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Abstract

We present three-dimensional central finite volume methods for solving systems of hyperbolic equations. Based on
the Lax–Friedrichs and Nessyahu–Tadmor one-dimensional central finite difference schemes, the numerical methods we
propose involve an original and a staggered grid in order to avoid the resolution of the Riemann problems at the cell
interfaces. The cells of the original grid are Cartesian (cubes with faces parallel to the axes) while those of the staggered
grid are either Cartesian or diamond-shaped. We apply these methods and solve some ideal magnetohydrodynamics
problems. To satisfy the solenoidal property of the magnetic field in the numerical solution, we present an adaptation
of Evans and Hawley�s constrained transport method for central schemes which we call ‘‘CTCS’’. The CTCS method is
easy to implement, it deals directly with the computed solution and does not require any additional staggering for the
magnetic field components; furthermore, it preserves the second-order accuracy of the base scheme. Even without the
application of the CTCS procedure, our numerical base schemes do not break down, and may even in some cases deli-
ver reasonable results. The diamond dual cell scheme has a slight advantage for shocks and contact discontinuities. Our
numerical results are in good agreement with corresponding results appearing in the recent literature.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Following the introduction of one-dimensional central schemes by Nessyahu and Tadmor [15], several
extensions to two and three space dimensions on Cartesian [2,14] or unstructured [1,3,4] grids have been
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proposed for solving systems of hyperbolic equations. In this paper we propose two second-order accurate
central schemes to solve three-dimensional systems of hyperbolic conservation laws and in particular prob-
lems in ideal magnetohydrodynamics.

When solving ideal MHD problems, the accumulation of numerical errors such as the truncation or
round-off errors can usually lead to a non-physical phenomenon known as magnetic monopoles (when
$ Æ B 6¼ 0). As a consequence, negative pressures and densities and other non-physical waves can arise
as described in [8]. Based on experimental observations, the expression of B given by Biot and Sav-
art�s law leads to the existence of a magnetic vector potential A, and therefore to Maxwell�s equation
$ Æ B = 0, which should be satisfied for all practical purposes. Several approaches have been proposed
to satisfy this constraint. Brackbill and Barnes [8] proposed their ‘‘projection scheme’’, involving the
resolution of a Poisson equation, while Powell proposed his so-called ‘‘eight wave formulation’’
[17–19].

Another interesting approach is Evans and Hawley�s [12] constrained transport method (CT), originally
presented for finite difference schemes, where the induction equation is discretized using a staggered mag-
netic field. Several extensions of this method were later presented by Dai and Woodward [10], Balsara and
Spicer [7], Ryu et al. [21], and Tóth [24], who has shown that the staggered magnetic field can be avoided.
Now for central schemes, which rest on the use of an original and a dual staggered grid, none of the existing
CT methods could be directly adopted.

In [5], we have adapted two-dimensional central schemes to MHD problems by introducing a new con-
strained transport-type divergence treatment (‘‘CTCS’’). The base scheme used a Cartesian original grid,
and a staggered dual grid with diamond-shaped cells. The CTCS method we constructed preserves sec-
ond-order accuracy and does not require any staggering of the magnetic field. The numerical experiments
we presented in [5] are in good agreement with those appearing in the literature.

Recently Balbas et al. [6] have used 2D central schemes with Cartesian original and dual cells to solve
ideal MHD problems; to enforce the divergence constraint, they used Brackbill and Barnes� projection
method.

In this paper, we present two three-dimensional central schemes to solve ideal MHD problems. The
numerical base scheme uses an original Cartesian grid and a staggered grid with either Cartesian
or diamond-shaped dual cells. We construct a new adaptation (CTCS) of the constrained transport
method to treat the non-vanishing magnetic field divergence. This approach preserves the second-order
accuracy of the base scheme. Furthermore, it does not require any staggering of the magnetic field
components.

Recently, Ziegler [27] presented an MHD solver which involves a semi-discrete central scheme for solv-
ing the hyperbolic system consisting of the conservation, momentum and energy equations, while Faraday�s
law is integrated separately using an adapted version of the CT scheme, with staggered magnetic field com-
ponents. By contrast, the numerical base scheme proposed here is used to solve the complete set of the
(eight) ideal MHD equations and we then apply the CTCS method to treat the magnetic field; the magnetic
field in the numerical solution obtained using the base scheme is used to compute the electric field at time
tn+1/2 to ensure second order accuracy.

The numerical results we show in this paper compare very well with those appearing in the recent liter-
ature; the numerical magnetic field divergence we observe for the problems considered here remains of the
order of 10�12.
2. Equations of ideal magnetohydrodynamics

We consider in this paper the Ideal MHD equations written in their conservation form as:
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The system (1) describes the conservation of the mass density q, momentum qv, and total energy qe. Far-
aday�s law describes the evolution of the magnetic field B. The thermal pressure is computed from an ideal
gas equation of state,
p ¼ ðc� 1Þ qe� 1

2
qjvj2 � 1

2
jBj2

� �
; ð2Þ
where c denotes the ratio of specific heats.
3. Multidimensional central schemes

In this section, we present the three-dimensional central schemes we are going to use as base schemes for
solving ideal MHD problems. The original cells are Cartesian (uniform cubes), the staggered dual cells can
be either Cartesian or diamond-shaped cells.

3.1. Three-dimensional central scheme with Cartesian dual staggered cells

We consider the following initial value problem:
~Ut þr � F ¼ ~Ut þ~f x þ~gy þ~hz ¼ 0; t > 0;

~Uðx; y; z; t ¼ 0Þ ¼ ~U 0ðx; y; zÞ.

