position which is possibly intersected
by the front during the time interval [tn, tn+1] is x = x f . Therefore, the flux atx f−1 can be
evaluated exactly as in the interior of the domain,

1

1t

∫ tn

tn+1

f(w(x f−1, t)) dt = f n+1/2
f−1 , (59)

where f n+1/2
f−1 is given by (44). The flux atx f+1 vanishes, since this point lies in the vacuum

region during the whole time interval. It remains to compute the flux atx f . In cases III
and IV, where the front crossesx f , we use the midpoint rule in time over that part of the
interface which lies within the region covered by granular material. Lett̄ and1t be the
midpoint and the length of this time interval. Ift∗ is the time at which the front intersects
x f , defined by

xn
Ft + (t∗ − tn)u

n
Ft = x f , (60)

then

t̄ =
{
(tn+1+ t∗)/2 in case III

(tn + t∗)/2 in case IV
(61)

and

1t =
{

tn+1− t∗ in case III

t∗ − tn in case IV.
(62)

The midpoint rule for the flux now gives

1

1t

∫ tn

tn+1

f(w(x f , t) dt =


0 in case I

f n+1/2
f in case II

1t
1t f

t̄
f in cases III and IV.

(63)

Heref t̄
f = f(w(x f , t̄ )). In Section 4.7 we will extrapolate the solutionw to the quadrature

point (x f , t̄ ).
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4.6. The Integral of the Source Term

The source terms has to be integrated over the quadrilateral regions shown in Fig. 6.
Let us call these areas of integrationÄ. In the following lemma, we give a quadrature rule
which is exact for linear functions vanishing at the front.

LEMMA 4.1. Let a, b, τ ≥ 0 and

Ä := {(x, t) : t̂ ≤ t ≤ t̂ + τ, x̂ ≤ x ≤ x̂ + a+ (b− a)(t − t̂)/τ }.

Let s be a linear function overÄ which vanishes at the boundary x= x̂ + a+ (b− a)
(t − t̂)/τ . Then

∫∫
Ä

s(x, t) dx dt= 1

3
τ

a2+ ab+ b2

a+ b
s(x̂, t̂ + τ/2) =: ωs(x̂, t̂ + τ/2). (64)

Proof. W.l.o.g. letx̂ = t̂ = 0. The general form ofs is given by

s(x, t) = (x − a− (b− a)t/τ)σ,

whereσ is a real constant. W.l.o.g. letσ = 1. Then a direct computation gives that∫∫
Ä

s(x, t) dx dt= −τ
6
(a2+ ab+ b2) = ωs

(
0,
τ

2

)
.

h
Equation (64) may be interpreted as a special quadrature rule with node(x̂, t̂ + τ/2). We

have chosen this node because it appears also in the quadrature rule for the fluxes treated
in Section 4.5, so we can minimize the evaluations of the solutionw.

In the following we apply the lemma to the four cases. LetǞ be the region covered by the
granular material. First, we compute the integral over the intersection ofǞ with the union
of the ( f − 1/2)th and the( f + 1/2)th cell,Ä = Ǟ ∩ ([x f−1, x f+1] × [tn, tn+1]). Using
x̂ = x f−1, t̂ = tn,a = xn

Ft − x f−1, b = xn+1
Ft − x f−1, andτ = 1t in Lemma 4.1 gives

∫ tn+1

tn

∫ x f+1

x f−1

s(x, t) dx dt= ω f−1sn+1/2
f−1 (65)

with

ω f−1 = 1t

3

(
xn

Ft − x f−1
)2+ (xn

Ft − x f−1
)(

xn+1
Ft − x f−1

)+ (xn+1
Ft − x f−1

)2

xn
Ft + xn+1

Ft − 2x f−1
. (66)

Similarly, for the integral over̄Ä ∩ ([x f , x f+1] × [tn, tn+1]) we obtain

∫ tn+1

tn

∫ x f+1

x f

s(x, t) dx dt= ω f st̄
f , (67)
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wheret̄ = tn+1/2 in cases I and II and̄t is given by (61) in cases III and IV, and the weight
is given by

ω f =



0 in case I

1t
3

(
xn

Ft−x f

)2
+
(

xn
Ft−x f

)(
xn+1

Ft −x f

)
+
(

xn+1
Ft −x f

)2

xn
Ft+xn+1

Ft −2x f
in case II

1t
3

(
xn+1

Ft − x f
)

in case III

1t
3

(
xn

Ft − x f
)

in case IV.

