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A third-order explicit central scheme for open channel flow simulations

Un modèle explicite central du troisième ordre pour des simulations
d’écoulement en canal a surface libre
M. VENUTELLI, Department of Civil Engineering, University of Pisa, Pisa, Italy

ABSTRACT
A third-order explicit time-stepping model for the simulations in open channels flow is presented. The time discretization of one-dimensional Saint-
Venant’s basic equations is obtained by Taylor series expansion, formulated in multi-stage approach, whereas the spatial discretization is obtained
by finite difference central scheme. First- and second-order models have been obtained by using piecewise constant and piecewise linear MUSCL
(monotone upwind scheme for conservation laws) approximations. Afterwards, the third-order model proposed is obtained by a piecewise quadratic
polynomial approximation. Using Fourier’s linear analysis, the stability and the accuracy of the scheme are investigated. The numerical results, for
predicting dam-break in a horizontal and frictionless channel and for the representation of the hydraulic jump in prismatic and non-prismatic channels,
with non-uniform bottom slope, are evaluated, and compared with the corresponding analytical and measured solutions.

RÉSUMÉ
On a présenté un modèle explicite du troisième ordre en temps fractionné pour des simulations de flux dans des canaux ouverts. Dans ce modèle, les
équations de base forment un système de Saint-Venant unidimensionnel et sont d’abord discrétisées par rapport au temps, avec un développement
en série de Taylor formulé en plusieurs phases. Les équations ainsi obtenues sont alors discrétisées dans l’espace à l’aide de réseaux centraux aux
différences finies. En utilisant des polynômes constants et linéaires MUSCL (schéma amont monotone pour les lois de conservation) on à obtenu
respectivement un modèle du premier et du deuxième ordre. Ensuite, en utilisant des polynômes quadratiques on à trouvé le modèle du troisième
ordre proposé. Avec l’analyse linéaire de Fourier, sont recherché la stabilité et la précision du schema. Les résultats numériques, pour des simulations
de rupture de barrage dans des canaux horizontaux et sans frottement et, pour la représentation du ressaut hydraulique, dans des canaux prismatiques
et non prismatiques avec une pente variable du fond, est en accord avec les solutions analytiques correspondantes.

Keywords: Saint-Venant equations, Taylor expansion, central difference schemes, stability, shock phenomena.

1 Introduction

In many cases concerning hydraulic and environmental engi-
neering, a correct representation of the water depth and velocity,
consequent to rapidly varied flows, resulting from a dam-break or
a hydraulic jump, is necessary. The mathematical description of
these phenomena, in the hypothesis of hydrostatic pressure dis-
tribution and small bottom slope, is the set of non-homogeneous
Saint-Venant equations. These equations, which are hyperbolic
and non-linear, except in simplified cases, can only be solved
numerically.

The numerical schemes used, the so-called shock-capturing
schemes, should be able to simulate the rapid variations of the
hydraulic characteristics accurately, without introducing any spu-
rious oscillations. A large class of these schemes have been
obtained by using Godunov’s method in “upwind” approach
(Hirsch, 1995). Several formulations, using Riemann solvers,
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have been presented. First-order explicit model, obtained by
using Roe’s numerical flux and second-order extension, obtained
by using Lax-Wendroff numerical flux are proposed by Jhaet al.
(1995), while Deliset al. (2000a) present and compare four
approximate Riemann solvers. According to the total variation
diminishing (TVD) introduced by Harten (1983), a variety of
high-resolution explicit and implicit schemes are presented by
Delis and Skeels (1998), Deliset al. (2000b), and Tsenget al.
(2001). A second-order scheme, using a Godunov-type finite
volume method is presented by Sanders (2001). Unlike upwind
schemes, which compute the reconstructed values at the mid-
cells, the Godunov-type central schemes compute the staggered
cell averages at the interfacing breakpoints. Therefore, the central
schemes present the advantage of simplicity, since no Riemann
solvers are involved in their construction. The forerunner cen-
tral scheme is the first-order Lax–Friedrichs scheme (Lax, 1954;
Friedrichs, 1954). Its second-order staggered extension was
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proposed by Nessyahu and Tadmor (1990). For the solution of the
homogeneous convection and of the convection–diffusion equa-
tions, second-order new schemes have recently been introduced
by Kurganov and Tadmor (2000).