(
ð3Þ
The system (3) is assumed to be hyperbolic (the subscripts denote partial differentiation with respect to cor-
responding variables). We consider for our computational domain a uniform parallelepiped-shaped grid.
Starting from the original Cartesian grid with cells Ci, j,k ” [xi� 1/2,xi+1/2] · [yj� 1/2,yj+1/2] · [zk� 1/2,zk+1/2]
(solid-line cubes centered at nodes (xi,yj,zk)), at time tn, we alternate to the dual staggered cell
Di+1/2, j+1/2, k+1/2 ” [xi,xi+1] · [yj, yj+1] · [zk,zk+1] (dashed-line cubes centered at nodes (xi+1/2,yj+1/2,
zk+1/2)) at time tn+1, and return back to the original cell Ci, j, k at time tn+2 as shown in Fig. 1. We suppose
that the solution is given at time tn on the original cells; in a first time step, we want to compute the solution
of system (3) on the staggered dual cells using as initial conditions the solution at time tn. We shall denote
Fig. 1. One dual cell (dashed line cube) intersects two layers of four original cells (solid line cubes).
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the dual cell Di+1/2, j+1/2, k+1/2 by the shorter notation Di;j;k. Integrating the conservation law (3) on the
domain X ¼ Di;j;k � ½tn; tnþ1�, we obtain
Z
Di;j;k

~Uðx; y; z; tnþ1Þ dV ¼
Z
Di;j;k

~Uðx; y; z; tnÞ dV �
Z tnþ1

tn

Z
Di;j;k

r �~F ð~Uðx; y; z; tÞÞ dV dt. ð4Þ
The left-hand side of Eq. (4) defines the value of the solution at time tn+1 on the staggered dual cell Di;j;k.
Let {Cds}s = 1, . . . ,4 denote the four uniform cubes centered at the points (xi,yj,zk), (xi+1,yj,zk),
(xi+1,yj+1,zk), (xi,yj+1,zk), and {Cus}s = 1, . . . ,4 denote the cubes centered at (xi,yj,zk+1), (xi+1,yj,zk+1),
(xi+1,yj+1,zk+1), and (xi,yj+1,zk+1). The integral of ~Uðx; y; z; tnÞ on the dual cell Di;j;k in Eq. (4) is split
into eight integrals as follows:
Z
Di;j;k

~Uðx; y; z; tnÞ dV ¼
X

r2fu;dg

Xs¼4

s¼1

Z
Di;j;k\Crs

~Uðx; y; z; tnÞ dV . ð5Þ
Applying van Leer�s ‘‘MUSCL’’ piecewise linear interpolants [26] defined at the center of cell Ci, j, k by:
~Uijkðx; y; z; tnÞ ’ ~U
n

ijk þ
x� xi
Dx

~U
lim

i;j;k;x þ
y � yj
Dy

~U
lim

i;j;k;y þ
z� zk
Dz

~U
lim

i;j;k;z; ð6Þ
will guarantee second-order accuracy and preserve the monotonicity. Here ðr~UÞlim � ð~U lim

x =Dx; ~U
lim

y =

Dy; ~U
lim

z =DzÞ is a limited numerical gradient; hence for r = d, s = 1 we obtain
Z
Di;j;k\Cd1

~Uðx; y; z; tnÞ dV ’ ~Uðxi þ h=4; yj þ h=4; zk þ h=4; tnÞVðDi;j;k \ Cd1Þ

’ ~Ui;j;k þ
1

4
~U

lim

i;j;k;x þ
1

4
~U

lim

i;j;k;y þ
1

4
~U

lim

i;j;k;z

� �
h3

8
; ð7Þ
where h ¼ Dx ¼ Dy ¼ Dz and VðDi;j;k \ Cr;sÞ ¼ h3=8; r 2 fu; dg; s ¼ 1; . . . ; 4 denotes the volume of one of
the eight partial cubes that form the dual cell. In a similar manner we compute each integral in the sum-
mation in Eq. (5).

For the second integral in the right-hand side (RHS) of Eq. (4), the divergence theorem gives
Z tnþ1

tn

Z
Di;j;k

r �~F ð~Uðx; y; z; tÞÞ dV dt ¼
Z tnþ1

tn

Z
oDi;j;k

~F ð~Uðx; y; z; tÞÞ �~n dA dt. ð8Þ
Here~n denotes the unit normal vector to oDi;j;k. The flux integral with respect to time in Eq. (8) is approx-
imated to second-order accuracy using the midpoint rule. For the predicted values of the flux at the inter-
mediate time we use a first-order accurate Taylor expansion and the conservation law:
~U
nþ1=2 ’ ~U

n þ Dt
2
~U

n

t ¼ ~U
n � Dt

2
r �~F n

;~F
nþ1=2 ¼ ~F ð~Unþ1=2Þ. ð9Þ
Eq. (9) can be written using the Jacobian matrices (A,B,C) of the flux functions ð~f ;~g;~hÞ as follows:

~U

nþ1=2 ’ ~U
n � Dt

2h
ðAð~UnÞ~U lim

x þ Bð~UnÞ~U lim

y þ Cð~UnÞ~U lim

z Þ. ð10Þ
Alternately, one could instead directly apply a flux limiting procedure in Eq. (9) without using the jacobian
matrices, which may accelerate the computations (jacobian-free form (JFF) [6]).

We then write the flux integral in the RHS of Eq. (8) as a sum of integrals over the six faces
(Sr, r = 1, . . . ,6) of the dual cell and write for instance the integral over S1 (with normal ~n1 ¼ ð1; 0; 0Þ) to
second-order accuracy as follows:
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Z
S1

~F ð~Uðx; y; z; tnþ1=2ÞÞ �~n1 dA ’ h2

4
ð~f nþ1=2

iþ1;j;k þ~f
nþ1=2

iþ1;jþ1;k þ~f
nþ1=2

iþ1;j;kþ1 þ~f
nþ1=2

iþ1;jþ1;kþ1Þ; ð11Þ
with similar formulas for the fluxes across the faces S2, . . . ,S6, which allows us to compute ~U
nþ1

iþ1=2;jþ1=2;kþ1=2.

Applying a similar algorithm leads to the values ~U
nþ2

i;j;k on the original grid.