(68)

Here1t is given by (62). The integral over [x f−1, x f ] × [tn, tn+1] is then computed by sub-
stracting the integral over [x f , x f+1] × [tn, tn+1] from that over [x f−1, x f+1] × [tn, tn+1],

∫ tn+1

tn

∫ x f

x f−1

s(x, t) dx dt= ω f−1sn+1/2
f−1 − ω f st̄

f . (69)

This completes the definition of the quadrature rules for the three integrals on the RHS of
(50). It remains to extrapolate the solutionw to the new quadrature point(x f , t̄ ) near the
front.

4.7. Determination of the Physical Quantities at̄t

In cases III and IV the margin point passes the cell boundaryx f at t∗ and goes into the
neighboring cell. The outflow in case III and the inflow in case IV through the cell boundary
atx f as well as the source term in the new and old margin cells are essential for determining
the cell average of the margin cells in the front-tracking method.

In case III the physical quantities flow through the boundaryx f into the( f + 1
2)th cell

during the time interval [t∗, tn+1]. The outflow is approximated by the value at(x f , t̄),
wheret̄ = 1

2(t
n+1+ t∗). Note that

xFt (t̄ ) = xn
Ft + un+1/2

Ft (t̄ − tn), h(xFt (t̄ ), t̄ ) = 0

∂

∂x
h(xFt (t̄ ), t̄ ) = 1

1x
h̄′f +O(1t).

Therefore,

ht̄
f = h(x f , t̄) =

(
x f − xn

Ft

)− un+1/2
Ft (t̄ − tn)

1x
h̄′f (70)

and similarly

mt̄
f = m(x f , t̄) =

(
x f − xn

Ft

)− un+1/2
Ft (t̄ − tn)

1x
m̄′f . (71)

In case IV the physical quantities at the boundary(x f , t̄) are determined in the same way, but
the time points are defined differently:t̄ = (tn+1+ t∗)/2 for case III and̄t = (tn + t∗)/2
for case IV. In (70) the numerical derivativēh′f is given by (51). We now check that the
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denominator(1xFt/1x)2 in (51) is bounded away from zero: In case III,1xFt/1x > 1/2
(see Fig. 6), and in case IV,

1xFt

1x
>

1

2
− 1t

1x
un+1/2

Ft >
1

2
− CFL,

where CFL is the Courant number, i.e., the left-hand side of Eq. (49).

4.8. Summary of the Front-Tracking Algorithm

The front-tracking algorithm may be summarized as follows:

w̄n+1
f−1/2 =

1

2
w̄n

f−3/4+ (1− α f )w̄n
f −

1t

1x
f t̄

f +
1t

1x
f n+1/2

f−1 (72)

+ ω f−1

1x
sn+1/2

f−1 −
ω f

1x
st̄

f (73)

w̄n+1
f+1/2 = α f w̄n

f +
1t

1x
f t̄

f +
ω f

1x
st̄

f . (74)

Here

α f =
{

0 in cases I and III( xn
Ft−x f

xn
Ft−x f−1/2

)2
in cases II and IV

(75)

1t =


0 in case I
1t in case II
tn+1− t∗ in case III

t∗ − tn in case IV

(76)

t̄ =


tn in case I

tn+1/2 in case II

(tn+1+ t∗)/2 in case III

(tn + t∗)/2 in case IV.

(77)

The weightsω f−1 andω f are defined in (66) and (68). The values ofw(x f , t̄), needed
to determinef t̄

f andst̄
f , are defined in (70) and (71). This completes the definition of the

update at the front margin. The tail can be treated completely analogously.

