ON THE HOMOGENIZATION OF<br>OSCILLATORY SOLUTIONS TO NONLINEAR CONVECTION-DIFFUSION EQUATIONS*<br>Eitan Tadmor and Tamir Tassa

January 24, 2000
(Communicated by S. Kamin; Received December 1, 1994)


#### Abstract

We study the behavior of oscillatory solutions to convection-diffusion problems, subject to initial and forcing data with modulated oscillations. We quantify the weak convergence in $W^{-1, \infty}$ to the 'expected' averages and obtain a sharp $W^{-1, \infty}$-convergence rate of order $\mathcal{O}(\varepsilon)$ - the small scale of the modulated oscillations. Moreover, in case the solution operator of the equation is compact, this weak convergence is translated into a strong one. Examples include nonlinear conservation laws, equations with nonlinear degenerate diffusion, etc. In this context, we show how the regularizing effect built-in such compact cases smoothes out initial oscillations and, in particular, outpaces the persisting generation of oscillations due to the source term. This yields a precise description of the weakly convergent initial layer which filters out the initial oscillations and enables the strong convergence in later times.


In memory of Haim Nessyahu, a dearest friend and research colleague.

## Contents

1 Introduction ..... 2
$2 W^{-1, \infty}$-Stability and Convergence ..... 4
3 Strong Convergence to the Homogenized Solution ..... 7
4 Applications to Hyperbolic Conservation Laws ..... 9
4.1 The Homogeneous Case ..... 10
4.2 The Inhomogeneous Case ..... 12

[^0]5 Applications to Convection-Diffusion Equations ..... 14
5.1 Convection-diffusion equations with convex flux ..... 14
5.2 Convection-diffusion equations with general nonlinear flux ..... 15
5.3 The Porous Media Equation ..... 15
5.4 Convection-diffusion equations with nonlinear diffusion ..... 17
6 Examples ..... 18
7 Appendix A: Lip $^{+}$-Stability ..... 22
8 Appendix B ..... 24

## 1 Introduction

In this paper we study the behavior of oscillatory solutions for equations of the form

$$
\begin{equation*}
u_{t}=K\left(u, u_{x}\right)_{x}+h(x, t), \quad(x, t) \in \mathbb{R} \times \mathbb{R}^{+} \tag{1.1}
\end{equation*}
$$

where $K=K(u, p)$, is a nondecreasing function in $p:=u_{x}$,

$$
\begin{equation*}
K_{p} \geq 0 \quad \forall(u, p) \tag{1.2}
\end{equation*}
$$

This large family includes equations which mix both types - hyperbolic equations dominated by purely convective terms $\left(K_{p} \equiv 0\right)$, or, parabolic equations dominated by possibly degenerate diffusive terms $\left(K_{p} \geq 0\right)$. Due to the possible degeneracy, weak entropy solutions are sought; i.e., $u=\lim _{\delta \downarrow 0} u^{\delta}$, where $u^{\delta}$ is the classical solution which corresponds to $K^{\delta}=K+\delta p$.

We are concerned with the initial value problem for (1.1) where the initial data, $u_{0}^{\varepsilon}(x)$, and the forcing data, $h^{\varepsilon}(x, t)$, are subject to modulated oscillations. Specifically, we are interested in the behavior of $u^{\varepsilon}$, the entropy solution of

$$
\begin{equation*}
u_{t}^{\varepsilon}=K\left(u^{\varepsilon}, u_{x}^{\varepsilon}\right)_{x}+h^{\varepsilon}(x, t), \quad u^{\varepsilon}(x, 0)=u_{0}^{\varepsilon}(x), \tag{1.3}
\end{equation*}
$$

where the modulation of the initial and forcing data takes the form

$$
\begin{equation*}
u_{0}^{\varepsilon}(x)=u_{0}\left(x, \frac{x}{\varepsilon}\right), \quad h^{\varepsilon}(x, t)=\frac{1}{\varepsilon^{\lambda}} h\left(x, \frac{x}{\varepsilon}, t\right), \quad \text { fixed } \lambda \in[0,1), \quad \varepsilon \downarrow 0 . \tag{1.4}
\end{equation*}
$$

Assumptions.
\{i\} smoothness. The data, $u_{0}$ and $h$, are assumed to have a minimal necessary amount of smoothness. Thus, throughout the paper we assume $u_{0}(x, y) \in B V_{x}(\Omega \times[0,1])$ and $h(x, y, t) \in B V_{x}(\Omega(t) \times[0,1])$, where $\Omega, \Omega(t)$ denote bounded intervals in $\mathbb{R}_{x}$, and $B V_{x}(\Omega \times[0,1])$ denotes the space of all bounded functions which are 1-periodic in $y$, have a bounded variation in $x$ and are constant for $x \notin \Omega$ (the last assumption covers
the case of compactly supported data).
\{ii\} compatibility. There holds

$$
\lambda \cdot \bar{h}(x, t) \equiv 0, \quad \bar{h}(x, t)=\int_{0}^{1} h(x, y, t) d y
$$

Thus, in the case of 'amplified' modulation $(\lambda>0)$, the average $\bar{h}(x, t)$ is assumed to vanish - a necessary compatibility requirement for the convergence statements stated below.

As $\varepsilon \downarrow 0, u_{0}^{\varepsilon}(x)$ and $h^{\varepsilon}(x, t)$ approach the corresponding averages,

$$
u_{0}^{\varepsilon}(x) \rightharpoonup \bar{u}_{0}(x):=\int_{0}^{1} u_{0}(x, y) d y, \quad h^{\varepsilon}(x, t) \rightharpoonup \bar{h}(x, t):=\int_{0}^{1} h(x, y, t) d y
$$

Note that this convergence statement (and similarly, the ones that follow), makes sense for $\lambda>0$ only when $\bar{h}(x, t) \equiv 0$. Then, the entropy solution, $u^{\varepsilon}(x, t)$, is shown to approach the corresponding entropy solution of the homogenized problem

$$
\begin{equation*}
u_{t}=K\left(u, u_{x}\right)_{x}+\bar{h}(x, t), \quad u(x, 0)=\bar{u}_{0}(x) . \tag{1.5}
\end{equation*}
$$

We quantify the convergence rate of $u^{\varepsilon}$ towards $u$ in the weak $W^{-1, \infty}$-topology ${ }^{\dagger}$. Furthermore, in case the solution operator is compact, we are able to translate this weak convergence into a strong one, with $L^{p}$-convergence rate estimates for every $t>0$. We also provide a precise description of the initial layer in which the weakly convergent oscillations are filtered out to enable the strong convergence which follows.

The paper is organized as follows. In $\S 2$ we show the $W^{-1, \infty}$-convergence of $u^{\varepsilon}$ to $u$, proving a sharp convergence rate estimate of order $\mathcal{O}\left(\varepsilon^{1-\lambda}\right)$ (Theorem 2.1). The proof is based upon two ingredients: a precise $W^{-1, \infty}$-error estimate for modulated limits (Lemma 2.1), and a familiar $W^{-1, \infty}$-stability of (1.1) with respect to both the initial and forcing data (Proposition 2.1).

This weak $W^{-1, \infty}$-convergence need not imply strong convergence unless the solution operators associated with (1.3) and (1.5) are compact. Specifically, we seek solution operators which are $W^{s, r}$-regular, in the sense that they map initial data in $L^{\infty}$-bounded sets into bounded sets in $W_{l o c}^{s, r}, s>0, r \in[1, \infty]{ }^{\dagger}$. Such a regularizing effect is clearly linked to the nonlinear nature of the equations and is responsible for the immediate cancellation of initial oscillations, as well as the forcing oscillations.

In $\S 3$ we note that if we are granted such regularizing property (mapping $L^{\infty} \rightarrow$ $W^{s, r}, s>0$ ), then we may interpolate our weak $W^{-1, \infty}$-error estimate and the $W_{l o c}^{s, r}$ bound to obtain strong $L^{p}$-convergence, $u^{\varepsilon}(\cdot, t) \rightarrow u(\cdot, t), t>0$, as well as convergence rate estimates. We are therefore led to study the regularizing effect of convectivediffusive equations. There are numerous works in this direction and we refer to [12] for a recent contribution and for a partial list of relevant references.

[^1]In the next sections we demonstrate our results for a variety of convection-diffusion equations (1.1) which are equipped with a certain $W^{s, r}$-regularity. We begin, in $\S 4$, with convex hyperbolic conservation laws which render $B V$-regular solutions. In $\S 4.1$ we deal with the homogeneous case (no forcing term, $h \equiv 0$ ). Here, we obtain $L^{p}$-convergence rate estimates of $u^{\varepsilon}(\cdot, t)$ to $u(\cdot, t)$ for a fixed $t>0$, as well as a precise description of the initial layer $t \sim 0$. In $\S 4.2$ we study the inhomogeneous case. We show how the nonlinear regularizing effect outpaces the persisting generation of modulated oscillations due to the oscillatory forcing term, $\varepsilon^{-\lambda} h(x, x / \varepsilon, t)$, and still yields strong convergence, though of a slower rate than in the homogeneous case.

In $\S 5$ we consider various types of nonlinear, mixed convection-diffusion equations with possibly degenerate diffusion, and we link their nonlinearity to an appropriate $W^{s, r}$-regularity. Our first examples, in $\S 5.1$, consist of degenerate parabolic equations augmenting a convex hyperbolic flux. These equations are $B V$-regular and therefore admit convergence rate estimates similar to the ones obtained in $\S 4$ for the purely convective conservation laws. In $\S 5.2$ we extend these results to a rather general class of nonlinear convective fluxes, where convexity is relaxed by requiring only a non-vanishing high-order $(\geq 2)$ derivative. Next, we focus on the regularizing effect due to the nonlinearity of the degenerate diffusivity. In $\S 5.3$ we deal with the prototype porous media equation, $u_{t}=\left(u^{m}\right)_{x x}, m>1, u \geq 0$. In the context of its regularizing effect, we identify $m=2$ as a critical exponent: when $m>2$ the equation is known to posses $W^{s, \infty}$-regularity with $s=\frac{1}{m-1}<1$, consult [1]; when $m \leq 2$, however, we have an improved $W^{2,1}$-regularity which results in better convergence rate estimates. We close this section, in $\S 5.4$, with a revisit of the general mixed convection-diffusion equations, this time quantifying their regularizing effect (and hence convergence estimates) due to the nonlinearity of the degenerate diffusion. The $W^{s, r}$-regularity of the general mixed convective-diffusive case is analyzed in terms of the velocity averaging lemma along the lines of [12].