3.2. Three-dimensional central scheme with diamond staggered dual cells

Another choice for the dual cells of the staggered grid is the three-dimensional extension of the diamond
staggered cell scheme we previously considered in [5]. For our computational domain, we consider a
parallelepiped-shaped domain uniformly discretized with Cartesian cubic cells Ci, j, k ” [xi� 1/2,xi+1/2]
· [yi� 1/2,yi+1/2] · [zi� 1/2,zi+1/2], centered at the nodes ai, j, k. For the staggered dual cells, we consider
the diamond shaped cells obtained by joining the centers of two adjacent Cartesian cells Ci, j, k and Ci+1, j, k

to their common interface as in Fig. 2; the resulting cell is denoted by Di+1/2, j, k. We suppose that the solu-
tion ~U

n

i;j;k is given at time t = tn on the original Cartesian cells Ci, j, k. We consider the cells Ci, j,k and Ci+1, j, k

centered at the nodes cl = (xi,yj,zk) and cr = (xi+1,yj,zk), respectively, and such that the line cl cr is parallel
to the x-axis as in Fig. 3. We integrate Eq. (3) on the domain Di+1/2, j, k · [tn, tn+1] and apply the divergence
theorem, obtaining
Z

Diþ1=2;j;k

~Uðx; y; z; tnþ1Þ dV ¼
Z
Diþ1=2;j;k

~Uðx; y; z; tnÞ dV �
Z tnþ1

tn

Z
oDiþ1=2;j;k

~F ð~Uðx; y; z; tnÞÞ �~n dA dt. ð12Þ
The left-hand side of Eq. (12) defines the average value of the solution ~U
nþ1

iþ1=2;j;k on the staggered dual cell;~n
denotes the unit outward normal vector to the boundary oDi+1/2, j, k of the dual cell. With the help of van
Leer�s MUSCL-type linear interpolants [26], we approximate to second-order accuracy the first integral of
the RHS of Eq. (12) as follows:
Z

Diþ1=2;j;k

~Uðx; y; z; tnÞ dV ’ h3

6
~U

n

i;j;k þ ~U
n

iþ1;j;k þ
2

5
ð~U lim

i;j;k;x � ~U
lim

iþ1;j;k;xÞ
� �

. ð13Þ
For the second integral in the RHS of Eq. (12), we use the midpoint formula for the time integration
Z tnþ1

tn

Z
oDiþ1=2;j;k

~F ð~Uðx; y; z; tnÞÞ �~n dA dt ’ Dt
Z
oDiþ1=2;j;k

~F ð~Uðx; y; z; tnþ1=2ÞÞ �~n dA. ð14Þ
Before computing the flux integral across the area oDi+1/2, j, k we need to introduce the following notations:
(1) For the Cartesian cells Ci, j,k and Ci+1, j, k:

� cl = (xi,yj,zk) and cr = (xi+1,yj,zk) denote the centers of the adjacent cells Ci, j, k and Ci+1, j, k.
Fig. 2. Original Cartesian cells (solid-line cubes) and dual diamond cells (dashed-lines).



Fig. 3. Two Cartesian cells Ci, j,k, Ci+1, j, k (solid line cubes) and dual diamond cell Di+1/2, j,k (dashed line).
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� The nodes of the common interface of cells Ci, j, k and Ci+1, j, k are:
� a: (xi+h/2,yj�h/2,zk�h/2), c: (xi+h/2,yj+h/2,zk+h/2),
� b: (xi + h/2,yj + h/2,zk�h/2), d: (xi + h/2,yj�h/2,zk + h/2).

(2) For the diamond dual cell (Di+1/2, j,k):

T k
l jk¼1;...;4 denotes the triangles cl cd, cl ad, cl cb, cl ab with center at ekl , respectively, with unit outward nor-

mal ~nkl .
T k

r jk¼1;...;4 denotes the triangles cr cd, cr ad, cr cb, cr ab with center at ekr , respectively, with unit outward
normal ~nkr .

To approximate the flux-integral across oDi+1/2, j, k with second-order quadrature, we obtain predictions of
both ~U

nþ1=2

oDiþ1=2;j;k
and ~F

nþ1=2

oDiþ1=2;j;k
at time tn+1/2 using Taylor expansions with respect to t; we evaluate the

approximations at the centers ekl and ekr of the triangles T k
l and T k

r (k = 1, . . . ,4) as follows:
~U
nþ1=2

T k
s

’ ~Usðeks ; tnÞ þ
Dt
2
~Utðeks ; tnÞ; s ¼ l; r and k ¼ 1; . . . ; 4. ð15Þ
Eq. (15) is approximated as previously using van Leer�s linear interpolants as well as the conservation law
(3). The flux-integral can finally be computed as follows:
Z

oDiþ1=2;j;k

~F ð~Uðx; y; z; tnþ1=2ÞÞ �~n dA

’ AðT Þffiffiffi
2

p � �~f ð~Unþ1=2

e1l
Þ þ~hð~Unþ1=2

e1l
Þ

n o
þ ~f ð~Unþ1=2

e1r
Þ þ~hð~Unþ1=2

e1r
Þ

n o
þ �~f ð~Unþ1=2

e2l
Þ �~gð~Unþ1=2

e2l
Þ

n oh
þ ~f ð~Unþ1=2

e2r
Þ �~gð~Unþ1=2

e2r
Þ

n o
þ �~f ð~Unþ1=2

e3l
Þ þ~gð~Unþ1=2

e3l
Þ

n o
þ ~f ð~Unþ1=2

e3r
Þ þ~gð~Unþ1=2

e3r
Þ

n o
þ �~f ð~Unþ1=2

e4l
Þ �~hð~Unþ1=2

e4l
Þ

n o
þ ~f ð~Unþ1=2

e4r
Þ �~hð~Unþ1=2

e4r
Þ

n oi
¼ AðT Þffiffiffi

2
p RHS; ð16Þ
where AðT Þ ¼ h2

2
ffiffi
2

p denotes the area of the triangle T ðAðT k
l Þ ¼ AðT k

r Þ ¼ AðT ÞÞ. The solution at time tn+1

on the dual cell Di+1/2, j, k takes the form:
~U
nþ1

iþ1=2;j;k ¼
1

2
ð~Un

i;j;k þ ~U
n

iþ1;j;kÞ þ
1

5
ð~U lim

i;j;k;x � ~U
lim

iþ1;j;k;xÞ �
3Dt
4h

RHS. ð17Þ
In a similar manner we compute the solution at time tn+1 on the dual cells Di, j+1/2, k and Di, j, k+1/2. The
solution on the original Cartesian cells will be recovered at time tn+2 using an appropriately modified
procedure.
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4. Divergence-free magnetic field requirement and some numerical approaches