5. NUMERICAL RESULTS

In the following we present some numerical experiments. In Section 5.1 we compute
a travelling shock wave. In this case the Lagrangian method leads to oscillatory solutions
travelling at the wrong speed, while the NOC scheme yields correct sharp monotone shock
profiles. In Section 5.2 we compute the parabolic similarity solution. Here the Lagrangian
technique is superior to the NOC scheme unless the latter is equipped with the front-
tracking technique. We also discuss a tendency of the NOC scheme with piecewise linear
spatial reconstructions to produce small oscillations near smooth local maxima and show
how to remove these oscillations by using piecewise quadratic reconstructions. In the final
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numerical experiment in Section 5.3 we compute an avalanche with a vacuum front at the
margins, which forms an upward-propagating shock wave when it comes to a halt at a flat
runout. Our NOC front-tracking scheme gives a stable and accurate approximation of this
challenging flow.

5.1. Travelling Shock Wave

In this test problem we are concerned with granular flow on a plane (λκ = 0) inclined
chute (0≤ x ≤ 36 dimensionless units), where the internal and basal friction angles are both
presumed to be equal to the inclination angle,φ = δ = ζ = 40◦. That implies a nonac-
celerative flow,sx = 0, whose earth pressure coefficient is constantKx = Kxact = Kxpass.
Selectingε = 1 and using (6) yieldsβx = ε cosζKx = 1.84477. A jump of thickness
H = h−/h+ = 3 with h+ = 0.3, h− = 0.9 is presumed atx = 24. By virtue of (12) the
velocity difference is then determined,u+ − u− = 1.2148317, where the positive sign is
selected. Since an instability was expected close tou = 0 as a singularity by sgn(u), the
downslope velocity is assumed to beu− = 0.1, so that the term sgn(u) is always unity. The
initial condition of this test problem is defined as

h(x, 0) =
{

0.3, for 0≤ x < 24,

0.9, for 24≤ x < 36,
(78)

u(x, 0) =
{

1.3148317, for 0≤ x < 24,

0.1, for 24≤ x ≤ 36.
(79)

From (13) the velocity of the upslope travelling wave is then expected asVn=−0.50741585.
For the boundary condition a constant inflow atx = 0 and an outflow condition atx = 36
are introduced.

5.1.1 Lagrangian Technique

By the Lagrangian moving grid method the governing equations (1) and (4) are solved by
virtue of (34)–(37). The initial depth,h0

j , of the j th element is taken to be the cell average
of the exact initial profile. The initial velocity of the boundary,u0

j , is given by the volume
weighted velocity of the adjacent cells. They are

h0
j =

∫ b0
j

b0
j−1

h(x, 0) dx

b0
j − b0

j−1

, u0
j =

∫ c0
j+1

c0
j

h(x, 0)u(x, 0) dx∫ c0
j+1

c0
j

h(x, 0) dx
, (80)

whereb0
j andb0

j−1 are the boundaries of thej th cell at t = 0, andc0
j denotes the initial

centre of thej th cell.
The constant inflow and outflow boundary conditions are executed by setting the depth

gradient∂h/∂x at x = b0(t) andx = bN(t) equal to zero, so thatdu/dt = 0⇒ u0(t) =
u0(0) anduN(t) = uN(0) for t > 0 because the flow is on a nonaccelerating slopesx = 0.

Figure 7 demonstrates the simulated results (N = 60); oscillations develop as the shock
wave passes through, and these persist even if the time step is selected to be very small.
The velocities of the cell boundary after the shock are sometimes faster or slower than



SHOCK-CAPTURING AND FRONT-TRACKING METHODS 291

FIG. 7. Depth (left) and the corresponding velocity (right) profiles of the upslope travelling wave att = 0, 3, 6,
where circles denote the computed results at the cell centres and the solid line indicates the exact solution. The
time step is taken to be1t = 10−3 dimensionless time unit.

they should be and therefore oscillations take place. These oscillations propagate downs-
lope as time increases and no shock wave propagates upslope. This indicates that the
Lagrangian moving grid technique is ill behaved and cannot describe the travelling shock
wave.