In this paper, a third-order central scheme in explicit
time-stepping formulation is proposed for the solution of the
non-homogeneous system of Saint-Venant equations. The dis-
cretization in time, with Taylor expansions, is based on fractional
step, while the spatial approximation is obtained by using a piece-
wise quadratic polynomial. The results of shocks simulations are
presented in open-channel flows as a consequence of the dam-
break and of the hydraulic jump phenomena. The same tests are
carried out even by first- and second-order models, which have
been obtained by using piecewise-constant and piecewise-linear
MUSCL (Monotone Upwind Scheme for Conservation Laws)
approximations, respectively. The paper is organized as it fol-
lows: the Saint-Venant governing equations of the unsteady flow
in open-channel are reported in the Section 2, the numerical for-
mulation and the stability analysis of the model are presented
in the Section 3, the numerical applications are described in the
Section 4 and the conclusions of the work are reported in the
Section 5.

2 Governing equations

The one-dimensional unsteady flow in open-channel is governed
by a system of Saint-Venant equations (Cungeet al., 1980)

∂u

∂t
+ ∂f(u)

∂x
= z(u) (1)

where,

u =
(

A

Q

)
, f =

(
Q

Q2

A
+ gI1

)
,

z =
(

0
gI2 + gA(S0 − Sf )

)
,

with A = A(x, t) the wetted cross-sectional area,Q = Q(x, t) is
the discharge,g is the gravitational acceleration,x is the spatial
coordinate, assumed positive along the flow direction, andt is
the time. The termI1 represents the hydrostatic pressure force,
while I2 represents the pressure forces due to the longitudinal
width variations, expressed as

I1 =
∫ h(x,t)

0
(h − η)σ(x, η) dη,

I2 =
∫ h(x,t)

0
(h − η)

∂σ(x, η)

∂x
dη

where,h is the water depth,η is the depth integration variable
along the vertical axis,σ is the width of the cross-section such that
σ(x, h) = b(x) = free surface width. In case of non-prismatic
rectangular channel, one obtains

I1 = A2

2b
, I2 = A2

2b2

db

dx

In the end,S0 is the bed slope, andSf is the friction slope in the
vectorz of source terms. According to Manning’s formula for

the evaluation ofSf , we haveSf = n2
mQ|Q|/(A2R4/3) in which

nm(m−1/3s) is the roughness coefficient andR = A/P hydraulic
radius withP = wetted perimeter.

The system (1) must be completed with the initial and appro-
priate boundary conditions. Taken, for the dependent variablesA

andQ, the spatial domain� ≡ (0, L) in general one obtains

A(x, 0) = A0(x), Q(x, 0) = Q0(x),{
Q(0, t) = Q∗(t),
A(L, t) = A∗(t)

whereQ∗(t) andA∗(t) must be known functions.

3 Numerical model

3.1 Time integration

For time integration of system (1), fromtn = n�t to tn+1 =
tn + �t, according to Taylor series expansion, it results

un+1 = un + �t

(
∂u

∂t

)n

+ 1

2
(�t)2

(
∂2u

∂t2

)n

+ 1

6
(�t)3

(
∂3u

∂t3

)
+ · · · = exp

(
�t

∂

∂t

)
un (2)

from which one observes that the evolution operatorE(�t) :
u(tn) → u(tn+1) is given by the exponential function exp(s),
wheres = �t(∂/∂t). It is therefore apparent that general, explicit
and implicit schemes of various order of accuracy can be devised
in the form of Padé approximations to the exponential function
(Butcher, 1987; Doneaet al., 2000).