If, in the solution of a specific ideal MHD problem, the initial magnetic field B satisfies the $ Æ B = 0
constraint, it is easily proved that it will satisfy it at all time. Unfortunately, the numerical solution rarely
displays this property: due to truncation and round-off errors, the divergence builds up to non-negligible
values, which can lead to the breakdown of the numerical solution. Among several methods proposed to
induce the magnetic field to satisfy the divergence constraint, we consider here Evans and Hawley�s con-
strained transport (CT) approach [12] as it was already successfully tested in quite a few papers.

The original version of the CT method uses the magnetic field B at the cell centers, and computes by
linear interpolation a staggered magnetic field b at the cell interface midpoints; the components of the stag-
gered magnetic field b are then treated, using a special symmetric discretization of the induction equation,
so as to satisfy the divergence constraint. More recently, Tóth [24] has observed that this staggering is not
essential, and he reformulated each of the existing staggered versions of the CT method (Evans and Hawley
[12], Dai and Woodward [10], Balsara and Spicer [7], Ryu et al. [21]) into unstaggered methods.

As we have seen in the previous section, the numerical schemes we use require an original and a stag-
gered grid and thus, none of the existing versions of the CT method could be applied directly. Here we pro-
pose two three-dimensional CTCS adaptations of the CT method that apply to three-dimensional central
schemes with Cartesian or diamond-shaped dual cells, respectively. This CTCS approach directly deals with
the cell-centered magnetic field components and does not require any additional staggering.

Here we present the CTCS method for three-dimensional central schemes with diamond-shaped dual
cells. Let Un

i;j;k denote the solution at time tn on the Cartesian cell Ci, j, k, and let Unþ1
iþ1=2;j;k denote the solution

at time tn+1 on the staggered dual cell Di+1/2, j,k. We suppose that the constraint r � Bn
i;j;k ¼ 0 is satisfied

i.e., the central difference discretization of the divergence operator of the magnetic field satisfies
F

r � Bn
i;j;k ’

Bn;x
iþ1;j;k � Bn;x

i�1;j;k

2Dx
þ
Bn;y
i;jþ1;k � Bn;y

i;j�1;k

2Dy
þ
Bn;z
i;j;kþ1 � Bn;z

i;j;k�1

2Dz
¼ 0. ð18Þ
We want to compute the divergence-free magnetic field components of Bnþ1
iþ1=2;j;k on the dual cells, using the

base scheme-updated magnetic field B�
iþ1=2;j;k at time t = tn+1, without any additional staggering of B.

Fig. 4 shows the required cells to compute r �Bnþ1
iþ1=2;j;k.

We first compute the electric field E
nþ1=2
iþ1=2;j;k ¼ ðXx;Xy ;XzÞnþ1=2

iþ1=2;j;k at time tn+1/2 using the data at time tn

and tn+1, on the original and the dual staggered grids, respectively, as follows:
ig. 4. Six dual cells along the x and z directions (left) and the y direction (right) are required to compute r �Bnþ1
iþ1=2;j;k .
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E
nþ1=2
iþ1=2;j;k ¼ �ðv� BÞnþ1=2

iþ1=2;j;k ¼ � 1

2
ðvnþ1 �B�Þiþ1=2;j;k þ

1

2
fðv� BÞni;j;k þ ðv� BÞniþ1;j;kg

� �
. ð19Þ
This discretization will ensure second-order accuracy with respect to time. Next, we discretize the induction
equation
otBþr� E ¼ 0; ð20Þ

on the Di+1/2, j, k� type staggered dual cells using the following centered differences:
Bnþ1;x
iþ1=2;j;k ¼

1

2
ðBn;x

i;j;k þ Bn;x
iþ1;j;kÞ � Dt

Xnþ1=2;z
iþ1=2;jþ1;k � Xnþ1=2;z

iþ1=2;j�1;k

2Dy
þ Dt

Xnþ1=2;y
iþ1=2;j;kþ1 � Xnþ1=2;y

iþ1=2;j;k�1

2Dz
; ð21Þ

Bnþ1;y
iþ1=2;j;k ¼

1

2
ðBn;y

i;j;k þ Bn;y
iþ1;j;kÞ � Dt

Xnþ1=2;x
iþ1=2;j;kþ1 � Xnþ1=2;x

iþ1=2;j;k�1

2Dz
þ Dt

Xnþ1=2;z
iþ3=2;j;k � Xnþ1=2;z

i�1=2;j;k

2Dx
; ð22Þ

Bnþ1;z
iþ1=2;j;k ¼

1

2
ðBn;z

i;j;k þ Bn;z
iþ1;j;kÞ � Dt

Xnþ1=2;y
iþ3=2;j;k � Xnþ1=2;y

i�1=2;j;k

2Dx
þ Dt

Xnþ1=2;x
iþ1=2;jþ1;k � Xnþ1=2;x

iþ1=2;j�1;k

2Dy
. ð23Þ
This special discretization of the induction equation and the particular choice of the electric field at the
intermediate time tn+1/2 will conserve the second order accuracy of the base scheme. A tedious but straight-
forward calculation allows us to prove that:
r �Bnþ1
iþ1=2;j;k ¼