5.1.2 Eulerian Shock-Capturing Methods

The NOC scheme is applied to (1) and (2) on a 1D grid with 90 and 360 gridpoints,
respectively. The initial conditions are transferred to the mean values over the cells before
the computing commences,

h0
j =

1

1x

∫ xj+1/2

xj−1/2

h(x, 0) dx, u0
j =

1

h0
j

∫ xj+1/2

xj−1/2

h(x, 0)u(x, 0) dx. (81)

The constant-inflow boundary condition is implemented by the assignmentsh0(t) = h0(0)
and m0(t) = m0(0) at x = 0. The outflow boundary condition is described by setting
∂h/∂x = 0 and∂m/∂x = 0 atx = 36, where they are

UN = (4UN−1−UN−2) /3, for U = h,m, (82)

by using the cell averages of the closest cells for a second-order extrapolation.
Three different cell reconstructions were tested: the NOC scheme with Superbee lim-

iter (NOCS-S), piecewise linear (r = 2), and quadratic (r = 3) WENO reconstructions
[26]. Figure 8 demonstrates the simulated avalanche depth of the travelling wave prob-
lem (circles) and a comparison with the exact solution (solid line) att = 6 dimension-
less time units. All of them are able to adequately describe this travelling shock wave
problem.



292 TAI ET AL.

FIG. 8. Depth profiles of the upslope travelling wave computed by the NOC scheme att = 6 with N = 360.
The solid lines indicate the exact solution and circles mean the computed results.

5.2. Parabolic Similarity Solution

This section is concerned with the simulation of the parabolic similarity solution out-
lined in Section 2.2. In the test problem the parabolic avalanche body is considered to
slide on an inclined flat plane in the domain 0≤ x ≤ 36 dimensionless length units with
constant inclination angleζ = 40◦. The basal and internal friction angles are simul-
taneously selected to be 30◦, and the initial condition is chosen to beg0 = 1 and
p0 = 0. On the inclined plane the initial depth and velocity distributions are mapped
into

h(x, 0) = 1− ((x − 4)/3.2)2

u(x, 0) = 1.2

}
for x ∈ [0.8, 7.2]. (83)

Our choice of the initial velocity,u(x, 0) = u0 = 1.2, guarantees that condition (32) will be
satisfied for all times. This problem will serve as the standard test problem for the resolution
of the depth profile and the determination of the margin locations.

5.2.1 Lagrangian Technique

In the Lagrangian moving grid technique the model equations (1) and (4) are solved by
virtue of (34)–(37) on a 1D grid. The boundary condition is given by setting the heights at
the margin (front and rear) points to be equal to zero,h0(x, t) = 0 andhN(x, t) = 0.

Figure 9 illustrates the simulated result at the dimensionless time unitst = 0, 2, 4, 6 with
cell numberN = 16, in which the circles denote the computed results and the solid line
indicates the exact solution. The avalanche body extends as it flows down and still keeps
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FIG. 9. Depth (left) and the corresponding velocity (right) profiles of the parabolic similarity solution
(Problem I) computed by the Lagrangian, moving grid scheme at the dimensionless time unitst = 0, 2, 4, 6,
where the avalanche body is divided into 16 cells, and the time interval is1t = 10−3.

the parabolic depth profile. The velocity is keeping a linear distribution through the bulk
body. It ensures the symmetric depth profile during the motion.

From the simulated results it follows that the Lagrangian moving grid technique not only
describes the depth profile well but also determines the margin locations of the similarity
solution very accurately. There is excellent agreement between the simulated results and the
exact solutions, see Fig. 9. The motions of the front and rear edges of the avalanche body
in the similarity solution are illustrated in Fig.10. The circles denote the computed results
by the Lagrangian moving grid technique and the solid lines indicate the exact locations of
the margins. They are also in excellent agreement.

The Lagrangian method is also tested by different grid numbers. Figure 11 shows the re-
sults computed with different grid numbers,N = 16, 32, and 64, respectively. With different

FIG. 10. Locations of the front and rear edges of the avalanche body in the parabolic similarity solution
problem as they evolve in time. The circles denote the results computed by the Lagrangian moving-grid technique
(N = 16), and the solid lines indicate the exact margin positions. They are in excellent agreement.
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FIG. 11. Depth profiles computed by the Lagrangian moving-grid technique for the parabolic similarity
solution problem (Problem l), where the avalanche body is divided into different numbers of cells,N = 16, 32, 64.
All the results are shown att = 6 and the computational time interval is1t = 10−3. The number of the cells does
not influence the good agreement between the simulated results (circles) and the exact solutions (solid line).

grid numbers this method can always achieve excellent resolutions when compared with
the exact solutions.