Finally, in $\S 6$, we provide illustrated examples for our convergence analysis.

## $2 W^{-1, \infty}$-Stability and Convergence

In this section we prove that $u^{\varepsilon}$, the solution of the oscillatory equation (1.3)-(1.4), converges in $W^{-1, \infty}$ to $u$, the solution of the homogenized equation (1.5). To this end we start by proving the following fundamental lemma which is interesting for its own sake:

Lemma 2.1 Assume that $g(x, y) \in B V_{x}(\Omega \times[0,1])$, $\Omega$ being a possibly unbounded interval in $\mathbb{R}_{x}$, and let $g_{\varepsilon}(x):=g\left(x, \frac{x}{\varepsilon}\right)$ and $\bar{g}(x):=\int_{0}^{1} g(x, y) d y$. Then

$$
\begin{equation*}
\left\|g_{\varepsilon}(x)-\bar{g}(x)\right\|_{W^{-1, \infty}} \leq C \varepsilon, \quad C=\|g\|_{L^{1}\left([0,1] ; B V\left(\mathbb{R}_{x}\right)\right)} . \tag{2.6}
\end{equation*}
$$

Proof. For each fixed $x_{0} \in \Omega$ we let $a=a\left(x_{0}, \varepsilon\right)$ denote the largest value in the left complement of $\Omega$ for which $n:=\frac{x_{0}-a}{\varepsilon}$ is integral ( $a=-\infty$ if $\Omega$ is left unbounded). This
enables us to break the primitive of $g_{\varepsilon}(x)-\bar{g}(x)$ over consecutive intervals of size $\varepsilon$ as follows:

$$
\int_{-\infty}^{x_{0}}\left(g_{\varepsilon}(x)-\bar{g}(x)\right) d x=\sum_{j=-\infty}^{n} \int_{I_{j}}\left(g_{\varepsilon}(x)-\bar{g}(x)\right) d x, \quad I_{j}=\left[a_{j-1}, a_{j}\right], \quad a_{j}:=a+j \varepsilon
$$

Change of variable and the 1-periodicity of $g(x, \cdot)$ yield that

$$
\int_{I_{j}} g_{\varepsilon}(x) d x=\varepsilon \int_{j-1+a / \varepsilon}^{j+a / \varepsilon} g(\varepsilon y, y) d y=\varepsilon \int_{0}^{1} g\left(y_{j}, y^{\varepsilon}\right) d y, \quad y_{j}:=a_{j-1}+\varepsilon y \in I_{j}, \quad y^{\varepsilon}:=\frac{a}{\varepsilon}+y .
$$

The 1-periodicity of $g(x, \cdot)$ enables us to express $\bar{g}(x)$ as $\bar{g}(x)=\int_{0}^{1} g\left(x, y^{\varepsilon}\right) d y$; using Fubini's Theorem we get that

$$
\int_{I_{j}} \bar{g}(x) d x=\int_{I_{j}} \int_{0}^{1} g\left(x, y^{\varepsilon}\right) d y d x=\int_{0}^{1} \int_{I_{j}} g\left(x, y^{\varepsilon}\right) d x d y=\int_{0}^{1} \varepsilon \tilde{g}_{j}\left(y^{\varepsilon}\right) d y
$$

where $\tilde{g}_{j}\left(y^{\varepsilon}\right)$ is some intermediate value in $\left[\operatorname{ess} \inf _{I_{j}} g\left(\cdot, y^{\varepsilon}\right), \operatorname{ess} \sup _{I_{j}} g\left(\cdot, y^{\varepsilon}\right)\right]$. Finally, using the last three equalities, we conclude that

$$
\begin{aligned}
\left|\int_{-\infty}^{x_{0}}\left(g_{\varepsilon}(x)-\bar{g}(x)\right) d x\right| \leq & \varepsilon \int_{0}^{1} \sum_{j=-\infty}^{n}\left|g\left(y_{j}, y^{\varepsilon}\right)-\tilde{g}_{j}\left(y^{\varepsilon}\right)\right| d y \leq \\
& \varepsilon \int_{0}^{1} \sum_{j=-\infty}^{n}\left\|g\left(\cdot, y^{\varepsilon}\right)\right\|_{B V\left(I_{j}\right)} \leq\|g\|_{L^{1}\left([0,1] ; B V\left(\mathbb{R}_{x}\right)\right)} \cdot \varepsilon .
\end{aligned}
$$

## Remarks.

1. Let $f(x) \in B V$ and $g(x, y) \in B V_{x}(\Omega \times[0,1])$ have a zero average, $\int_{0}^{1} g(x, y) d y \equiv 0$. Applying Lemma 2.1 to $G(x, y)=f(x) g(x, y)$, we conclude that for every $a$ and $b$ there exists a constant $C$ such that

$$
\left|\int_{a}^{b} f(x) g\left(x, \frac{x}{\varepsilon}\right) d x\right| \leq C \varepsilon
$$

This result plays a key role in previous works on homogenization by B. Engquist and T.Y. Hou (e.g., [6, Lemma 2.1], [9, Lemma 2.1]). Here we improve in both generality and simplicity: the corresponding result in $[6,9]$ was restricted to $f(x), g(x, y) \in C^{1}$.
2. The sharpness of estimate (2.6) is illustrated by the following example. Assume that $\alpha(x) \in B V$ and $\beta(y)$ is a bounded $2 \pi$-periodic function. Let $\bar{\alpha}, \bar{\beta}$ denote, respectively, the averages of $\alpha$ and $\beta$ in $[0,2 \pi]$. Then, by taking $g(x, y)=\alpha(x) \beta(y)$ and $\varepsilon=1 / n$, it follows from Lemma 2.1 that

$$
\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} \alpha(x) \beta(n x) d x=\bar{\alpha} \cdot \bar{\beta}
$$

and furthermore, thanks to the bounded variation of $\alpha$,

$$
\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} \alpha(x) \beta(n x) d x-\bar{\alpha} \cdot \bar{\beta}\right| \leq \frac{\text { Const }}{n}
$$

This result generalizes and illuminates the Riemann-Lebesgue Lemma, where $\beta(y)=e^{i y}$ (see also [21, Theorem (4.15)]).
3. In the simpler case with no $x$-dependence, i.e, for $g_{\varepsilon}(x)=g\left(\frac{x}{\varepsilon}\right)$, a shorter alternative proof of $\mathcal{O}(\varepsilon)$ error estimate is provided in Theorem 8.1 in Appendix B below.

We proceed with a brief proof of the $W^{-1, \infty}$-stability of the solution operator associated with (1.1) with respect to both the initial and forcing data. This $W^{-1, \infty}$-stability agrees with the $L^{\infty}$-stability for viscosity solutions of Hamilton-Jacobi equations, consult M.G. Crandall, H. Ishii and P.L. Lions [2]. We also refer the reader to [10] for (a qualitative statement of) $W^{-1, \infty}$-stability in the context of of hyperbolic conservation laws.

Proposition 2.1 ( $W^{-1, \infty}$-Stability). Let $u$ and $v$ be entropy solutions of the following equations:

$$
\begin{align*}
& u_{t}=K\left(u, u_{x}\right)_{x}+g(x, t) ;  \tag{2.7}\\
& v_{t}=K\left(v, v_{x}\right)_{x}+h(x, t) . \tag{2.8}
\end{align*}
$$

Then, for $t>0$,

$$
\begin{equation*}
\|u(\cdot, t)-v(\cdot, t)\|_{W^{-1, \infty}} \leq\|u(\cdot, 0)-v(\cdot, 0)\|_{W^{-1, \infty}}+\int_{0}^{t}\|g(\cdot, \tau)-h(\cdot, \tau)\|_{W^{-1, \infty}} d \tau \tag{2.9}
\end{equation*}
$$

Proof. Let $u^{\delta}$ and $v^{\delta}, \delta>0$, be the corresponding regularized solutions, associated with $K^{\delta}=K+\delta p$. The primitive of the error, $E^{\delta}:=\int_{-\infty}^{x}\left(u^{\delta}-v^{\delta}\right)$, satisfies the convection-diffusion equation

$$
\begin{equation*}
E_{t}^{\delta}=q_{1} \cdot E_{x}^{\delta}+\left(q_{2}+\delta\right) \cdot E_{x x}^{\delta}+D \tag{2.10}
\end{equation*}
$$

Here, $q_{1}=K_{u}\left(w_{1}, u_{x}^{\delta}\right), q_{2}=K_{p}\left(v^{\delta}, w_{2}\right)$, with appropriate mid-values $w_{j}, j=1,2$, and $D=\int_{-\infty}^{x}(g(\xi, t)-h(\xi, t)) d \xi$. Since, in view of (1.2), $q_{2} \geq 0$, we conclude that

$$
\frac{d}{d t}\left\|E^{\delta}(\cdot, t)\right\|_{L^{\infty}} \leq\|D(\cdot, t)\|_{L^{\infty}}
$$

which, by letting $\delta$ go to zero, implies (2.9).
Finally, combining Proposition 2.1 and Lemma 2.1, we conclude the following:

Theorem 2.1 ( $W^{-1, \infty}$-Convergence). Let $u^{\varepsilon}$ be the entropy solution of

$$
\begin{equation*}
u_{t}^{\varepsilon}=K\left(u^{\varepsilon}, u_{x}^{\varepsilon}\right)_{x}+h^{\varepsilon}(x, t), \quad u^{\varepsilon}(x, 0)=u_{0}^{\varepsilon}(x), \tag{2.11}
\end{equation*}
$$

with modulated initial and forcing data, $u_{0}^{\varepsilon}(x)$ and $h^{\varepsilon}(x, t)$, outlined in (1.4). Let $u$ be the entropy solution of the corresponding homogenized equation

$$
\begin{equation*}
u_{t}=K\left(u, u_{x}\right)_{x}+\bar{h}(x, t), \quad u(x, 0)=\bar{u}_{0}(x) \tag{2.12}
\end{equation*}
$$

associated with the respective averages,

$$
\bar{u}_{0}(x)=\int_{0}^{1} u_{0}(x, y) d y, \quad \bar{h}(x, t)=\int_{0}^{1} h(x, y, t) d y
$$