1

2
fr � Bn

i;j;k þr � Bn
iþ1;j;kg. ð24Þ
Hence, if the magnetic field at time tn is solenoidal, the CTCS-updated magnetic field will conserve the same
property, and thus r �Bnþ1

iþ1=2;j;k ¼ 0. The magnetic field on the cells {Di, j+1/2, k} and {Di, j, k+1/2} can be
handled in a similar way. The CTCS divergence treatment in the purely Cartesian case can be found in
Appendix A.
5. Numerical experiments

The fact that central schemes require an original and a staggered grid to avoid solving the Riemann
problems [13] at the cell interfaces represents a restriction on the computation of the time step as compared
to other numerical methods. As described in [15] for the 1D case, and later in [1,14] for the multidimen-
sional central schemes, the CFL number for central schemes is about 0.5. Even with this time-step restric-
tion, experience has shown that the computing times of central schemes are substantially shorter than those
of methods based on exact or approximate Riemann solvers. The numerical results we present later in this
section are obtained using a CFL number of 0.475. It is also known that, in the case of central schemes as
well as other numerical methods, the choice of the limiter in the numerical computation of gradients may
contribute in a significant way to the quality of the numerical resolution.

Before considering MHD problems, we first verify and compare our numerical base schemes (diamond
and Cartesian dual cell schemes) by considering a simple three-dimensional scalar advection problem with
continuous or non-continuous initial data. We consider the following three-dimensional scalar advection
equation:
ut þ ux þ uy þ uz ¼ 0;

uðx; y; zÞj ¼ u0ðx; y; zÞ.

�
ð25Þ
t¼0
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The analytic exact solution of Eq. (25) at a time t, and at a point (x,y,z) is obtained from the initial data as
u(x,y,z, t) = u0(x� t,y� t,z� t). We consider for our computational domain the cube [0,1]3 uniformly
discretized with 1003 gridpoints. We consider non-continuous initial data given as follows:
Fig. 5.
exact s
u0ðx; y; zÞ ¼
4 if ðx� 0.5Þ2 þ ðy � 0.5Þ2 þ ðz� 0.5Þ2 6 0.152;

1 elsewhere.

(
ð26Þ
Fig. 5 shows the numerical solution (‘‘o’’) and the exact solution (solid line) at time t = 0.0522. We have
computed the numerical order of both schemes using for non-continuous initial data the function defined
in Eq. (26), and for continuous initial data, the following function:
u0ðx; y; zÞ ¼ sinð2pxÞ sinð2pyÞ sinð2pzÞ. ð27Þ

As shown in Table 1, the second-order accuracy of the schemes is verified when continuous initial data are
used. In the case of non-continuous initial data, it is well known that the numerical solution is going to be at
most first-order accurate; this is also shown in Table 1 for both numerical base schemes.

5.1. Shock-tube problem

Another interesting experiment that one may consider is the three-dimensional adaptation of Sod�s shock
tube problem [23] for the Euler equations which can be obtained from the ideal MHD equations by simply
dropping the magnetic field components in system (1). The initial data for this test feature a shock along the
plane x = 0.5; the two constant states are Ul = [1, 0, 0, 0, 1] (if 0 < x < 0.5) and Ur = [0.125, 0, 0, 0, 0.1] (if
0.5 < x < 1) for U = [q, qux, quy, quz, qe]. The adiabatic constant is c = 1.4. The numerical solution is com-
puted at time t = 0.164 using the diamond dual cell scheme and the Cartesian dual cell scheme; the compu-
tational domain is uniformly discretized using 200 points along the x-axis and 40 points along each of the y
and z axes. Fig. 6 shows a comparison between our numerical results (dotted lines) obtained with diamond
dual cells (left) and Cartesian dual cells (right), and the exact solution (solid line) of the corresponding one-
dimensional problem. For these calculations, we have used the MC-h limiter with h = 1.5.
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Table 1
Numerical order of the base schemes for smooth or non-continuous initial data

Method Smooth initial data Non-continuous initial data

Cartesian dual cells 1.901265 0.996402
Diamond dual cells 2.000029 0.998725
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Fig. 6. Numerical solution of the three-dimensional Sod shock-tube problem obtained using diamond dual cell scheme (left) and
Cartesian dual cell scheme (right).
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The density profile is enlarged in Fig. 7 for a closer comparison of both methods. As can be seen when
magnifying this figure, the diamond dual cell scheme leads to a slightly better resolution of the contact and
shock waves. The relative error, computed as suggested in [24], for the numerical solution (vs. the exact
solution) computed on 200 x-gridpoints using the Cartesian dual cell scheme is 0.0057213 while the error
for diamond dual cell scheme is 0.0051303.

5.2. MHD shock-tube problem

We now consider a three-dimensional adaptation of the 1D MHD shock tube problem involving seven
discontinuities; this test case was originally considered by Ryu and Jones [22]. The initial conditions feature
a shock along the plane x = 0 with the following data: Ur = [0.989112, �0.013123, 0.026933, 0.010037,
4.024421, 2.002600, 0.971588] (if 0 < x < 1) and Ul = [1.08, 1.2, 0.01, 0.5, 3.6, 2.0, 0.95] (if �1 < x < 0); here
U = [q, ux, uy, uz, By, Bz, p], Bx = 2 and c = 5/3. The computational domain is uniformly discretized with
200 grid points along the x-axis, 30 points along the y and z axes. We applied both numerical schemes
involving Cartesian dual cells and diamond dual cells, and computed the solution at time t = 0.4. In both
cases we compare (Figs. 8 and 9) the numerical results with the reference solution obtained, for the one-
dimensional problem, using the numerical scheme proposed by Ryu and Jones [22] with 10000 gridpoints;
this reference solution is also available online from the following address: http://www-ian.math.uni-
magdeburg.de/anume/testcase/MHD/1d/rj/.

http://www-ian.math.uni-magdeburg.de/anume/testcase/MHD/1d/rj/
http://www-ian.math.uni-magdeburg.de/anume/testcase/MHD/1d/rj/
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Fig. 7. Mass density along the x-axis for Sod�s three-dimensional shock-tube problem.
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This is a very challenging test case due to the structure of its solution that involves seven constant states
separated by shock waves and contact discontinuities. A good capture of the constant states requires a high
definition discretization (we recall that the reference solution is obtained using 10000 grid points). On Figs.
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8 and 9, computed with 200 gridpoints in the x-direction, the diamond-dual cell scheme seems to do slightly
better than the Cartesian-dual cell scheme.