In order to implement the expansion (2) in this work, in
third-order explicit approximation, involving only first time
derivatives, it is convenient to express the Eq. (2) in factorized
form

un+1 =
(

1 + s

(
1 + 1

2
s

(
1 + 1

3
s

)))
un

from which a three stages scheme is obtained

un+1/3 = un + 1

3
�t

(
∂u

∂t

)n

(3)

un+1/2 = un + 1

2
�t

(
∂u

∂t

)n+1/3

(4)

un+1 = un + �t

(
∂u

∂t

)n+1/2

(5)

3.2 Spatial integration

3.2.1 Central schemes
One considers the system (1) in homogeneous form

∂u

∂t
+ ∂f(u)

∂x
= 0 (6)

By applying Eq. (3), which represents the first stage of the time
stepping algorithm, and with the integration on spatial domain
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�x := [x−�x/2, x+�x/2], with�x space interval, one obtains

ū(x, tn+1/3) = ū(x, tn) − 1

3
λ

[
f

(
u

(
x + �x

2
, tn

))

− f

(
u

(
x − �x

2
, tn

))]
(7)

where

ū(x, t) = 1

�x

∫ x+�x/2

x−�x/2
u(x, t) dx

indicates the sliding average ofu(·, t), and λ = �t/�x.
Therefore one constructs a piecewise approximationw(·, tn)
of u(·, tn) at the discrete time leveltn = n�t

u(x, tn) ∼= w(x, tn) =
∑

j

pj(x)1Ij (8)

wherepj(x) are algebraic polynomials supported at the discrete
cells Ij := [xj−1/2, xj+1/2] centred around the mid-pointsxj =
j · �x, and 1Ij is a function which equals one insideIj and zero
outsideIj. The time evolution of the piecewise approximation
w(x, tn), on the basis of the Eq. (7), becomes

w̄(x, tn+1/3) = w̄(x, tn) − 1

3
λ

[
f

(
w

(
x + �x

2
, tn

))

− f

(
w

(
x − �x

2
, tn

))]
(9)

Equation (9) is then applied to the discrete grid points. Here,
we distinguish between two main methods, corresponding to
the upwind and central schemes, respectively, according to the
way sampling Eq. (9) (Liu and Tadmor, 1998). Upwind schemes
were based on sampling Eq. (9) at the mid-cellsx = xj. This
scheme use non-staggered grid-cells[xj−1/2, xj+1/2] and they
depend upon the solution of exact or approximate Riemann prob-
lem solvers at the grid-cell interfaces, for the calculation of the
numerical fluxes. In contrast, central schemes are based on sam-
pling Eq. (9) at the interfacing breakpointsx = xj+1/2. In this
case, the space integration is carried out on staggered grid-cells
[xj, xj+1], and one obtains

w̄
n+1/3
j+1/2 = w̄n

j+1/2 − 1

3
λ[f(w(xj+1, t)) − f(w(xj, t))] (10)

in which the staggered averagesw̄n
j+1/2 are given by

w̄n
j+1/2 = 1

�x

[ ∫ xj+1/2

xj

pj(x) dx +
∫ xj+1

xj+1/2

pj+1(x) dx

]
(11)

Different schemes can be obtained by changing the polynomial
representationpj(x) the variables within each grid-cell. By using,
within the cell [xj−1/2, xj+1/2] piecewise-constant approxima-
tion pj(x) = w̄n

j , and piecewise-linear MUSCL approximation
pj(x) = w̄n

j + w′
j(x − xj)/�x, wherew′

j indicates the dis-
crete first-derivative (van Leer, 1979), a first- and second-order
schemes are obtained, respectively. In the end, by using quadratic

polynomial, a third-order scheme, which will be treated after-
wards, is obtained.