Calculations were also performed with initial conditionp0 6= 0; results turned out to be
as convincing as the ones above. For this reason they are not presented here [36].

5.2.2 Eulerian Technique

In Section 3.2, the Eulerian schemes are based on the model equations (1) and (2) in
conservative form, so that the velocity outside the avalanche body (inclusive of the margin
point) is not defined. Intuitively, adding a thin layer of material over the whole computational
domain could be used to treat grain-free regions. Another trick can also be introduced, in
which all the physical variables are set to zero ifh = 0. This would be reasonable since
h = 0→ m= hu= 0.

Figure 12 illustrates the comparison between the computed results obtained from the
NOC scheme, where a thin layerh0 = 10−4, respectivelyh0 = 0, is added over the whole
computational domain, and from the scheme with our front-tracking method. All the three
results of the depth profiles are acceptable except for the oscillation near the top. However,
a look at the velocity profiles in these figures; there are several cells with∂u/∂x < 0
around the margins. This violates the assumption∂u/∂x > 0 in the parabolic similarity
solution problem. Moreover, the results show that there is large numerical diffusion around
the margins (i.e., the margins move further than they should) without the front-tracking
method. For both reasons, the front-tracking method is needed to determine the location of
the margins.

Let us discuss the origin of the oscillation near the center of the avalanche. When
one recomputes the solution using unlimited central differences forw̄′, the oscillation
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FIG. 12. Depth (left) and velocity (right) profiles of the parabolic similarity solution computed by the NOC
scheme with Superbee limiter. In the top panels, a thin layer withh0 = 10−4 is added to the whole computational
domain. In the middle panels, all physical variables are set to zero ifh = 0, while the bottom panels demonstrate
the results from the scheme with front-tracking method. The whole computational domain is divided into 90 cells
(N = 90), the circles denote simulated results and the solid lines represent the exact solution. The results show
that the added thin layer does not influence the depth profile very much, if it is sufficiently small, but the margin
locations cannot be exactly determined without the front-tracking method. An oscillation near the middle of the
avalanche (local maximum) is visible in all three calculations.

disappears. Therefore, we have the following paradoxical situation: the introduction of
TVD limiters, which are needed to stabilize the solution in the presence of discontinu-
ities, may destabilize the solution in smooth regions! In fact, this is not entirely surprising,
since in the presence of limiters the fluxes depend only Lipschitz-continuously on the
data.

We have therefore experimented with smoother reconstructions, namely the piecewise
quadratic WENO interpolants of Jiang and Shu [17] and Levyet al. [26], which depend
smoothly on the data and are at the same time nonoscillatory at discontinuities. In the margin
cells, we still use the piecewise linear reconstructions introduced in Section 4.1, and in the
two cells adjacent to the margin cells, we use a piecewise linear WENO reconstruction.
We have experimented with both second- and third-order quadrature rules in time. In our
experience, both yield comparable results. Figure 13 demonstrates the results for these
reconstructions combined with our front-tracking method. The margin locations are well
described by the front-tracking method, and the oscillation near the center is successfully
removed (compare the bottom panels in Figs. 12 and 13).

Figure 14 shows the computed front and rear edges of the avalanche body in the parabolic
similarity solution as they evolve in time. “s” denotes the computed results obtained by
the NOC scheme with the piecewise quadratic WENO cell reconstruction, “×” means the
results deduced with the Superbee limiter and solid lines indicate the exact margin solution.
Both the Superbee limiter and the piecewise quadratic WENO cell reconstruction for the
NOC front-tracking schemes can yield good agreement of the determined margin locations
with the exact solutions.