Then, for every $t>0$ there exists a constant $C(t)>0$ such that

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{W^{-1, \infty}} \leq C(t) \varepsilon^{1-\lambda} \tag{2.13}
\end{equation*}
$$

Moreover, in the homogeneous case (where $h \equiv 0$ and $\lambda=0$ ) the constant $C(t)$ does not depend on $t$ and we have

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{W^{-1, \infty}} \leq C \varepsilon \tag{2.14}
\end{equation*}
$$

Proof. Lemma 2.1 with $g(x, y)=u_{0}(x, y)$ and $g(x, y)=h(x, y, t)$ with fixed $t>0$, tells us that

$$
\left\|u_{0}^{\varepsilon}(x)-\bar{u}_{0}(x)\right\|_{W^{-1, \infty}} \leq C \varepsilon \quad ; \quad\left\|\frac{1}{\varepsilon^{\lambda}} h\left(x, \frac{x}{\varepsilon}, t\right)-\frac{1}{\varepsilon^{\lambda}} \bar{h}(x, t)\right\|_{W^{-1, \infty}} \leq \frac{1}{\varepsilon^{\lambda}} \cdot c(t) \varepsilon .
$$

By our assumption, since either $\lambda$ or $\bar{h}$ vanish, we have $\varepsilon^{-\lambda} \bar{h}=\bar{h}$; hence

$$
\left\|h^{\varepsilon}(x, t)-\bar{h}\right\|_{W^{-1, \infty}} \leq c(t) \varepsilon^{1-\lambda}
$$

Finally, (2.13) and (2.14) follow in view of Proposition 2.1 with $C(t)=C+\int_{0}^{t} c(\tau) d \tau$.

Remark. We may extend Theorem 2.1 by allowing amplified initial data; i.e., $u_{0}^{\varepsilon}=$ $\varepsilon^{-\mu} u_{0}\left(x, \frac{x}{\varepsilon}\right)$ with fixed $\mu \in[0,1)$ such that $\mu \cdot \bar{u}_{0} \equiv 0$. In that case, the $W^{-1, \infty}$-error in (2.13) would be of order $\mathcal{O}\left(\varepsilon^{1-\max (\mu, \lambda)}\right)$.

## 3 Strong Convergence to the Homogenized Solution

Our aim in this section is to translate the weak $W^{-1, \infty}$-convergence rate estimate, (2.13), into strong $L^{p}$-convergence rate estimates. To this end we focus our attention on nonlinear equations for which the solution operator is compact. Specifically, we concentrate on solution operators, $S(t): u(\cdot, 0) \mapsto u(\cdot, t)$, which map bounded sets in $L^{\infty}$ into bounded sets in the regularity spaces, $W_{l o c}^{s, r}, s>0,1 \leq r \leq \infty$. This compactness
is clearly of a nonlinear nature and it implies that the solution operator immediately cancels out oscillations which may have been present at $t=0$. For future reference, we refer to such equations as $W^{s, r}$-regular. We remark that nonlinearity is essential for such $W^{s, r}$-regularity in the scalar case. For the interaction of a linearly degenerate field with oscillatory nonlinear fields in hyperbolic systems, we refer to [3],[15] and the error estimate in [8].

The following theorem translates, for $W^{s, r_{-}}$-regular equations, the weak $W^{-1, \infty_{-}}$ convergence into strong $L^{p}$-convergence rate estimates.

Theorem 3.1 Let $u^{\varepsilon}$ be the solution of equation (2.11) subject to modulated data, (1.4), and assume that the equation possesses a $W^{s, r}$-regularizing effect. Then, $u^{\varepsilon}$ converges to $u$ - the solution of the homogenized equation (2.12), and the following error estimates hold

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}(\Omega)} \leq C \cdot B_{\varepsilon}^{s, r}(t)^{1-\theta} \cdot \varepsilon^{\theta(1-\lambda)} \quad \forall p \in\left[1,\left(\frac{1}{r}-s\right)_{+}^{-1}\right] \tag{3.15}
\end{equation*}
$$

Here, $\theta, p_{*}$ and $B_{\varepsilon}^{s, r}$ are given by

$$
\begin{gather*}
\theta=\frac{\frac{1}{p_{*}}-\frac{1}{r}+s}{1-\frac{1}{r}+s} \in[0,1], \quad p_{*}:=\max \{p, r(s+1)\},  \tag{3.16}\\
B_{\varepsilon}^{s, r}(t)=\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{W^{s, r}} \tag{3.17}
\end{gather*}
$$

and $C$ is some constant which depends on $p,|\Omega|^{\frac{1}{p}-\frac{1}{p_{*}}}$ and $t$.

Proof. By Gagliardo-Nirenberg inequality, e.g., [7, Theorem 9.3], interpolation between the $W^{-1, \infty}$ and $W^{s, r}$-bounds yields for the intermediate $L^{p}$-norms,

$$
\begin{equation*}
\|v\|_{L^{p}} \leq c_{p} \cdot\|v\|_{W^{-1, \infty}}^{\theta}\|v\|_{W^{s, r}}^{1-\theta}, \quad \theta=\frac{\frac{1}{p}-\frac{1}{r}+s}{1-\frac{1}{r}+s} \tag{3.18}
\end{equation*}
$$

this inequality holds for all $p \in\left[r(s+1),\left(\frac{1}{r}-s\right)_{+}^{-1}\right]$. Since by our assumption the solution operator associated with (2.11) is $W^{s, r}$-regular, so does the solution operator associated with (2.12), and hence their difference is bounded, (3.17). We may now use (3.18) with $v=u^{\varepsilon}(\cdot, t)-u(\cdot, t)$, together with the $W^{-1, \infty}$-error estimate, (2.13), to conclude the $L^{p}$-error estimate (3.15) for all $p \geq r(s+1)$ in the relevant range. For the remaining values of $p<r(s+1)$, the $L^{p}$-errors are dominated by the one obtained already for the $L^{r(s+1)}$-norm, $\|\cdot\|_{L^{p}(\Omega)} \leq|\Omega|^{\frac{1}{p}-\frac{1}{r(s+1)}}\|\cdot\|_{L^{r(s+1)}(\Omega)}$.

The particular homogeneous case, $h \equiv 0$, where the oscillations are introduced only at $t=0$ via the initial data, is of special interest. In this case, the solution operator of (2.11) does not depend on $\varepsilon$ and coincides with that of (2.12). Since the initial data for those equations, $u_{0}\left(x, \frac{x}{\varepsilon}\right)$ and $\bar{u}_{0}(x)$, are uniformly bounded in $L^{\infty}$, we conclude that $B_{\varepsilon}^{s, r}(t)$, given in (3.17), is uniformly bounded with respect to $\varepsilon$. Hence, we arrive at the following simplified version of Theorem 3.1 for homogeneous problems:

Corollary 3.1 (Initial Oscillations). Under the assumptions of Theorem 2.1, if equations (2.11) and (2.12) are homogeneous and $W^{s, r}$-regular, then for every $t>0$ and $p \in\left[1,\left(\frac{1}{r}-s\right)_{+}^{-1}\right]$ there exists a constant $C$ such that

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}(\Omega)} \leq C \cdot \varepsilon^{\theta} \tag{3.19}
\end{equation*}
$$

where $\theta$ is given in (3.16).

In the inhomogeneous case, the solution operator of (2.11) depends on $\varepsilon$. Hence, due to the persisting generation of oscillations by the oscillatory source term, $\varepsilon^{-\lambda} h(x, x / \varepsilon, t)$, the $W^{s, r}$-bound, $B_{\varepsilon}^{s, r}(t)$, may grow when $\varepsilon \downarrow 0$. Therefore, in order to have strong convergence in this case, we need a moderate growth of $B_{\varepsilon}^{s, r}(t)$ so that $B_{\varepsilon}^{s, r}(t)^{1-\theta} \varepsilon^{\theta(1-\lambda)} \underset{\varepsilon \rightarrow 0}{\longrightarrow} 0$.

In the following sections we give examples of equations, both hyperbolic and parabolic, homogeneous and inhomogeneous, which are $W^{s, r}$-regular and derive strong convergence estimates for them.

## 4 Applications to Hyperbolic Conservation Laws

In this section we demonstrate our results in the context of hyperbolic conservation laws with convex flux $f$,

$$
u_{t}+f(u)_{x}=h, \quad f^{\prime \prime} \geq \alpha>0
$$

The convexity of the flux $f$ implies that these equations are $B V$-regular - consult Proposition 4.1 below. Granted this $B V$-regularity which we identify with the $W^{1,1}$-regularity, we may invoke the $L^{p}$-error estimates (3.15)-(3.17) which now read,

Here, $B_{\varepsilon}(t)$ abbreviates the $B V$-size of the difference,

$$
\begin{equation*}
B_{\varepsilon}(t)=B_{\varepsilon}^{1,1}(t)=\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{B V} \tag{4.21}
\end{equation*}
$$

and the constant $C$ depends on $p,|\Omega|^{\frac{1}{p}-\frac{1}{p_{*}}}$, and (in the inhomogeneous case) also on $t$.

In the remaining of this section we take a closer look at the convergence rate estimate 4.20. In $\S 4.1$ we study the homogeneous case $(h \equiv 0) ; \S 4.2$ is devoted for the more intricate case with inhomogeneous oscillatory data.