3.2.2 Third-order central scheme
For the realization of the third-order central scheme, the quadratic
polynomialpj(x) proposed by Liu and Tadmor (1998) is used

pj(x) = (1 − ϑj)w̄
n
j + ϑjqj(x) (12)

whereϑj (0 < ϑj < 1) is a non-linear limiter,w̄n
j the cell

averages, andqj(x) the quadratic polynomial

qj(x) = aj + bj

(
x − xj

�x

)
+ cj

(
x − xj

�x

)2

Assuming thatqj(x) interpolates̄wn
j and, in addition, interpolates

two neighbouring cell averages̄wn
j±1, one obtains

qj(x) =
(

w̄n
j − 1

24
�+�−w̄n

j

)
+ �0w̄

n
j

(
x − xj

�x

)

+ 1

2
�+�−w̄n

j

(
x − xj

�x

)2

where,

�±w(x) = ±(w(x ± �x) − w(x))

and

�0 = 1

2
(�+ + �−)

Finally, in Eq. (12), the limiterϑj, which is used in order to
prevent the oscillation, is given by the formula (Liu and Osher,
1996; Liu and Tadmor, 1998)

ϑn
j :=




min

{
Mj+1/2 − w̄n

j

Mj − w̄n
j

,
mj−1/2 − w̄n

j

mj − w̄n
j

, 1

}
,

if w̄n
j−1 < w̄n

j < w̄n
j+1

min

{
Mj−1/2 − w̄n

j

Mj − w̄n
j

,
mj+1/2 − w̄n

j

mj − w̄n
j

, 1

}
,

if w̄n
j−1 > w̄n

j > w̄n
j+1

1 otherwise
(
if �+w̄n

j · �−w̄n
j < 0

)

(13)

where the cell quantitiesM andm, it results

Mn
j = max

{
qn

j (xj+1/2), q
n
j (xj−1/2)}

Mn
j = min

{
qn

j (xj+1/2), q
n
j (xj−1/2)}

and

Mn
j+1/2 = max

{
1

2

(
w̄n

j + w̄n
j±1

)
, qn

j±1(xj±1/2)

}

Mn
j+1/2 = min

{
1

2

(
w̄n

j + w̄n
j±1

)
, qn

j±1(xj±1/2)

}
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In the end, the piecewise-quadratic polynomial (12) consists of
quadratic pieces of the form

pj(x) = wn
j + w′

j

(
x − xj

�x

)
+ 1

2
w′′

j

(
x − xj

�x

)2

(14)

where the pointvalueswn
j , and the discrete firstw′

j and second
w′′

j pointvalues derivatives, are given by

wj := w̄n
j − 1

24
w′′

j (15)

w′
j := ϑj�0w̄

n
j (16)

w′′
j := ϑj�+�−w̄n

j (17)

With pj(x) specified in the Eqs (14)–(17), by applying Eq. (11),
one evaluates the staggered averages of third-order

w̄n
j+1/2 = 1

2
(w̄j + w̄j+1) + 1

8
(w′

j − w′
j+1)

therefore the Eq. (10), it becomes

w̄
n+1/3
j+1/2 = 1

2
(w̄j + w̄j+1) + 1

8
(w′

j − w′
j+1)

− 1

3
λ
[
f

(
wn

j+1

) − f
(
wn

j

)]
(18)

In order to transform the staggered Eq. (18) into a non-staggered,
as a first step, we reconstruct a piecewise-quadratic interpolant
through the calculated staggered cell-averages at timetn+1/3

w̄
n+1/3
j±1/2 = w̄

n+1/3
j±1/2 + (w′)n+1/3

j±1/2

(
x − xj±1/2

�x

)

+ 1

2
(w′′)n+1/3

j±1/2

(
x − xj±1/2

�x

)2

as, a second step, the cell averagesw̄
n+1/3
j are obtained by aver-

aging this interpolant, in the following non-staggered equations

w̄
n+1/3
j = 1

�x

[ ∫ xj

xj−1/2

w
n+1/3
j−1/2 dx +

∫ xj+1/2

xj

w
n+1/3
j+1/2 dx

]

= 1

4

(
wn

j−1 + 2wn
j + wn

j+1

) − 1

16
(w′

j+1 − w′
j−1)