The use of the Superbee limiter results in a small delay of the avalanche body, i.e., a
slower velocity at both the front and the rear. The reason is that the Superbee limiter tends
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FIG. 13. Depth (left) and velocity (right) profiles of the parabolic similarity solution att = 6 computed by the
NOC scheme with front-tracking and piecewise quadratic, WENO cell reconstruction. The whole computational
domain is divided into 90 cells (N = 90) and the Courant number is selected to be 0.3. The margin locations are
well described and the oscillation near the center is successfully removed.

to be overcompressive in smooth regions of the solution, and therefore it does not give the
appropriate flux at the boundaries between the internal and the margin cells.

In order to obtain some quantitative information on the accuracy of the schemes, we
introduce an error measure for the depth,

E =
∑N

j=0

∣∣h j − h̄exact
j

∣∣∑N
j=0 h̄exact

j

, (84)

whereh̄exact
j denotes thej th cell-averaged depth of the exact solution. The errors of the

FIG. 14. Front and rear edges of the avalanche body in the parabolic similarity solution simulated by the
NOC front-tracking scheme as they evolve in time. “s” denotes the computed results obtained with the piecewise
quadratic WENO cell reconstruction; “×” means the results deduced with Superbee limiter, and solid lines indicate
the exact margin solution.
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TABLE I

Error (84) and Order of Convergence of the Different Schemes

NFT(90) NFT(180) NFT(360) Order Lag(16) Lag(32) Order

E (×10−4) E (×10−4)

t = 1 6.429 1.023 0.150 2.77 17.130 2.937 2.54
t = 2 16.521 2.217 0.303 2.87 17.764 3.664 2.28
t = 3 21.148 2.727 0.338 3.01 18.944 4.135 2.20
t = 4 23.625 2.776 0.331 3.07 18.888 4.413 2.10
t = 5 23.449 2.744 0.327 3.07 18.974 4.492 2.08
t = 6 23.641 2.680 0.318 3.07 19.474 4.658 2.06
t = 7 23.247 2.641 0.314 3.07 18.817 5.026 1.90
t = 8 22.648 2.620 0.311 3.07 19.526 4.830 2.02

NOC front-tracking scheme and the Lagrangian method att = 1 to t = 8 dimensionless
time units are shown in Table I together with their numerical orders of convergence. Here,
the Eulerian scheme is tested by usingN = 90, N = 180, andN = 360 over the interval
[0, 32] and for the Lagrangian schemeN = 16 andN = 32 are used over the interior of
the avalanche, which is a subset of [0, 32]. Since at timet = 0 the avalanche has length
7.2, the Eulerian grid of 90 points has precisely 18 points in the interior of the avalanche
initially. Therefore, the two coarsest grids are roughly comparable for the two schemes, and
so is the error. The Lagrangian scheme is about second-order accurate, as expected. Surpris-
ingly, however, the NOC front-tracking scheme (which is used here with unlimited central
differences in the interior of the avalanche) converges with third-order accuracy. Thus, on
the grid with 180 points, it is already more accurate than the Lagrangian scheme using 32
points. We have confirmed this convergence rate for grids of 640, 1280, and 2560 points and
omit the numbers. This result seems to be one of the rare occurrences of superconvergence,
and we do not expect it to be true for general smooth initial data. In any case, it shows that
our treatment of the front margin is locally at least second-order accurate—otherwise, the
global third-order accuracy of the scheme in theL1-norm would be destroyed.

5.3. Upward Moving Shock Wave

Shock formations are often observed when the avalanche slides into the run-out horizontal
zone. Here the front part comes to rest, while the tail accelerates further and its velocity
becomes supercritical. In [38] a comparison was made between our shock-capturing method
and the Lagrangian moving grid technique for the case of coinciding basal and internal
friction angles. Here we compute a flow with basal friction angleφ = 38◦ and internal
friction angleδ = 35◦. As a consequence, we have a jump in the earth pressure coefficient
Kx when the flow changes from an expanding (ux > 0) to a contracting region (ux < 0).