### 4.1 The Homogeneous Case

Let $u^{\varepsilon}$ and $u$ be the entropy solutions of the corresponding initial value problems,

$$
\begin{gather*}
u_{t}^{\varepsilon}+f\left(u^{\varepsilon}\right)_{x}=0, \quad u^{\varepsilon}(x, 0)=u_{0}\left(x, \frac{x}{\varepsilon}\right)  \tag{4.22}\\
u_{t}+f(u)_{x}=0, \quad u(x, 0)=\bar{u}_{0}(x)=\int_{0}^{1} u_{0}(x, y) d y \tag{4.23}
\end{gather*}
$$

where, as usual, $u_{0} \in B V_{x}(\Omega \times[0,1])$. Since $u^{\varepsilon}(\cdot, 0)-u(\cdot, 0)$ vanish outside $\Omega, u^{\varepsilon}(\cdot, t)-$ $u(\cdot, t)$ is compactly supported, say on $\Omega(t), \forall t>0$ (thanks to the finite speed of propagation), and therefore,

$$
\begin{equation*}
B_{\varepsilon}(t)=\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{B V} \leq\left\|u^{\varepsilon}(\cdot, t)\right\|_{B V(\Omega(t))}+\|u(\cdot, t)\|_{B V(\Omega(t))} \tag{4.24}
\end{equation*}
$$

If we let $D$ denote the difference between the far right and far left values of $u(\cdot, t)$ and $u^{\varepsilon}(\cdot, t)$, then the $B V$-norms of $u^{\varepsilon}(\cdot, t)$ and of $u(\cdot, t)$ can be upper-bounded in terms of their $\mathrm{Lip}^{+}$-(semi)-norms, ${ }^{\dagger}$

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)\right\|_{B V(\Omega(t))} \leq D+2|\Omega(t)| \cdot\left\|u^{\varepsilon}(\cdot, t)\right\|_{L i p^{+}}, \quad\|u(\cdot, t)\|_{B V(\Omega(t))} \leq D+2|\Omega(t)| \cdot\|u(\cdot, t)\|_{L i p^{+}}, \tag{4.25}
\end{equation*}
$$

and since $f^{\prime \prime} \geq \alpha>0$, both $u$ and $u^{\varepsilon}$ are Lip ${ }^{+}$-stable - consult e.g. [16],

$$
\begin{equation*}
\|u(\cdot, t)\|_{L i p^{+}} \leq\left(\|u(\cdot, 0)\|_{L i p^{+}}^{-1}+\alpha t\right)^{-1} \quad, \quad\left\|u^{\varepsilon}(\cdot, t)\right\|_{L i p^{+}} \leq\left(\left\|u^{\varepsilon}(\cdot, 0)\right\|_{L i p^{+}}^{-1}+\alpha t\right)^{-1} \tag{4.26}
\end{equation*}
$$

Finally, since $\|u(\cdot, 0)\|_{L i p^{+}} \leq \mathcal{O}(1)$ and $\left\|u^{\varepsilon}(\cdot, 0)\right\|_{L i p^{+}} \leq \mathcal{O}\left(\varepsilon^{-1}\right)$, we conclude by (4.24)(4.26), that the term $B_{\varepsilon}(t)$ in (4.20) does not exceed

$$
\begin{equation*}
B_{\varepsilon}(t) \leq 2 D+\text { Const } \cdot|\Omega(t)| \cdot(\alpha t+\mathcal{O}(\varepsilon))^{-1} \tag{4.27}
\end{equation*}
$$

We now distinguish between three different regimes:
(1) Small $t>0$ - the initial layer.

For small values of $t$ we get by (4.20) and (4.27) that

$$
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}} \sim(t+\varepsilon)^{\frac{1}{p_{*}}-1} \cdot \varepsilon^{\frac{1}{p_{*}}} \quad \forall p \in[1, \infty) .
$$

Hence, for a fixed value of $\varepsilon>0$, the initial layer is of width $\mathcal{O}(\varepsilon)$. More precisely, the width of the initial layer in which there is no strong $L^{p}$-convergence is $\mathcal{O}\left(\varepsilon^{\frac{1}{p *-1}}\right)$.
(2) Fixed $t>0$ - cancellation of oscillations.
B. Engquist and W. E proved the strong convergence, $u^{\varepsilon}(\cdot, t) \rightarrow u(\cdot, t)$ in $L_{l o c}^{1}(\mathbb{R}), \forall t>$ 0 , [5, Theorem 4.1]. Here, we are able to quantify the convergence rate in $L^{p}, 1 \leq p \leq \infty$, whenever the flux $f$ is convex: the convergence rate implied by (4.20) and (4.27) is bounded by

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}} \leq \text { Const } \cdot \varepsilon^{\frac{1}{p_{*}}} \quad p_{*}=\max \{p, 2\} \quad \forall p \in[1, \infty) . \tag{4.28}
\end{equation*}
$$

## Remarks.

[^2]1. The convergence result in $[5, \S 4]$ assumes the nonlinearity of $f$ to be weaker than convexity. An extension of the $W^{s, r}$-regularity (which in turn implies strong $L^{p_{-}}$ convergence estimates) to a larger family of nonlinear fluxes in the spirit of [5] is outlined in $\S 5.2$ below.
2. A further improvement of (4.28) is available whereever the homogenized solution is smooth. To this end we employ a localized version of a one-sided interpolation inequality due to [18], stating that

$$
\begin{equation*}
\|v\|_{L_{l o c}^{\infty}} \leq \text { Const } \cdot\|v\|_{W_{l o c}^{-1}}^{\frac{1}{2}}\|v\|_{L i p_{l o c}^{+}}^{\frac{1}{2}} \tag{4.29}
\end{equation*}
$$

We remark that (4.29) is the analogue of Gagliardo-Nirenberg inequality (3.18) with $p=r=\infty, s=1$. However, here only one-sided bound (on the first derivative) is assumed. Such local error estimates in the presence of one-sided bounds were first used in [16, §4].
Equipped with (4.29), we conclude that in any interval of $C^{1}$-smoothness of $u(\cdot, t)$, the one-sided Lip $^{+}$-bound of the difference $\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L i p^{+}(\Omega)}$ is bounded independently of $\varepsilon$. This, together with (2.14) imply that

$$
\left|u^{\varepsilon}(x, t)-u(x, t)\right| \leq \text { Const } \cdot|u(\cdot, t)|_{C_{l o c(x)}^{1}} \cdot \varepsilon^{\frac{1}{2}}
$$

which improves estimate (4.28).
The one-sided inequality (4.29) may be used similarly to localize the strong error estimates discussed below. We omit the details.
(3) Large $t>0$ - asymptotic behavior.

We fix $\varepsilon>0$ and consider large values of $t>0$. For simplicity, let us concentrate on the case where the initial data admits the same constant value outside (the left and right of -) $\Omega$, say $\left.u_{0}\right|_{\Omega^{c}} \equiv A$. In this case, the constant $D$ in (4.27) vanishes, and the time decay of $\left\|u^{\varepsilon}(\cdot, t)\right\|_{B V}$ implies that the solution tends to its constant initial average, $u^{\varepsilon}(\cdot, t \uparrow \infty) \rightarrow A$. The error estimates (4.20) and (4.27) then imply that

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}} \sim|\Omega(t)|^{1+\frac{1}{p}-\frac{2}{p_{*}} t^{\frac{1}{p *}}-1} \quad \forall p \in[1, \infty] . \tag{4.30}
\end{equation*}
$$

Since $|\Omega(t)|=|\Omega(0)|+\mathcal{O}\left(t^{\frac{1}{2}}\right)$, e.g. [11], we conclude that

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}} \leq \mathcal{O}\left(t^{\frac{1}{2}\left(\frac{1}{p}-1\right)}\right) \quad \forall p \in[1, \infty] \tag{4.31}
\end{equation*}
$$

In particular, (4.31) with $p=\infty$ yields a uniform error estimate of order $\mathcal{O}\left(t^{-\frac{1}{2}}\right)$. In fact, this reflects the uniform large time decay of $\|u(\cdot, t)-A\|_{L^{\infty}}$ and $\left\|u^{\varepsilon}(\cdot, t)-A\right\|_{L^{\infty}}$ - each of which decays like $\mathcal{O}\left(t^{-\frac{1}{2}}\right)$.

### 4.2 The Inhomogeneous Case

Let $u^{\varepsilon}$ and $u$ be the entropy solutions of the following initial value problems,

$$
\begin{gather*}
u_{t}^{\varepsilon}+f\left(u^{\varepsilon}\right)_{x}=\frac{1}{\varepsilon^{\lambda}} h\left(x, \frac{x}{\varepsilon}, t\right), \quad u^{\varepsilon}(x, 0)=u_{0}\left(x, \frac{x}{\varepsilon}\right)  \tag{4.32}\\
u_{t}+f(u)_{x}=\bar{h}(x, t):=\int_{0}^{1} h(x, y, t) d y, \quad u(x, 0)=\bar{u}_{0}(x):=\int_{0}^{1} u_{0}(x, y) d y \tag{4.33}
\end{gather*}
$$

with $u_{0}(x, y), h(x, y, t)$ as in (1.4) and $f^{\prime \prime} \geq \alpha>0$. Recall our assumption that either $\lambda$ or $\bar{h}$ vanish, and in any case, $\lambda<1$. The case $\lambda=1$ is different, consult [4]: in this context, E and Serre provided a rigorous justification of the asymptotic expansion (under extra compatibility requirements), $u^{\varepsilon}(x, t) \sim U(x, x / \varepsilon, t)$.

We begin by studying the $\mathrm{Lip}^{+}$-behavior in the presence of an oscillatory force. To this end we state the following $\mathrm{Lip}^{+}$-stability estimate for inhomogeneous conservation laws, which is a special case of Proposition 7.1 in $\S 7$.