− λ

6
[f (

wn
j+1

) − f
(
wn

j−1

)]
+ 1

8

(
(w′)n+1/3

j−1/2 − (w′)n+1/3
j+1/2

)
(19)

in which the staggered derivatives are given by

(w′)n+1/3
j+1/2 = ϑj+1/2

1

2

(
w̄

n+1/3
j+3/2 − w̄

n+1/3
j−1/2

)
(w′)n+1/3

j−1/2 = ϑj−1/2
1

2

(
w̄

n+1/3
j+1/2 − w̄

n+1/3
j−3/2

)
and are evaluated at time leveltn+1/3 by using Eq. (18). The
space discretization is completed by considering Saint-Venant
system equations (1) in non-homogeneous form. The source
termz(u) is approximated by Simpson’s quadrature rule, which
is sufficient for retaining third-order accuracy. The Eq. (19)

becomes

w̄
n+1/3
j = 1

4

(
wn

j−1 + 2wn
j + wn

j+1

) − 1

16
(w′

j+1 − w′
j−1)

− λ

6

[(
wn

j+1

) − f
(
wn

j−1

)]
+ 1

8

(
(w′)n+1/3

j−1/2 − (w′)n+1/3
j+1/2

)
− �t

18

(
z
(
wn

j−1

) + 4z
(
wn

j

) + z
(
wn

j+1

))
(20)

Equation (20) represents the first stage of the third-order model.
Following the same way for the other two stages one obatins,
respectively,

w̄
n+1/2
j = 1

4

(
wn

j−1 + 2wn
j + wn

j+1

) − 1

16
(w′

j+1 − w′
j−1)

− λ

4

[
f

(
w

n+1/3
j+1

) − f
(
w

n+1/3
j−1

)]
+ 1

8

(
(w′)n+1/2

j−1/2 − (w′)n+1/2
j+1/2

) − �t

12

(
z
(
w

n+1/3
j−1

)
+ 4z

(
w

n+1/3
j

) + z
(
w

n+1/3
i+1

))
(21)

w̄n+1
j = 1

4

(
wn

j−1 + 2wn
j + wn

j+1

) − 1

16
(w′

j+1 − w′
j−1)

− λ

2

[
f

(
w

n+1/2
j+1

) − f
(
w

n+1/2
j−1

)]
+ 1

8

(
(w′)n+1

j−1/2 − (w′)n+1
j+1/2

)
− �t

6

(
z
(
w

n+1/2
j−1

) + 4z
(
w

n+1/2
j

) + z
(
w

n+1/2
j+1

))
(22)

3.3 Stability analysis

The stability and the accuracy of the third-order three stages
scheme, represented by the Eqs (20)–(22), are investigated
with the linear Fourier analysis. The one-dimensional linearized
Saint-Venant equations (1), are given by

∂u

∂t
+ J

∂u

∂x
= Ku (23)

where,

J =
[

0 1
c2 − U2 2U

]
, K =

[
0 0

g
(

I2
A

+ S0
) −r

]

in which U = Q/A is the mean velocity,c = (gA/b)1/2 is the
celerity, andr = gSf /U is the dimensional friction parameter.
Assuming a harmonic wave of the formu = u0 exp[i(mx − βt)],
whereu0 is a constanti, is the imaginary unit,m is the dimen-
sional wavenumber, andβ is the temporal frequency, after
standard procedure (Wesseling, 2001), supposedI2 = 0, from
system (23), one obtains

β1,2 = −i
s

2
±

√
c2m2 − r2

4
+ m · u (24)

for progressive and retrogressive waves, respectively. From
Eq. (24), the analytical amplification factorga1,2 and the ana-
lytical phase angleφa1,2 may be obtained.
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For the numerical model, taken the limiterϑj, defined by
Eq. (13), equal to 1, after some manipulations, the numerical
amplification factors for the two flood waves, result

gn1,2 = α + λ1,2

(
α + λ1,2

2

(
α + λ1,2

3

))
(25)

whereα = (82+63 cos(p)−18 cos(2p)+cos(3p))/128 in which
p = m · �x (0 ≤ p ≤ π) is a dimensionless wave number, and

λ1,2 = 1

8
iδd + 1

6
Dfγ ± 1

24

√
−9δ2a2 + 16Df2γ2

whereδ = sin(2p)−10 sin(p), d = a ·Fr in whicha = Cr/(Fr±
1) and Cr= (U±c)�t/�x is the Courant number, and Fr= U/c

is the Froude number, Df= r · �t is the dimensionless friction
parameter, andγ = cos(p) + 2.