This is confirmed in Fig. 10, where we also included results obtained with 400 x-gridpoints and the dia-
mond-dual cell scheme, which brings a substantial improvement on both 200 x-points results. The relative
error for the numerical solution (vs. the reference solution) computed on 200 x-gridpoints using the Carte-
sian dual cell scheme is 0.00514746 while the error for diamond dual cell scheme is 0.00513999.

5.3. Orszag–Tang problems

Our next three-dimensionalMHDproblem is anOrszag–Tang-type problem [11,24,25]. The initial data for
this problem are the following: qðx; y; zÞ ¼ q0; pðx; y; zÞ ¼ p0; uðx; y; zÞ ¼ � sin yiþ sin xj;Bðx; y; zÞ ¼ � sin yiþ
sinð2xÞj, with 0 6 x,y 6 2p,q0 = 25/36 and p0 = 5/3. i and j are unit vectors in the x and y directions.

We have computed the numerical solution on a 100 · 100 · 100 grid at time t = 0.5 using both Cartesian
and diamond dual cell schemes along with the corresponding CTCS approach to maintain a divergence-free
magnetic field. Fig. 11(left) shows several slides in the three-dimensional space of the contour lines of the
mass density; the arrows denote the magnitude of the velocity field. Fig. 11(right) shows the contours of the
mass density in the plane z = p; this plot compares very well with the corresponding results for the two-
dimensional problem we previously considered in [5] as well as those appearing in several recent papers
in the literature [6,10,20,24]. Fig. 12(left) shows two plots of the mass density along the line y = p of the
plane z = p obtained using both Cartesian (x-line) and diamond (dotted line) dual cell schemes at time
t = 0.5; the reference solution (solid line) is obtained using the two-dimensional diamond dual cell scheme
on 4002 gridpoints. Similarly, Fig. 12(right) shows the plot of the energy. Both methods yield almost undis-
tinguishable results.

We now consider another Orszag–Tang-type problem, which is a slight modification of a problem con-
sidered in [16]; the initial data are as follows: q(x,y,z) = q0,p(x,y,z) = p0, uðx; y; zÞ ¼ � sin y sin ziþ



Fig. 11. Mass density (shaded contours) and velocity field magnitude (cone plot) for the Orszag–Tang problem at time t = 0.5 (left);
contour lines of the mass density in the plane z = p (right).

5 0 0.5 1

1

0

0.05

0.1

0.15

0.2

0.25

u y

t

Fig. 10. Numerical solution of the three-dimensional MHD shock-tube problem obtained using the diamond dual cell scheme (dotted
line) and Cartesian dual cell scheme (dashed line).
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sin x sin zj, Bðx; y; zÞ ¼ � sin y sin ziþ sinð2xÞ sin zjþ sinð2xÞ sin yk, with 0 6 x,y,z 6 2p,q0 = 25/36 and
p0 = 5/3. i, j, and k are the unit vectors in the x, y, and z directions, respectively. We have computed the
solution at time t = 0.5 on 1003 gridpoints using the Cartesian dual cell scheme; thanks to our CTCS diver-
gence treatment, the maximum absolute value of the divergence observed for both Orszag–Tang vortex
problems is of the order of 10�14. Fig. 13(left) shows several isosurfaces of the mass density;
Fig. 13(right) shows several slides, in three-dimensional-space, of the contour lines of the electric field mag-
nitude. Fig. 14 shows the contours of the mass density and the energy in the plane z = p at time t = 0.5.
Fig. 15(left) shows the mass density contours in the plane x = p/2.

If we do not apply the CTCS divergence treatment, the base scheme can still reach the final time without
showing instabilities: In fact, we have solved this Orszag–Tang problem using the diamond dual cell scheme
on 503 gridpoints, without applying the CTCS divergence treatment. Fig. 15(right) shows the plots along
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Fig. 12. Plot of the mass density (left) and the energy for the Orszag–Tang vortex problem.

Fig. 13. (Left) Mass density isosurfaces for the three-dimensional Orszag–Tang problem at time t = 0.5. (Right) Electric field
magnitude contours.

Fig. 14. Contour lines of the mass density (left) and the energy (right) at time t = 0.5 in the plane z = p.
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the line y = z = p of the energy obtained using the Cartesian dual cell scheme with the aid of the CTCS
procedure using 1003 gridpoints (solid line) and 503 gridpoints (dashed line); the dotted line denotes the
energy obtained on 503 gridpoints using only the diamond dual cell scheme without any divergence treat-
ment. As can be seen in Fig. 15(right), even if we do not apply the CTCS procedure, the numerical results
we obtain are still reasonable, and the maximum of the absolute value of $ Æ B we observe (for this exper-



Fig. 15. (Left) Contour lines of the mass density in the plane z = p/2. (Right) Plots along the line y = z = p/2 of the energy obtained
with (solid line and dashed line) or without (dotted line) the aid of the CTCS procedure.
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iment) is about 3.124 · 10�1. Comparing the dotted line with the dashed line, we find that the effect of the
divergence treatment seems to be more necessary in the neighborhood of local extremas.

5.4. Shock–cloud interaction problem

We now consider a three-dimensional adaptation of the classical 2D MHD shock–cloud interaction
problem previously considered in several papers [10,24,27,20]. The computational domain (x,y,z) 2
[0,1]3 is uniformly discretized using 1003 gridpoints. Two constant states Ul = [3.86859, 11.2536, 0, 0,
167.345, 0, 2.1826182, �2.1826182] and Ur = [1, 0, 0, 0, 1, 0, 0.56418958, 0.56418958] are separated by
the plane x = 0.05; here U = (q, ux, uy, uz, p, Bx, By, Bz). A 10 times denser spherical cloud centered at
(0.25, 0.5, 0.5) with a radius r = 0.15 is in hydrostatic equilibrium with the surrounding state. The profile
of the initial mass density is shown in Fig. 16(left).