Proposition 4.1 Let $v$ be the entropy solution of

$$
\begin{equation*}
v_{t}+f(v)_{x}=g(x, t), \quad f^{\prime \prime}(v) \geq \alpha \tag{4.34}
\end{equation*}
$$

subject to the initial condition $v(x, 0)=v_{0}(x)$. Then

$$
\begin{equation*}
\|v(\cdot, t)\|_{L i p^{+}} \leq c \cdot \frac{\left\|v_{0}\right\|_{L i p^{+}}+c+\left(\left\|v_{0}\right\|_{L i p^{+}}-c\right) e^{-2 \alpha c t}}{\left\|v_{0}\right\|_{L i p^{+}}+c-\left(\left\|v_{0}\right\|_{L i p^{+}}-c\right) e^{-2 \alpha c t}} \leq c \cdot \frac{1+e^{-2 \alpha c t}}{1-e^{-2 \alpha c t}} \tag{4.35}
\end{equation*}
$$

where

$$
\begin{equation*}
c=c(t):=\max _{0 \leq \tau \leq t} \sqrt{\frac{\|g(\cdot, \tau)\|_{L i p^{+}}}{\alpha}} . \tag{4.36}
\end{equation*}
$$

## Remarks.

1. In the particular case of homogeneous data, $g \equiv c=0$, Proposition 4.1 recovers the usual homogeneous $\mathrm{Lip}^{+}$-decay (4.26).
2. Key features of Proposition 4.1 to be used later are
$\{i\}$ that the dependence of the $\mathrm{Lip}^{+}$-bound on the inhomogeneous term, $\|g\|_{\text {Lip }^{+}}$, is proportional to the square root of the latter, $c \sim \sqrt{\|g\|_{\text {Lip }}}$, rather than the expected $\|g\|_{\text {Lip }^{+}}$.
$\{$ ii $\}$ that the second upper bound for $\|v(\cdot, t)\|_{L i p^{+}}$on the right of (4.35) is independent of the initial data (and hence, even if the initial data was $\mathrm{Lip}^{+}$-unbounded, the solution $v(\cdot, t)$ will be $\mathrm{Lip}^{+}$-bounded for all $t>0$.)

Corollary 4.1 (Lip ${ }^{+}$-estimate). Let $u^{\varepsilon}$ be the entropy solution of (4.32). Then for any fixed $t>0$ it holds that

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)\right\|_{L i p^{+}} \leq \mathcal{O}\left(\varepsilon^{-\frac{1+\lambda}{2}}\right) \tag{4.37}
\end{equation*}
$$

Proof. Since $\left\|u^{\varepsilon}(\cdot, 0)\right\|_{L i p^{+}} \leq \mathcal{O}\left(\varepsilon^{-1}\right)$ and, for any fixed $t>0,\left\|\varepsilon^{-\lambda} h(\cdot, \cdot / \varepsilon, t)\right\|_{L i p^{+}} \leq$ $\mathcal{O}\left(\varepsilon^{-(1+\lambda)}\right)$, (4.37) follows from (4.35).

Remark. We recall that in the absence of a forcing term, the convexity of $f$ implies according to (4.26), that $\left\|u^{\varepsilon}(\cdot, t)\right\|_{L i p^{+}} \leq \mathcal{O}(1)$. If, on the other hand, $f$ does not render any regularizing effect (such as linear $f$ 's), then the presence of such an oscillatory forcing term implies $\left\|u^{\varepsilon}(\cdot, t)\right\|_{L i p^{+}} \sim \mathcal{O}\left(\varepsilon^{-(1+\lambda}\right)$. With this in mind, Corollary 4.1 states that the $\mathcal{O}\left(\varepsilon^{-(1+\lambda)}\right)$-modulated oscillations due to the forcing term are relaxed, thanks to the convexity of the equation, resulting in $\mathrm{Lip}^{+}$bound of order $\mathcal{O}\left(\varepsilon^{-\frac{1+\lambda}{2}}\right)$.

Since $\|u(\cdot, t)\|_{L i p^{+}}$is independent of $\varepsilon$ we conclude, in view of (4.24), (4.25) and Corollary 4.1, the $B V$-upper bound

$$
\begin{equation*}
B_{\varepsilon}(t)=\left\|u^{\varepsilon}-u\right\|_{B V} \leq \mathcal{O}\left(\varepsilon^{-\frac{1+\lambda}{2}}\right) \tag{4.38}
\end{equation*}
$$

Though estimate (4.38) does not provide a $B_{\varepsilon}(t)$-bound which remains bounded as $\varepsilon \downarrow 0$, it suffices in order to obtain strong $L^{p}$-convergence. Indeed, combining it with the $L^{p}$-error estimates (4.20) we conclude the following.

Proposition 4.2 Let $u^{\varepsilon}$ and $u$ be the entropy solutions of (4.32) and (4.33), respectively. Then the following $L^{p}$-error estimates hold for every fixed $t>0$ :

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}} \leq \text { Const } \cdot \varepsilon^{\frac{3-\lambda}{2 p_{*}}-\frac{1+\lambda}{2}} \quad p_{*}=\max \{p, 2\} \tag{4.39}
\end{equation*}
$$

We conclude with the following remarks.
\{i\} In case $\lambda=0$ we obtain an error bound of order $\mathcal{O}\left(\varepsilon^{\frac{3}{2 p_{*}}-\frac{1}{2}}\right)$. Comparing this to the analogous estimate in the homogeneous case, (4.28), we see that the oscillatory source term, $h\left(x, \frac{x}{\varepsilon}, t\right)$, decelerates the rate of convergence; moreover, the error bound in (4.39) (with $\lambda=0$ ) is limited to strong $L^{p}$-convergence as long as $p<3$.
\{ii\} In case the forcing oscillations are amplified $(\lambda>0)$ we obtain an $L^{2}$-estimate of order $\mathcal{O}\left(\varepsilon^{\frac{1-3 \lambda}{4}}\right)$. In this case (4.39) is limited to strong $L^{2}$-convergence as long as $0<\lambda<\frac{1}{3}$. In general, (4.39) is limited to strong $L^{p}$-convergence as long as $p_{*}<\frac{3-\lambda}{1+\lambda}$.
\{iii\} A final note on the initial layer: using (4.35)-(4.36), we may study the behavior of $\left\|u^{\varepsilon}(\cdot, t)\right\|_{L i p^{+}}$and, therefore, also of $B_{\varepsilon}(t)$ as $t \downarrow 0$ and find that $B_{\varepsilon}\left(t \sim \varepsilon^{\eta}\right) \sim$ $\varepsilon^{-\max (\eta,(1+\lambda) / 2)}$. With that and (4.20) it is possible to determine the width of the initial layer near $t=0$, in which there is no strong $L^{p}$-convergence. A simple though tedious computation which we omit shows that the width of the initial layer is $\mathcal{O}\left(\varepsilon^{\frac{1-\lambda}{p_{*}-1}}\right)$ (where $\left.p_{*}<\frac{3-\lambda}{1+\lambda}\right)$. Note that when $\lambda=0$, it is of the same order as in the homogeneous case, namely, $\mathcal{O}\left(\varepsilon^{\frac{1}{p_{*}-1}}\right)$.

## 5 Applications to Convection-Diffusion Equations

Here we demonstrate our results in the context of convection-diffusion equations of the form,

$$
\begin{equation*}
u_{t}^{\varepsilon}+f\left(u^{\varepsilon}\right)_{x}=Q\left(u^{\varepsilon}, p^{\varepsilon}\right)_{x}, \quad Q_{p} \geq 0 ; \quad u^{\varepsilon}(x, 0)=u_{0}\left(x, \frac{x}{\varepsilon}\right) \tag{5.40}
\end{equation*}
$$

Thus, here we rewrite (1.1) with $K(u, p)=Q(u, p)-f(u)$ where we distinguish between the convective flux, $f(u)$, and the diffusive part, $Q(u, p)$. We concentrate on the homogeneous case and obtain strong convergence rate estimates of the entropy solution which corresponds to the oscillatory initial data, $u^{\varepsilon}(\cdot, t)$, to the entropy solution which corresponds to the averaged data, $u(\cdot, t)$. A similar program can be carried out for convection-diffusion equations in the presence of oscillatory forcing terms.

Note that in case of uniform parabolicity, $Q_{p} \geq$ Const $>0$, the solution becomes $C^{\infty}{ }_{-}$ smooth at $t>0$ and therefore equation (5.40) is $W^{s, \infty}$-regular for all $s>0$. This optimal regularity implies, in view of Theorem 3.1, the full recovery of strong convergence of first-order,

$$
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L_{l o c}^{\infty}} \leq \text { Const } \cdot \varepsilon .
$$

Consequently, our main concern below is with degenerate diffusivity, where we separate our discussion to two types of equations: those dominated by a nonlinear convective flux (in $\S 5.1$ and $\S 5.2$ ), and those whose regularizing effect is due to a degenerate diffusive term (in §5.3 and §5.4).

### 5.1 Convection-diffusion equations with convex flux

We begin with examples of convective-diffusive equations which are dominated by a convex flux, $f^{\prime \prime} \geq \alpha>0$. The convexity of the convective flux enables us to prove, in $\S 7$ below, the $\mathrm{Lip}^{+}$-stability of those equations. As in $\S 4$, this $\mathrm{Lip}^{+}$-stability implies $B V$-regularity which in turn yields error estimate (4.28),

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}} \leq \text { Const } \cdot \varepsilon^{\frac{1}{p_{*}}} \quad p_{*}=\max \{p, 2\} \quad \forall p \in[1, \infty) . \tag{5.41}
\end{equation*}
$$

Let us quote two examples. First, convex conservation laws augmented with possibly degenerate viscosity,

$$
\begin{equation*}
u_{t}+f(u)_{x}=Q(u)_{x x}, \quad f^{\prime \prime} \geq \alpha>0, \quad Q^{\prime} \geq 0 \geq Q^{\prime \prime \prime} \tag{5.42}
\end{equation*}
$$

For instance, the convective porous media equation which consists of a convex flux augmented with subquadratic diffusion, $Q(u)=c u^{m}, 1 \leq m \leq 2(u \geq 0)$, falls into this category.
As a second example we mention conservation laws with degenerate pseudo-viscosity, [14],

$$
\begin{equation*}
u_{t}+f(u)_{x}=Q\left(u_{x}\right)_{x}, \quad f^{\prime \prime} \geq \alpha>0, \quad Q^{\prime} \geq 0 \tag{5.43}
\end{equation*}
$$

The $\mathrm{Lip}^{+}$-stability of (5.42) and (5.43) is a consequence of Proposition 7.1, with $K(u, p)=Q^{\prime}(u) p-f(u)$ in the first case and $K(u, p)=Q(p)-f(u)$ in the second case; in both cases $K_{u u} \leq-\alpha<0$ for all $p \geq 0$ so that the requirement (7.72) for $\mathrm{Lip}^{+}$-stability holds.