The setup is as follows: The granular material released from a parabolic cap slides down an
inclined plane and merges into the run-out horizontal zone. The centre of the cap is initially
located atx = 4.0 and the initial radius and the height are 3.2 and 1.0 dimensionless length
units, respectively. The inclination angle of the inclined plane is 40◦ and the (linear and
continuous) transition region lies betweenx = 21.5 andx = 25.5. We use 180 gridpoints
and a CFL number of 0.4.

Figure 15 illustrates the simulated process as the avalanche slides on the inclined plane
into the horizontal run-out zone (so initially the flow is expanding). The avalanche body
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FIG. 15. Process of the avalanche simulated by the shock-capturing and front-tracking NOC method at
t = 0, 3, 6, . . . ,27 dimensionless time units. As the front reaches the run-out zone and comes to rest, part of the
tail accelerates further and the avalanche body contracts. Once the velocity becomes supercritical,a shock wave
develops, which moves upward. The dashes below the graphs mark the tail and the head of the avalanche.

extends on the inclined plane until the front reaches the run-out zone. Here the basal
friction is enough to bring the front of the granular material to rest while the rear part
accelerates further. Therefore, the flow becomes contracting in the transition zone. At this
stage, a shock (surge) wave is created (t = 12), which moves upward. Such shock waves
make the Lagrangian method unstable, if no artificial viscosity is applied (see [38]). Our
nonoscillatory central front-tracking scheme handles both the shock wave and the margins
of the avalanche well.

6. CONCLUSION

In this paper we have developed a Lagrangian and an Eulerian shock-capturing finite-
difference scheme with front-tracking for the spatially one-dimensional Savage–Hutter
equations of granular avalanches. The purpose was to reproduce the temporal evolution
of the avalanche geometry and downslope velocity under situations when internal shocks
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may occur. This happens, e.g., when an avalanche of finite mass moves from an inclined
chute into the horizontal run-out zone and, in the transition zone, is deccelerated from a
supercritical flow state to a subcritical state. The Lagrangian scheme (which is excellent
for smooth solutions) develops unphysical oscillations when the solution contains, or de-
velops, shock discontinuities. In order to compute discontinuous solutions, we propose to
use a conservative shock-capturing finite difference scheme. We adapt the second-order
accurate staggered scheme of Nessyahu and Tadmor [30] to the Savage–Hutter equations.
The staggered approach avoids the use of characteristic decompositions, which are needed
in standard upwind schemes but are not known for the Savage–Hutter equations. We show
that our nonoscillatory central scheme reproduces both smooth and shock solutions ade-
quately except for the following two problems: First, oscillations may occur near smooth
extrema due to the presence of piecewise linear reconstructions with TVD-type limiters.
These oscillations disappear when one uses piecewise quadratic cell reconstructions in the
interior of the avalanche. Second, our NOC scheme (and in fact, any Eulerian scheme)
does not capture the vacuum boundary accurately. This may lead to serious stability prob-
lems. We improve the treatment of the free boundary by combining the scheme with a
front-tracking method applied to the margin cells. In the spirit of the Nessyahu–Tadmor
scheme, we do not make use of the vacuum Riemann problem but rely on a new piecewise
linear reconstruction at the vacuum boundary and carefully chosen Taylor extrapolations
for the corresponding numerical fluxes. With such a combination of an internal Eulerian
NOC scheme and a Lagrangian “boundary scheme” two standard test problems—an up-
ward moving shock and a parabolic cap moving down an inclined plane—could be well
reproduced (indeed, we even observed third-order accuracy for the latter problem). The
scheme also produces satisfactory results for the more realistic problem mentioned above:
an avalanche moving down an inclined plane and coming to rest at a flat runout. Here an
upward moving shock wave develops from smooth data, and the flow changes from ex-
panding to contracting ahead of the shock. In this situation, the earth pressure coefficient
changes discontinuously, so we are facing the full difficulties inherent in the Savage–Hutter
model.

Several questions remain and await further study:

• The shock-capturing NOC numerical method including the front-tracking scheme
should be extended to two-dimensional flows. This is work in progress.
• The original Lagrangian moving grid scheme could also be developed as a shock-

capturing scheme. Here the main difficulty would be in the determination of the correct grid
velocity.

We are working on these topics and will report on results in due time.
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