The numerical solution is computed at time t = 0.06 using the Cartesian dual cell scheme along with its
corresponding CTCS divergence treatment; the maximum absolute value of the divergence observed re-
mains within the 10�12 values. An equivalent variant of this three-dimensional problem is considered in
[27]. Fig. 16 (right) shows several sections of the contour surfaces (‘‘slides’’) of the logarithm of the mass
density and also shows(cone plot) the magnitude of the magnetic field. Fig. 17 shows several contour lines
of the logarithm of the mass density (left), and several isosurfaces for the energy (right).
Fig. 16. (Left) Initial mass density profile for the three-dimensional shock–cloud interaction problem; we also see the velocity field
magnitude as a cone plot. (Right) several slides illustrating the contours of the logarithm of the mass density; the cone plot represents
the magnetic field magnitude.
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Fig. 18 shows several plots along the x-axis of the mass density using 603, 1003, and 1503 gridpoints,
respectively. We have compared the results obtained using the MC-h limiter, for h = 1.5 and 2 (for the case
of 603 gridpoints). As it was previously observed for central schemes in the literature, for a given problem,
the choice of the limiter may lead to significant improvements of the numerical results; however there is no
general rule for this choice, so that one should generally investigate several limiters for best results. The
mass density profile obtained using 150 points in the x-direction (shown in Fig. 18) is very similar to the
reference solution presented in [27], which was obtained using 200 gridpoints, thus confirming the efficiency
of the method.

We observe here that even if we do not apply our CTCS divergence treatment, the base schemes do not
become unstable, and may even, in some cases, produce reasonable results. Fig. 19(a) shows the mass den-
sity for the shock–cloud interaction problem obtained using the diamond dual cell scheme (on 603 grid-
points) without any divergence treatment (dotted plot); the reference solution (solid line) is obtained
with the aid of the CTCS divergence treatment on 1503 gridpoints. Fig. 19(b) shows the same comparison
for the energy. We observe that when we do not apply the CTCS procedure, the divergence of the magnetic
field is not negligible (Fig. 19(c) $ Æ B along the line y = z = 0.5 and Fig. 19(e) $ Æ B in the plane z = 0.5;
Fig. 19(d) and (f) show the corresponding result when the CTCS procedure is applied). Moreover, we find
Fig. 17. (Left) Several contour lines of the mass density logarithm at time t = 0.06 for the three-dimensional shock–cloud interaction.
(Right) Several isosurfaces for the energy.
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Fig. 18. Several plots of the mass density of the shock–cloud interaction problem along the line y = 0.5 in the plane z = 0.5 obtained
using the MC-1.5 limiter (right) and the MC-1.5 and MC-2 limiters (left).



Fig. 19. Shock–cloud interaction problem: (a) plot of the mass density along the line y = z = 0.5, 0 6 x 6 1 obtained using the base
scheme with the CTCS (150 points, solid line) and without any divergence treatment (60 points, dotted line); same comparison for the
energy (b).
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(Fig. 19(a) and (b)) that deviations from the reference solution are important, quantitatively, when the
divergence values are non-negligible, and particularly so, qualitatively (wrong sense of variation, locally)
where the divergence values are relatively large. We mention here that the solution obtained without the
aid of the CTCS treatment is physically inadmissible but allows us to appreciate the base scheme which
did not crash while several other numerical methods broke down.
6. Conclusion

In this paper, we have presented three-dimensional, second-order accurate, central numerical methods
for solving systems of hyperbolic equations. To avoid the resolution of the Riemann problems at the cell
interfaces, the numerical solution alternates between an original and a staggered grid; we have considered
two possibilities for the dual cells of the staggered grid (Cartesian or diamond-shaped), while those of the
original grid are Cartesian cells. The fact that the numerical scheme does not require any characteristic field
decomposition, will clearly reduce computing times as compared with methods based on exact [13] or
approximate [9,19] Riemann problem solvers. We have adapted these central methods to ideal magnetohy-
drodynamics and solved some three-dimensional ideal MHD problems.

� To satisfy the divergence-free magnetic field constraint, we have constructed a new three-dimensional
CTCS method (based on the constrained transport approach) that treats, after each time step, the mag-
netic field components obtained using the numerical base scheme. The CTCS procedure applies to both
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Cartesian dual cell and diamond dual cell schemes and is second-order accurate, and thus preserves the
second-order accuracy of the base scheme. The divergence of the magnetic field for the problems we con-
sidered in this paper remains of the order of 10�12, which is smaller than the error introduced by the
computation of the divergence with the help of central differences. Both the numerical base scheme
and the CTCS procedure are easy to implement on a single processor computer or a multi-processor
cluster.

� For the ideal MHD problems considered in this paper, both numerical base schemes can reach the final
time (and sometimes even generate reasonable results) without producing instabilities, without the appli-
cation of the CTCS procedure, contrary to many other numerical schemes that often break down in the
early stages of the computations. However the base schemes (alone) fail to produce a divergence-free
magnetic field in the numerical solution. For this reason, as a general rule, the CTCS divergence treat-
ment should be applied.

� As it is well known (for central schemes), one should consider several choices of limiters for a given prob-
lem. Van Leer�s MC-h limiter usually leads to good results. For the numerical experiments we considered
in this paper, we observed that the diamond dual cell scheme leads to a slightly better capture of discon-
tinuities, as compared to the Cartesian dual cell scheme, but it is clearly more complicated and more
time-consuming since one should compute three sets of solutions on the dual cells at each odd time step
(on the cells Di+1/2, j, k, Di, j+1/2, k, and Di, j, k+1/2). Regarding the computing time of each approach,
many parameters may be considered such as the computing equipments and the programming
approaches and techniques. However, in our numerical three-dimensional experiments we have observed
that the Cartesian dual cell scheme may save about 40–45% of the computing time as compared to the
diamond dual cell scheme, which is a considerable amount of time in view of the very large computing-
times prevailing for three-dimensional MHD.