### 5.2 Convection-diffusion equations with general nonlinear flux

We consider the viscous conservation law (5.42),

$$
\begin{equation*}
u_{t}+f(u)_{x}=Q(u)_{x x}, \quad Q^{\prime} \geq 0 \tag{5.44}
\end{equation*}
$$

This time, convexity is relaxed by assuming the following:
Assumption (nonlinear hyperbolic flux). The flux $f$ is nonlinear in the sense it has some high-order nonvanishing derivative; i.e., there exists $k \geq 2$ such that

$$
\begin{equation*}
f^{(k)}(v) \neq 0 \quad \forall v \tag{5.45}
\end{equation*}
$$

According to [12, Theorem 4], the convection-diffusion equation (5.40) is $W^{s, 1}$-regular with $s=\frac{1}{2 k-1}$, and Corollary 3.1 yields the error estimate

$$
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}} \leq \text { Const. } \begin{cases}\varepsilon^{\frac{s}{s+1}} & \forall p \in[1, s+1)  \tag{5.46}\\ \varepsilon^{\frac{1-p(1-s)}{s p}} & \forall p \in\left[s+1, \frac{1}{1-s}\right)\end{cases}
$$

Remark. The regularity result stated above is not sharp: as noted in [12] one expects $W^{s, 1}$-regularity of order $s=\frac{1}{k-1}$. In this case one obtains an $L^{1}$-error estimate of order $\mathcal{O}\left(\varepsilon^{\frac{1}{k}}\right)$. Also, for convex fluxes $(k=2, s=1)$, one recovers the $L^{p}$-error estimate of order $\mathcal{O}\left(\varepsilon^{\frac{1}{p_{*}}}\right)$ stated in (5.41).

### 5.3 The Porous Media Equation

Here, we consider the porous media equation,

$$
\begin{equation*}
u_{t}=\left(u^{m}\right)_{x x}, \quad u \geq 0, \quad m>1 \tag{5.47}
\end{equation*}
$$

as a prototype model example for parabolic, 'convection-free' equations with degenerate diffusion.
D.G. Aronson, [1], proved that for every $t>0, u(\cdot, t)$ is uniformly Hölder continuous with Hölder exponent $s=\min \left\{1,(m-1)^{-1}\right\}$ (a generalization for convective porous media type equations can be found in [19]).

In case $m \geq 2$, it implies that (5.47) is $W^{s, \infty}$-regular, $s=(m-1)^{-1}<1$. With this Hölder $W^{s, \infty}$-regularity, the $L^{p}$-error estimates (3.15)-(3.17) take the form:

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}(\Omega)} \leq C \cdot B_{\varepsilon}(t)^{\frac{1}{s+1}} \cdot \varepsilon^{\frac{s}{s+1}} \quad \forall p \in[1, \infty] \tag{5.48}
\end{equation*}
$$

where $B_{\varepsilon}(t)=\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{W^{s, \infty}}$ and the constant $C$ depends on $p$ and $|\Omega|^{\frac{1}{p}}$. Since the last upper-bound is independent of $p$, we summarize the case of $m \geq 2$ with a uniform error estimate

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{\infty}(\Omega)} \leq \text { Const } \cdot \varepsilon^{\frac{1}{m}} \quad m \geq 2 . \tag{5.49}
\end{equation*}
$$

The case $m \leq 2$ is different (note that $m=2$ is already hinted as a critical exponent in example (5.42) where $Q(u)=c u^{m}$ satisfies the condition $Q^{\prime \prime \prime} \leq 0$ only if $m \leq 2$ ). In this case, Aronson's result tells us that the porous media equation with subquadratic diffusion is $W^{1, \infty}$-regular. We claim that in fact more is true, namely, that the solution operator of (5.47) with $m \leq 2$ is even $W^{2,1}$-regular:

Proposition 5.1 Let $u \geq 0$ be the entropy solution of

$$
\begin{equation*}
u_{t}=\left(u^{m}\right)_{x x}, \quad m \leq 2, \quad u(\cdot, 0)=u_{0} \in L^{\infty}(\Omega) \tag{5.50}
\end{equation*}
$$

where, as usual, $\left.u_{0}\right|_{\Omega^{c}} \equiv$ Const. Then, for every $t>0,\left\|u_{x x}(\cdot, t)\right\|_{L^{1}}<\infty$.

Proof. We recall that the pressure, $v:=\frac{m}{m-1} u^{m-1}$, satisfies the one sided estimate [20, Proposition 5]

$$
\begin{equation*}
v_{x x} \geq-\frac{1}{(m+1) t} \tag{5.51}
\end{equation*}
$$

Next, we invoke the identity,

$$
\begin{equation*}
v_{x x}=m u^{m-2} u_{x x}+m(m-2) u^{m-3} u_{x}^{2} . \tag{5.52}
\end{equation*}
$$

Since $m \leq 2$, the second term on the right of (5.52) is nonpositive. Hence, we conclude in view of (5.51) and (5.52) that

$$
\begin{equation*}
u^{m-2} u_{x x} \geq-\frac{1}{m(m+1) t} \tag{5.53}
\end{equation*}
$$

Using the maximum principle and, once more, that $m \leq 2$, we conclude by (5.53) that

$$
\begin{equation*}
u_{x x} \geq-\frac{u^{2-m}}{m(m+1) t} \geq-\frac{\left\|u_{0}\right\|_{L^{\infty}}^{2-m}}{m(m+1) t} \tag{5.54}
\end{equation*}
$$

The fact that equation (5.50) is conservative - which we express as $\int_{\mathbb{R}}\left(u_{x x}\right)_{+} d x=$ $\int_{\mathbb{R}}\left(u_{x x}\right)-d x$, implies

$$
\begin{equation*}
\left\|u_{x x}(\cdot, t)\right\|_{L^{1}}=2 \int_{\mathbb{R}}\left|\left(u_{x x}\right)_{-}\right| d x . \tag{5.55}
\end{equation*}
$$

Due to the finite speed of propagation, $u(\cdot, t)$ is constant outside some bounded interval $\Omega(t)$ and therefore $u_{x x}(\cdot, t)$ is compactly supported on $\Omega(t)$. Hence, (5.54) and (5.55) imply

$$
\begin{equation*}
\left\|u_{x x}(\cdot, t)\right\|_{L^{1}}=2 \int_{\Omega(t)}\left|\left(u_{x x}\right)_{-}\right| d x \leq 2|\Omega(t)| \frac{\left\|u_{0}\right\|_{L^{\infty}}^{2-m}}{m(m+1) t} \tag{5.56}
\end{equation*}
$$

and we are done.
Equipped with the $W^{2,1}$-regularity derived in Proposition 5.1, the $L^{p}$-error estimates (3.15)-(3.17) take the form

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}(\Omega)} \leq C \cdot B_{\varepsilon}(t)^{\frac{1-\frac{1}{p_{*}}}{2}} \cdot \varepsilon^{\frac{1+\frac{1}{p_{*}}}{2}}, \quad p_{*}:=\max \{p, 3\} \quad \forall p \in[1, \infty] \tag{5.57}
\end{equation*}
$$

On the homogenization of oscillatory solutions
where $B_{\varepsilon}(t)=\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{W^{2,1}}$, and the constant $C$ depends on $p$ and $|\Omega|^{\frac{1}{p}-\frac{1}{p_{*}}}$. Hence, for any fixed $t>0$, it holds that

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}(\Omega)} \leq \text { Const } \cdot \varepsilon^{\frac{p_{*}+1}{2 p_{*}}}, \quad p_{*}=\max \{p, 3\} \quad \forall p \in[1, \infty] \tag{5.58}
\end{equation*}
$$

Finally, we combine the two error estimates, (5.49) for $m \geq 2$ and (5.58) for $m \leq 2$, as follows:

Theorem 5.1 Let $u^{\varepsilon}$ and $u$ be an oscillatory and the corresponding homogenized solutions of the porous media equation (5.47). Then for any fixed $t>0$ it holds that

$$
\begin{equation*}
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{\infty}(\Omega)} \leq \text { Const } \cdot \varepsilon^{\min \left\{\frac{1}{m}, \frac{1}{2}\right\}} \tag{5.59}
\end{equation*}
$$

### 5.4 Convection-diffusion equations with nonlinear diffusion

We revisit the viscous conservation law,

$$
\begin{equation*}
u_{t}+f(u)_{x}=Q(u)_{x x}, \quad Q^{\prime} \geq 0 \tag{5.60}
\end{equation*}
$$

This time the $C^{1}$ flux $f$ could be arbitrary and the nonlinearity of the equation is related to the possibly degenerate diffusion - nonlinearity quantified by:
Assumption (Nonlinear diffusion). The diffusion term, $Q(u)$, is nonlinear in the sense that

$$
\begin{equation*}
\exists \alpha \in(0,1), \delta_{0}>0 \quad: \quad \operatorname{meas}\left\{u: 0 \leq Q^{\prime}(u) \leq \delta\right\} \leq \text { Const } \cdot \delta^{\alpha}, \quad \forall \delta \leq \delta_{0} \tag{5.61}
\end{equation*}
$$

If (5.61) holds then equation (5.60) is at least $W^{s, 1}$-regular with $s=\frac{2 \alpha}{\alpha+4}$, by arguing along the lines of $[12, \S 4-5]$. Hence, we end up with $L^{p}$ error estimate

$$
\left\|u^{\varepsilon}(\cdot, t)-u(\cdot, t)\right\|_{L^{p}} \leq \text { Const } \cdot \begin{cases}\varepsilon^{\frac{s}{s+1}} & \forall p \in[1, s+1)  \tag{5.62}\\ \varepsilon^{\frac{1-p(1-s)}{s p}} & \forall p \in\left[s+1, \frac{1}{1-s}\right)\end{cases}
$$

Remark. As before, we do not claim this regularity to be sharp: by borrowing a bootstrap argument from [12], one obtains $W^{s, 1}$-regularity of order $s=\min \left\{1, \frac{8 \alpha}{3 \alpha+4}\right\}$. An even sharper regularity result of order $W^{2 \alpha, 1}$ is expected in this case, [17]. For example, for the porous media equation (where $Q(u) \sim u^{m}$, with $m>2$ and consequently $\alpha=$ $\frac{1}{m-1}<1$ ), a regularity of order $W^{s, 1}$ with $s=\frac{2}{m-1}$ yields $L^{1}$-error estimate of order $\mathcal{O}\left(\varepsilon^{\frac{2}{m+1}}\right)$. Note that when $m \rightarrow 2^{+}$, this $L_{1}$-error estimate coincides with the one in (5.57).