From the complex valuesgn1,2 (Eq. (25)), the modulus|gn1,2|
and the corresponding phase anglesφn1,2 = −arg(gn1,2) are
obtained. For the stability, according to von Neumann’s condi-
tion, the requirement is|gn1,2| ≤ 1 for allp. For the accuracy, the
convergence ratioRd = |gn|/|ga| andRc = φn/φa, which mea-
sures dissipation and dispersion, respectively, for the principal
progressive waves, for variations of Cr, Fr and Df, are evalu-
ated. In Fig. 1, in polar coordinates, for Fr= 0.5, Df = 0, and
Cr = 0.5, 1, and 1.5,Rd andRc are plotted, respectively. In
Fig. 2, the same numerical properties are presented for Cr= 0.5,
Fr = 0.5, and Df= 0.001, 0.01, and 0.05. From Fig. 1(b) we can
see that by increasing the Courant’s number, there is an increase of
the phase errors, while as it can be seen in Fig. 2(a) an antidissipa-
tive and unstable behaviour of the scheme is noticed by increasing
the frictional parameter. It can be said that the dispersive effects
are made less evident by the diffusion introduced by theϑj limiter,

Figure 1 Amplitude ratioRd (a), and celerity ratioRc (b) for progressive
waves with Fr= 0.5, Df = 0, and Cr= 0.5, 1, and 1.5.

Figure 2 Amplitude ratioRd (a), and celerity ratioRc (b) for progressive
waves with Cr= 0.5, Fr = 0.5, and Df= 0.001, 0.01, and 0.05.

specifically designed in order to prevent oscillations (Bianco
et al., 1999; Kurganov and Petrova, 2001). Finally, the variations
of the Froude’s number are resulted uninfluential.

4 Numerical applications

The third-order model proposed, indicated by T3_3 in the
numerical tests, is applied for the representation of the shock
phenomenon in open channels. In particular, the dam-break phe-
nomenon in a rectangular, horizontal, and frictionless channel
and the hydraulic jump in the channels with variable bed slope are
simulated. The same tests cases are also carried out with first- and
second-order models, indicated by T3_1 and T3_2, respectively.
The numerical results are compared with the corresponding ana-
lytical solutions. In each test theL2–relative error is evaluated in
the form

δh =
[∑

j=1,N(hn − hex)2∑
j=1,N(hex)2

]1/2

× 100 (26)

where,hn andhex are the simulated and the exact depth, respec-
tively, andN is the grid-point. The same evaluation is carried
out for the velocity with the determination of the parameterδU .
Moreover, a hydraulic jump problem compared with laboratory
experiments is presented.

4.1 Idealized dam-break problem

A rectangular, horizontal, and frictionless channel, having a
length of L = 400 m is considered. At the middle length of
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Figure 3 Water profile (a), and velocity (b), for T3_1 scheme, att = 8 s, and forN = 800.
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Figure 4 Water profile (a), and velocity (b), for T3_2 scheme, att = 8 s, and forN = 800.
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Figure 5 Water profile (a), and velocity (b), for T3_3 scheme, att = 8 s, and forN = 800.

the channel is initially located a dam. Upstream the dam, the
water depth ish0(x) = 10 m and downstream ish0(x) = 0. The
boundary conditions, are set equal to the initial depth. At instant
t = 0, the dam is removed instantaneously and the water depth
and the velocity profiles obtained, att = 8 s and forN = 800,
with the schemes T3_1, T3_2, and T3_3, respectively, are com-
pared with the analytical solution (Stoker, 1957) in Figs 3–5. In
the simulations, a Courant number Cr= 0.9, is used. In Tables 1
and 2, we list the errors in function of the grid pointsN, δh, and
δU , at t = 8 s, respectively.