The numerical results we obtained using both base schemes compare very well to one another and are in
very good agreement with others appearing in the literature.
Appendix A

For the sake of completeness, we shall describe here theCTCSmethod in the case ofCartesiandual cells.We
suppose that the solution is given on the original grid at time tn and the magnetic field satisfies the divergence-
free property, (i.e. Eq. (18) is true). Let Bn

i;j;k ¼ ðBn;x;Bn;y ;Bn;zÞi;j;k denote the magnetic field and
E

nþ1=2
iþ1=2;jþ1=2;kþ1=2 ¼ ðXx;Xy ;XzÞiþ1=2;jþ1=2;kþ1=2 the electric field at time tn and tn+1/2, respectively. We denote by

B�
iþ1=2;jþ1=2;kþ1=2 the magnetic field obtained using the numerical base scheme and computed on the Cartesian

dual grid; the CTCS-treated, divergence-free, magnetic field will be denoted by Bnþ1
iþ1=2;jþ1=2;kþ1=2. We first com-

pute the electric field at time tn+1/2 on the staggered dual cells as follows:
E
nþ1=2
iþ1=2;jþ1=2;kþ1=2 ¼ �ðv� BÞnþ1=2

iþ1=2;jþ1=2;kþ1=2

¼ � 1

2
ðvnþ1 � B�Þiþ1=2;jþ1=2;kþ1=2 þ

1

8
ðv� BÞni;j;k þ ðv� BÞniþ1;j;k þ ðv� BÞniþ1;jþ1;k

n�

þðv� BÞni;jþ1;k þ ðv� BÞni;j;kþ1 þ ðv� BÞniþ1;j;kþ1 þ ðv� BÞniþ1;jþ1;kþ1 þ ðv� BÞni;jþ1;kþ1

o�
.

ð28Þ
This particular discretization of the electric field preserves the second-order accuracy with respect to time of
the base scheme. Next, we discretize the induction equation (20) on the staggered grid using central differ-
ences and update the magnetic field components at time tn+1 as follows:



R. Touma, P. Arminjon / Journal of Computational Physics 212 (2006) 617–636 635
Bnþ1;x
iþ1=2;jþ1=2;kþ1=2 ¼

1

8
ðBn;x

i;j;k þ Bn;x
iþ1;j;k þ Bn;x

iþ1;jþ1;k þ Bn;x
i;jþ1;k þ Bn;x

i;j;kþ1 þ Bn;x
iþ1;j;kþ1 þ Bn;x

iþ1;jþ1;kþ1 þ Bn;x
i;jþ1;kþ1Þ

� Dt
Xnþ1=2;z

iþ1=2;jþ3=2;kþ1=2 � Xnþ1=2;z
iþ1=2;j�1=2;kþ1=2

2Dy
þ Dt

Xnþ1=2;y
iþ1=2;jþ1=2;kþ3=2 � Xnþ1=2;y

iþ1=2;jþ1=2;k�1=2

2Dz
; ð29Þ

Bnþ1;y
iþ1=2;jþ1=2;kþ1=2 ¼

1

8
ðBn;y

i;j;k þ Bn;y
iþ1;j;k þ Bn;y

iþ1;jþ1;k þ Bn;y
i;jþ1;k þ Bn;y

i;j;kþ1 þ Bn;y
iþ1;j;kþ1 þ Bn;y

iþ1;jþ1;kþ1 þ Bn;y
i;jþ1;kþ1Þ

� Dt
Xnþ1=2;x

iþ1=2;jþ1=2;kþ3=2 � Xnþ1=2;x
iþ1=2;jþ1=2;k�1=2

2Dz
þ Dt

Xnþ1=2;z
iþ3=2;jþ1=2;kþ1=2 � Xnþ1=2;z

i�1=2;jþ1=2;kþ1=2

2Dx
; ð30Þ

Bnþ1;z
iþ1=2;jþ1=2;kþ1=2 ¼

1

8
ðBn;z

i;j;k þ Bn;z
iþ1;j;k þ Bn;z

iþ1;jþ1;k þ Bn;z
i;jþ1;k þ Bn;z

i;j;kþ1 þ Bn;z
iþ1;j;kþ1 þ Bn;z

iþ1;jþ1;kþ1 þ Bn;z
i;jþ1;kþ1Þ

� Dt
Xnþ1=2;y

iþ3=2;jþ1=2;kþ1=2 � Xnþ1=2;y
i�1=2;jþ1=2;kþ1=2

2Dx
þ Dt

Xnþ1=2;x
iþ1=2;jþ3=2;kþ1=2 � Xnþ1=2;x

iþ1=2;j�1=2;kþ1=2

2Dy
. ð31Þ
With this particular symmetric discretization of the induction equation and the special choice for the elec-
tric field at intermediate time tn+1/2, we can prove that:
r � Bnþ1
iþ1=2;jþ1=2;kþ1=2 ¼

1

8
fr � Bn

i;j;k þr � Bn
iþ1;j;k þr � Bn

iþ1;jþ1;k þr � Bn
i;jþ1;k þr � Bn

i;j;kþ1

þr � Bn
iþ1;j;kþ1 þr � Bn

iþ1;jþ1;kþ1 þr � Bn
i;jþ1;kþ1g. ð32Þ
Eq. (32) shows that if the magnetic field at time tn is divergence-free, the CTCS-updated magnetic field will
also satisfy the physical constraint. Let us observe here that this CTCS approach can be specialized to the
two-dimensional case for Cartesian dual cells by omitting the differentiation with respect to z in Eqs.
(29),(30) and by replacing all pairs of terms such as Bn;x

i;j;k and Bn;x
i;j;kþ1 by Bn;x

i;j in Eqs. (28)–(30). Note that
in the two-dimensional case the z component of the magnetic field does not need to be treated as it no longer
contributes to the divergence.
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