## 6 Examples

In the first two examples, we consider the inhomogeneous Burgers' equation,

$$
\begin{equation*}
u_{t}^{\varepsilon}+f\left(u^{\varepsilon}\right)_{x}=\frac{1}{2 \varepsilon^{\lambda}} \sin \left(2 \pi \frac{x}{\varepsilon}\right) \quad, \quad f(u)=\frac{u^{2}}{2} \tag{6.63}
\end{equation*}
$$

with oscillatory initial data,

$$
\begin{equation*}
u^{\varepsilon}(x, 0)=x+\cos \left(2 \pi \frac{x}{\varepsilon}\right) \quad x \in[0,1] \quad, \quad u^{\varepsilon}(x+1,0)=u^{\varepsilon}(x, 0) \tag{6.64}
\end{equation*}
$$

(the value of $\varepsilon$ in all examples is $\varepsilon=0.0408$ ). The corresponding homogenized problem is

$$
\begin{gather*}
u_{t}+f(u)_{x}=0  \tag{6.65}\\
u(x, 0)=x \quad x \in[0,1] \quad, \quad u(x+1,0)=u(x, 0) . \tag{6.66}
\end{gather*}
$$

First, we consider the case where the forcing data are not amplified, i.e., $\lambda=0$. In Figure 1 we plot the oscillatory solution, $u^{\varepsilon}(\cdot, t)$, and the homogenized one, $u(\cdot, t)$ (in solid and dashed lines, respectively) for four values of $t$. The cancellation of the oscillations is reflected in the figures and we note that at $t=0.04 \approx \varepsilon$, the two solutions are close in the strong $L^{\infty}$-norm.

In Figure 2 we depict the two solutions when the oscillatory solution is subject to amplified forcing data, $\lambda=\frac{1}{2}$. The effect of that amplification is notable at $t=0.1$.

Finally, we consider the porous media equation,

$$
\begin{equation*}
u_{t}=\left(|u|^{m-1} u\right)_{x x} \quad m=2 \tag{6.67}
\end{equation*}
$$

Here, $u^{\varepsilon}$ is the solution of (6.67) subject to the oscillatory initial data,

$$
\begin{equation*}
u^{\varepsilon}(x, 0)=\left\{\frac{x}{\varepsilon}\right\} \cdot \cos (2 \pi x) \tag{6.68}
\end{equation*}
$$

where $\{y\}$ is the fractional part of $y$. Since $\int_{0}^{1}\{y\} d y=\frac{1}{2}, u^{\varepsilon}$ approaches $u$, the solution of (6.67) with the averaged initial data,

$$
\begin{equation*}
u(x, 0)=\frac{1}{2} \cos (2 \pi x) \tag{6.69}
\end{equation*}
$$

Both solutions are depicted in Figure 3.
The numerical results were obtained by the non-oscillatory high order central difference scheme in [13].




Figure 1





Figure 2





Figure 3

## 7 Appendix A: Lip $^{+}$-Stability

In this section we prove the $L^{2} p^{+}$-stability of some (possibly degenerate) parabolic equations which were discussed in $\S 5$.

Proposition 7.1 Consider the convective-diffusive equation (1.1),

$$
\begin{equation*}
u_{t}=K(u, p)_{x}+h(x, t), \quad K_{p} \geq 0, \quad(x, t) \in \mathbb{R} \times \mathbb{R}^{+} \tag{7.70}
\end{equation*}
$$

with a Lip ${ }^{+}$-bounded source term,

$$
\begin{equation*}
h_{x}(x, t) \leq c(t)<\infty \quad \forall(x, t) \in \mathbb{R} \times \mathbb{R}^{+} \tag{7.71}
\end{equation*}
$$

and assume that $K(u, p \geq 0)$ is concave in $u$,

$$
\begin{equation*}
-K_{u u}(u, p) \geq \alpha>0 \quad \forall(u, p) \in \mathbb{R} \times \mathbb{R}^{+} \tag{7.72}
\end{equation*}
$$

Then the equation is Lip ${ }^{+}$-stable and, for all $T>0,\|u(\cdot, T)\|_{L^{\prime} p^{+}}$is bounded independently of the initial data as follows:

$$
\begin{equation*}
\|u(\cdot, T)\|_{L i p^{+}} \leq c \cdot \frac{\|u(\cdot, 0)\|_{L i p^{+}}+c+\left(\|u(\cdot, 0)\|_{L i p^{+}}-c\right) e^{-2 \alpha c T}}{\|u(\cdot, 0)\|_{L i p^{+}}+c-\left(\|u(\cdot, 0)\|_{L i p^{+}}-c\right) e^{-2 \alpha c T}} \leq c \cdot \frac{1+e^{-2 \alpha c T}}{1-e^{-2 \alpha c T}} \tag{7.73}
\end{equation*}
$$

where $c=c_{T}:=\max _{0 \leq t \leq T} \sqrt{\frac{c(t)_{+}}{\alpha}}$.

Proof. We assume that $K_{p}>0$; the degenerate case, $K_{p} \geq 0$, is treated by the standard procedure of replacing $K$ by $K^{\delta}=K+\delta p, \delta \downarrow 0$.

Differentiating (7.70) with respect to $x$ we find that $p=u_{x}$ is governed by

$$
p_{t}=K_{u} \cdot p_{x}+\left(K_{u u} \cdot p+K_{u p} \cdot p_{x}\right) \cdot p+K_{p} \cdot p_{x x}+\frac{d K_{p}}{d x} \cdot p_{x}+h_{x}
$$

Since $K_{p}>0$, it follows that nonnegative maximal values of $p$ satisfy

$$
\frac{d p}{d t} \leq K_{u u} \cdot p^{2}+h_{x}
$$

Hence, by (7.71) and (7.72), we get that in positive local maximal points,

$$
\frac{d p}{d t} \leq-\alpha p^{2}+c(t)
$$

Finally, estimate (7.73) follows from the last inequality in view of Lemma 7.1 below.

For the sake of completeness, we now prove an upper-bound estimate for a general Riccati ODE of the type encountered above.

Lemma 7.1 Assume that $p=p(t)$ satisfies the Riccati-type inequality

$$
\begin{equation*}
\frac{d p}{d t} \leq-a(t) p^{2}+b(t) p+c(t) \tag{7.74}
\end{equation*}
$$

where $a(t)$ is uniformly positive,

$$
\begin{equation*}
a(t) \geq \alpha>0 \quad \forall t \geq 0 \tag{7.75}
\end{equation*}
$$

and $b(t), c(t)$ are locally upper bounded functions. Then $p(t)_{+}, t>0$, is upper-bounded independently of the initial value $p(0)_{+}$, and the following estimate holds for all $T>0$ :

$$
\begin{equation*}
p(T)_{+} \leq b+c \cdot \frac{p(0)_{+}-b+c+\left(p(0)_{+}-b-c\right) e^{-2 \alpha c T}}{p(0)_{+}-b+c-\left(p(0)_{+}-b-c\right) e^{-2 \alpha c T}} \leq b+c \cdot \frac{1+e^{-2 \alpha c T}}{1-e^{-2 \alpha c T}} \tag{7.76}
\end{equation*}
$$

where

$$
\begin{equation*}
b=b_{T}:=\frac{1}{2 \alpha} \max _{0 \leq t \leq T} b(t), \quad c=c_{T}:=\max _{0 \leq t \leq T} \sqrt{b_{T}^{2}+\frac{c(t)_{+}}{\alpha}} . \tag{7.77}
\end{equation*}
$$

Proof. We fix $T>0$ and denote by $\beta_{T}$ and $\gamma_{T}$ the upper bounds of $b(t)$ and $c(t)_{+}$, respectively, in $[0, T]$ :

$$
\begin{equation*}
\beta_{T}:=\max _{0 \leq t \leq T} b(t), \quad \gamma_{T}:=\max _{0 \leq t \leq T} c(t)_{+} . \tag{7.78}
\end{equation*}
$$

Using (7.75) and (7.78) in (7.74) we conclude that

$$
\begin{equation*}
\frac{d p}{d t} \leq-\alpha p^{2}+b(t) p+\gamma_{T} \quad \forall t \in[0, T] \tag{7.79}
\end{equation*}
$$

By standard arguments (which we omit), the positive part of $p(t)$ is majorized by $P(t)$, $p(t)_{+} \leq P(t)$, where

$$
\begin{equation*}
\frac{d P}{d t}=-\alpha P^{2}+\beta_{T} P+\gamma_{T} \quad t \in[0, T] \tag{7.80}
\end{equation*}
$$

subject to the same initial value, $P(0)=p(0)_{+}$. Equation (7.80) may be now rewritten in the equivalent form

$$
\begin{equation*}
\frac{d P}{d t}=-\alpha\left(P-b_{T}\right)^{2}+\alpha c_{T}^{2} \quad t \in[0, T] \tag{7.81}
\end{equation*}
$$

where the constants, $b=b_{T}$ and $c=c_{T}$, are specified in (7.77). The solution of this equation gives

$$
\begin{equation*}
P(t)=b+c \cdot \frac{P(0)-b+c+(P(0)-b-c) e^{-2 \alpha c t}}{P(0)-b+c-(P(0)-b-c) e^{-2 \alpha c t}} \quad t \in[0, T] . \tag{7.82}
\end{equation*}
$$

We conclude that $p(T)_{+}$, being dominated by $P(T)$, is bounded by

$$
\begin{equation*}
p(T)_{+} \leq b+c \cdot \frac{p(0)_{+}-b+c+\left(p(0)_{+}-b-c\right) e^{-2 \alpha c T}}{p(0)_{+}-b+c-\left(p(0)_{+}-b-c\right) e^{-2 \alpha c T}} \tag{7.83}
\end{equation*}
$$

Finally, we observe that the right hand side of (7.83) may be upper-bounded independently of $p(0)_{+}$and, consequently,

$$
\begin{equation*}
p(T)_{+} \leq b+c \cdot \frac{1+e^{-2 \alpha c T}}{1-e^{-2 \alpha c T}} \tag{7.84}
\end{equation*}
$$

which completes the proof.