Table 1 Errorsδh, at t = 8 s, for the various scheme

N T3_1 T3_2 T3_3

100 4.868370 2.147092 1.909964
200 3.256245 1.130954 9.8283E-1
400 2.130403 5.9839E-1 5.0599E-1
800 1.360632 3.1673E-1 2.5387E-1

1600 8.4726E-1 1.6323E-1 1.3108E-1
3200 5.1269E-1 8.2759E-2 6.7162E-2
6400 3.0988E-1 4.2139E-2 3.4519E-2
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Table 2 ErrorsδU , at t = 8 s, for the various scheme

N T3_1 T3_2 T3_3

100 40.393074 18.596095 13.397068
200 41.755968 22.832215 25.113128
400 44.057745 29.199830 25.029628
800 43.772737 26.903339 21.393447

1600 41.124108 22.528086 17.632018
3200 37.739001 17.725224 12.217187
6400 33.968592 13.038395 8.084848

4.2 Super-sub-supercritical flow in rectangular channel

In a rectangular channel, with a widthb = 10 m and a length
L = 100 m, the constant discharge isQ = 20 m3/s and the
Manning’s roughness coefficient isnm = 0.03 m−1/3 s. The ini-
tial depth ish0(x) = 0.70658 m, and the boundary conditions
areQ(0, t) = 20 m3/s andh(L, t) = 0.61803 m. The analytical
solution (MacDonald, 1994), which results to be supercritical at
inflow and outflow and subcritical in 33.30 ≤ x ≤ 55.90 m, is
presented in Fig. 6.

In Fig. 7, att = 150 s, and forN = 400, the water surface
profile, for the schemes T3_1 (a), T3_2 (b), and T3_3 (c) are
presented. Cr= 0.6 has been taken, so the friction parameter
results Df= 0.0087 forN = 50, and diminuishes linearly with
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Figure 7 Water profile, att = 150 s, and forN = 400, for T3_1 (a), T3_2 (b), and T3_3 (c) scheme.

Figure 6 Exact solution.

�x. In Table 3, att = 150 s, the errorsδh obtained for the three
schemes are reported.

4.3 Super-subcritical flow in non-uniform rectangular channel

For this test problem, withL = 1000 m andnm = 0.02 m−1/3 s,
the channel is non-uniform rectangular with a variable width
represented in Fig. 8, and given by

b(x) = 10− 64

[( x

1000

)2 − 2
( x

1000

)3 +
( x

1000

)4
]

(27)
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Table 3 Errorsδh, at t = 150 s, for the various scheme

N T3_1 T3_2 T3_3

50 6.056640 2.836925 2.719853
100 4.470934 1.782015 1.551233
200 3.477099 1.290539 1.261008
400 2.505920 8.8593E-1 7.9954E-1
800 1.878940 6.6515E-1 6.4382E-1

1600 1.316577 4.4425E-1 4.0329E-1
3200 9.6602E-1 3.3669E-1 3.2274E-1

Figure 8 Channel with variable width.

A constant dischargeQ = 20 m3/s and an initial depthh0(x) =
0.64167 m are assumed for the tests. The boundary conditions
areh(0, t) = 0.64167 m andh(L, t) = 1.125 m. The analytical
solution (MacDonaldet al., 1995) is supercritical at inflow and
changes, via hydraulic jump atx = 500 m, to subcritical (Fig. 9).

In Fig. 10, att = 1000 s and forN = 1000, for 470≤ x ≤
530 m, the water surface profile for the schemes T3_1, and T3_3
are presented. Taken Cr= 0.6, with b(x) given by Eq. (27),
it results 0.0095 ≤ Df ≤ 0.011 for N = 250. In Table 4, at
t = 1000 s, the valuesδh for the three schemes are reported.

4.4 Hydraulic jump problem with measured data

For this test, a rectangular horizontal channel, withL = 14 m
and b = 0.46 m, used for the experiments by Gharangik and
Chaudhry (1991) is assumed. In the first simulations, with a
Froude number Fr= 4.23, the initial conditions areh0(x) =
0.043 m andU0(x) = 2.737 m/s. The boundary conditions
are h(0, t) = 0.043 m, U(0, t) = 2.737 m/s andh(L, t) =
0.222 m. Manning’s roughness coefficient has been takennm =
0.0075 m−1/3s, the space interval�x = 0.1 m, and the Courant
number Cr = 0.6, so Df = 0.00178 results. In Fig. 11, the
steady-state profiles, computed att = 150 s, with T3_1 and T3_3
schemes are presented in the shock region, with measured data.

Later, with Fr = 6.65, the initial and boundary conditions
areh0(x) = 0.024 m,U0(x) = 3.255 m/s,h(0, t) = 0.024 m,
U(0, t) = 3.255 m/s, andh(L, t) = 0.195 m. Takennm =
0.0070 m−1/3 s, �x = 0.1 m, Cr = 0.6, Df = 0.00362 results.
The steady-state profiles, att = 150 s, for these simulations are
shown in Fig. 12.

Figure 9 Exact solution.

Figure 10 Water profile, att = 1000 s, and forN = 1000, at
470≤ x ≤ 530 m, for T3_1, and T3_3 schemes.

Table 4 Errorsδh, at t = 1000 s, for the various scheme

N T3_1 T3_2 T3_3

250 1.576129 6.3492E-1 5.9061E-1
500 1.146651 4.1781E-1 3.8890E-1

1000 8.1590E-1 2.8871E-1 2.6699E-1
2000 5.7832E-1 2.0407E-1 1.8666E-1
4000 4.1161E-1 1.4465E-1 1.3119E-1
8000 2.9373E-1 1.0397E-1 9.4615E-2

Figure 11 Hydraulic jump profiles for Fr= 4.23.
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Figure 12 Hydraulic jump profiles for Fr= 6.65.

5 Conclusions

A third-order numerical model for the solution of non-
homogeneous system of Saint-Venant equations, governing
open-channel flow, has been proposed. The time explicit dis-
cretization has been obtained by Taylor series expansion in a
factorized form. The space integration, following Godunov-
type central scheme approach, has been carried out by using
piecewise-quadratic polynomial. The stability analysis and the
numerical properties have been studied. In particular, disper-
sion errors, by increasing the Courant number and instability,
which is consequent to the antidissipation by increasing the fric-
tion parameter have been detected. However, in the model, this
effects are limited from the flux limiter introduced. The numer-
ical simulations, carried out in extreme conditions deal with
dam-break, in a horizontal and frictionless channel, hydraulic
jump phenomenon in prismatic and non-prismatic channels with
bed topography, and in laboratory channels, shows the high-
resolution representations obtained by the third-order scheme
here proposed.

Notation

A = Cross-sectional area
b = Free-surface width
c = Celerity

Cr = Courant number
Df = Dimensionless friction parameter
f = Flux vector
Fr = Froude number
g = Gravitational acceleration

ga, gn = Analytical and numerical amplification factor
h = Water depth
i = Imaginary unit

I1, I2 = Pressure force integrals
J = Jacobian matrix of the flux vector
K = Matrix of the source terms
L = Length of simulation domain

nm = Roughness coefficient of Manning’s formula
m = Dimensional wave number
P = Wetted-perimeter
p = Dimensionless wave number

Q = Discharge
R = Hydraulic radius
r = Dimensional friction parameter

Rc, Rd = Celerity and amplitude ratio
S0, Sf = Bottom and friction slope

t, x = Time and space
U = Mean velocity
u = Flow variables vector
z = Source terms vector
β = Temporal frequency
δ = RelativeL2-error defined by Eq. (26)

�t, �x = Time and space interval
η = Height above the bed channel
ϑ = Non-linear limiter defined by Eq. (13)
λ = Mesh ratio
σ = Channel width at distanceη from bed

φa, φn = Analytical and numerical phase angle
� = Spatial domain.
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