## 8 Appendix B

Here, we would like to concentrate on the special case where there is no explicit dependence on $x$ in (2.11),

$$
u_{t}^{\varepsilon}=K\left(u^{\varepsilon}, u_{x}^{\varepsilon}\right)_{x}+h\left(\frac{x}{\varepsilon}, t\right), \quad u^{\varepsilon}(x, 0)=u_{0}\left(\frac{x}{\varepsilon}\right),
$$

and propose an alternative simpler proof of Theorem 2.1 (for the sake of simplicity we concentrate on the case $\lambda=0$; the case of amplified modulations, $0<\lambda<1$, may be easily treated in the same manner as before). In this case, the solution $u^{\varepsilon}(\cdot, t)$ is $\varepsilon$-periodic for all $t \geq 0$ (since $u^{\varepsilon}(\cdot, 0)$ is and the equation remains invariant under translations $x \mapsto x+\varepsilon$ ). The homogenized problem takes the form (compare to (2.12))

$$
u_{t}=K\left(u, u_{x}\right)_{x}+\bar{h}(t), \quad u(x, 0)=\bar{u}_{0}
$$

where

$$
\bar{h}(t)=\int_{0}^{1} h(y, t) d y \quad \text { and } \quad \bar{u}_{0}=\int_{0}^{1} u_{0}(y) d y
$$

The solution of that problem does not depend on $x$ and is given by

$$
u(x, t)=u(t)=\bar{u}_{0}+\int_{0}^{t} \bar{h}(\tau) d \tau
$$

This value of the homogenized solution at time $t$ equals, as can be easily seen, to the averaged value of the oscillatory solution at the same time, i.e.,

$$
u(\cdot, t)=\frac{1}{\varepsilon} \int_{x}^{x+\varepsilon} u^{\varepsilon}(y, t) d y
$$

Therefore, the $W^{-1, \infty}$-error estimate, (2.13), is a direct consequence in this case of the following simple proposition:

Proposition 8.1 Let $g(y)$ be a bounded 1-periodic function; let $\bar{g}$ denote its average, $\bar{g}:=\int_{0}^{1} g(y) d y$, and $g_{\varepsilon}(x):=g\left(\frac{x}{\varepsilon}\right)$. Then there exists a constant $C>0$, independent of $\varepsilon$, such that for all $1 \leq p \leq \infty$ :

$$
\begin{equation*}
\left\|g_{\varepsilon}(x)-\bar{g}\right\|_{W^{-1, p}[0,1]} \leq C \cdot \varepsilon \tag{8.85}
\end{equation*}
$$

Before proving this proposition, we state and prove a useful lemma which is interesting for its own:

Lemma 8.1 Let $w(x)$ be a function in $L^{p}(I)$ where $I=(a, b)$ is a (possibly unbounded) interval in $\mathbb{R}$ and $1 \leq p \leq \infty$. Let $W(x):=\int_{a}^{x} w(\xi) d \xi$ be the primitive of $w$. Consider the division of $I$ into subintervals, $I_{j}$, induced by the zeroes of $W$, i.e.,

$$
I=\cup_{j \in J} I_{j} \quad I_{j}=\left[x_{j}, x_{j+1}\right)
$$

where, for all $j \in J$,

$$
W\left(x_{j}\right)=0 \quad \text { and } \quad W(x) \neq 0 \quad \forall x \in\left(x_{j}, x_{j+1}\right) .
$$

Then

$$
\begin{equation*}
\|w\|_{W^{-1, p}(I)} \leq \max _{j \in J}\left|I_{j}\right| \cdot\|w\|_{L^{p}(I)} \tag{8.86}
\end{equation*}
$$

Proof. For any $p<\infty$ (- the conclusion for $p \uparrow \infty$ is thus straightforward) we have

$$
\|w\|_{W^{-1, p(I)}}^{p}=\sum_{j \in J} \int_{I_{j}}|W(x)|^{p} d x=\sum_{j \in J} \int_{I_{j}}\left|\int_{x_{j}}^{x} w(y) d y\right|^{p} d x \leq \sum_{j \in J} \int_{I_{j}}\left(\int_{x_{j}}^{x}|w(y)| d y\right)^{p} d x .
$$

If we let $K$ denote the size of the maximal subinterval, $K=\max _{j \in J}\left|I_{j}\right|$, we get by Hölder inequality that for $x \in I_{j}$,

$$
\int_{x_{j}}^{x}|w(y)| d y \leq \int_{I_{j}}|w(y)| d y \leq K^{\frac{1}{p^{\prime}}}\|w\|_{L^{p}\left(I_{j}\right)}, \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

Combining the two last inequalities, we obtain the desired result (8.86):

$$
\|w\|_{W^{-1, p}(I)}^{p} \leq \sum_{j \in J} \int_{I_{j}} K^{\frac{p}{p^{\prime}}}\|w\|_{L^{p}\left(I_{j}\right)}^{p} d x \leq \sum_{j \in J} K^{\frac{p}{p^{+1}}}\|w\|_{L^{p}\left(I_{j}\right)}^{p}=K^{p}\|w\|_{L^{p}(I)}^{p} .
$$

Proof of Proposition 8.1. Denote $w_{\varepsilon}(x):=g_{\varepsilon}(x)-\bar{g}$. It can be easily seen that for all $1 \leq p \leq \infty$,

$$
\left\|w_{\varepsilon}\right\|_{L^{p}[0,1]} \leq 2\|g\|_{L^{p}[0,1]}+|\bar{g}| \leq C, \quad C:=3\|g\|_{L^{\infty}[0,1]} .
$$

The key point is that due to the 1-periodicity of $g(x)$, the primitive $W_{\varepsilon}(x):=\int_{0}^{x} w_{\varepsilon}$ vanishes at the points $j \varepsilon$ for any integer $j$. Hence, (8.85) follows from the simplest version of (8.86) with equidistant zeroes at a distance of $\left|I_{j}\right|=\varepsilon$.

Acknowledgment. Part of this research was carried out while the first author was visiting UCLA and University of Nice, and while the second author was visiting University of Metz, France.

## References

[1] D.G. Aronson, Regularity properties of flows through porous media, SIAM J. Appl. Math., 17 (1969), pp. 461-467.
[2] M.G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order PDEs, Bulletin AMS, 27 (1992), pp. 1-67.
[3] W. E, Propagation of oscillations in the solutions of 1-D compressible fluid equations, Comm. in PDEs, 17 (1992), pp. 347-370.
[4] W. E and D. Serre, Correctors for the homogenization of conservation laws with oscillatory forcing terms, Asymptotic Anal., 5 (1992), pp. 311-316.
[5] B. Engquist and W. E, Large time behavior and homogenization of solutions of two-dimensional conservation laws, Comm. on Pure and Appl. Math., 46 (1993), pp. 1-26.
[6] B. Engquist and T.Y. Hou, Particle method approximation of oscillatory solutions to hyperbolic differential equations, SIAM J. Numer. Anal., 26 (1989), pp. 289-319.
[7] A. Friedman, Partial differential equations, Krieger, New York (1976).
[8] A. Heibig, Error estimates for oscillatory solutions to hyperbolic systems of conservation laws, Comm. in PDEs, 18 (1993), pp. 281-304.
[9] T.Y. Hou, Homogenization for semilinear hyperbolic systems with oscillatory data, Comm. on Pure and Appl. Math., 41 (1988), pp. 471-495.
[10] P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. on Pure and Appl. Math., 9 (1954), pp. 159-193.
[11] P.D. Lax, Hyperbolic Systems of conservation laws and the mathematical theory of shock waves, in Regional Conf. Series Lectures in Applied Math. Vol. 11 (SIAM, Philadelphia, 1972).
[12] P.-L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. AMS, 7 (1994), pp. 169-191.
[13] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), pp. 408-463.
[14] J. von Neumann and R.D. Richtmyer, A method for the numerical calculation of hydrodynamical shocks, J. Appl. Phys., 21 (1950), pp. 232-238.
[15] D. Serre, Quelques méthodes détude de la propagation d'oscillations hyperboliques non linéaires, Ecole Polytechnique, Séminaire 1990-91, exposé \#20.
[16] E. Tadmor, Local error estimates for discontinuous solutions of nonlinear hyperbolic equations, SIAM J. Numer. Anal., 28 (1991), pp. 811-906.
[17] E. Tadmor, Regularizing effect in nonlinear PDES with kinetic formulation, in preparation.
[18] E. TADMOR, Interpolation inequalities - a one-sided version, in preparation.
[19] T. TAssa, Uniqueness and regularity of weak solutions of the nonlinear FokkerPlanck equation, UCLA-CAM Report 93-41 (1993).
[20] J.L. Vazquez, An introduction to the mathematical theory of the porous medium equation, to appear in Shape Optimization and Free Boundaries.
[21] A. Zygmund, Trigonometric series, 2nd ed., 2 Vols. Cambridge Univ. Press, London and New York, 1959

Eitan Tadmor
School of Mathematical Sciences
Tel-Aviv University
Tel-Aviv 69978
Israel
and
Department of Mathematics
University of California Los-Angeles
Los Angeles, CA 90095
USA


[^0]:    *Research supported by ONR Grants \#N0014-91-J-1343, \#N00014-92-J-1890, NSF Grant \#DMS-91-03104 and GIF Grant \#I-0318-195.06/93.

[^1]:    ${ }^{\dagger}\|g\|_{W^{-1, r}(a, b)}:=\left\|\int_{a}^{x} g\right\|_{L^{r}(a, b)}, r \in[1, \infty]$. In case we do not specify the interval we refer to the whole real line.
    ${ }^{\dagger}$ Throughout this paper we identify $W^{s, r}$ with the homogeneous space $\dot{W}^{s, r}$, e.g. (for $s<1$ ), the space equipped with the seminorm $\|g\|_{W^{s, r}}:=\left(\iint|g(x)-g(y)|^{r} /|x-y|^{1+s r} d x d y\right)^{1 / r}$.

[^2]:    ${ }^{\dagger}$ Lip $^{+}$abbreviates the semi-norm, $\|w\|_{L i p^{+}}:=\sup _{x \neq y}\left(\frac{w(x)-w(y)}{x-y}\right)_{+}$.

