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Abstract

Until recently, numerical simulations of discontinuities in highly super-Alfvénic plasmas have been severely lim
comparatively crude resolution and accuracy. Significant progress in the numerical simulation of such plasmas was
with the recently implementedCentral Weighted Essentially Non-Oscillatory(CWENO) scheme. Combining this techniq
with that of adaptive mesh refinement (AMR), we have developed a third-order numerical scheme, which is able to e
capture strong gradients on spatial scales being small compared to the overall scale of the plasma system considere
first describe important algorithmic aspects of the scheme as well as the physics included in it. Second, we present the
various performance tests. And, third, we illustrate its application to ‘real world problems’ using the example of the dy
of a Sedov-type explosion.
 2003 Elsevier B.V. All rights reserved.
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1. Motivation

The motivation for developing a new numeric
scheme was two-fold. First, a correct and insigh
treatment of various plasma systems in both labora
and space plasmas requires the resolution of sc
being very small compared to the extent of the
tire system. In laboratory plasmas typical small sc
problems occur in the context of fast reconnect
(Biskamp [1]) in the sawtooth crash, where the d
namics on the macroscale (several meters) is de
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mined by instabilities and turbulence on the elect
skin depth (∼0.05 cm). In space plasmas the situ
tion is similar. Plasma contact or tangential disco
nuities as well as shocks can be as narrow as the
tron inertial length (Le = c/ωpe� 103 km), and, there-
fore, are often extremely short compared with ty
cal system scale lengths like the diameter of a pla
tary magnetosphere (rMagn.,Earth≈ 105...6 km), the so-
lar radius (r� ≈ 7× 105 km), or an Astronomical Uni
(1 AU ≈ 1.5× 1011 m), see, e.g., the reviews in Ts
rutani and Stone [2].

Second, there is the numerical challenge to res
narrow, potentially discontinuous, small-scale str
tures in extended systems with several (phase) s
.
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dimensions without producing numerical artifacts li
oscillations or even unphysical solutions (as, e.g.,
cussed by LeVeque [3] and LeVeque et al. [4]). S
eral numerical difficulties have been addressed w
the development of special techniques. For exa
ple, the detailed treatment of extended, non-locali
systems with a simultaneous resolution of inter
small-scale structures can be achieved withadaptive
mesh refinement(AMR), see, e.g., Friedel et al. [5
and Grauer et al. [6]. Oscillations can be suppres
with new numerical schemes like thecentral weighted
essentially non-oscillatory(CWENO) algorithm pro-
posed recently by Levy et al. [7,8] and Kurganov a
Levy [9] for the numerical solution of systems of h
perbolic partial differential equations.

With the present study we report on an MHD-bas
evaluation of the first numerical scheme that combi
the CWENO algorithm with a block-structured AM
technique.

In the following, we describe the physics contain
in the newly developed code (Section 2) and the
merical approach taken to solve the relevant equat
(Section 3). We report in detail about the code per
mance for a set of standard tests (Section 4), and
illustrate the application to the ‘real world’ problem
a Sedov explosion (Section 5). Finally, we conclu
with a summary of the results and a brief discussion
prospective applications (Section 6).

2. Model equations

For the purpose of testing as well illustratin
the computational approach discussed in the pre
paper, the numerical solution of the following set
nonlinear, normalized MHD equations is considere

(1)∂tρ = −∇ · (ρv),

(2)∂t (ρv)= −∇ · (ρvv + (p +B2/2)11 − BB
)
,

(3)∂tB = −∇ · (vB − Bv),

(4)∂t e = −∇ · [(e+ p +B2/2)v − (v · B)B
]
.

These equations describe the time (t) evolution of
an ideally conducting, quasi-neutral electron–pro
plasma, considered as one fluid characterized by
mass densityρ, flow velocityv, magnetic fieldB, and
polytropic indexγ . The thermal pressure is given b
t

p = ρ T and the total energy density by

(5)e = p

γ − 1
+ ρv2

2
+ B2

2
.

The symbol11 in (2) is to be understood as(11)ij =
δij .

3. Numerical approach

3.1. The CWENO algorithm

The hyperbolic system of Eqs. (1) to (4) can
written in the form

(6)∂tu + ∂xf (u)= Q(x, t,u, ∂xu),

where the quantityu = u(x, t), the nonlinear convec
tive flux f = f (u) and the source termQ are vector-
valued functions of the spatial vectorx and timet . The
basic idea is to separate the ‘conservation law’ p
(equations withQ = 0) from the sources.

During the last decade, significant progress
been made regarding the numerical solution of s
tems of hyperbolic conservation laws. Besides R
mann or approximate Riemann solvers [3], the prom
ing concept of weighted essentially non-oscillato
(WENO) schemes, a review of which is given
Shu [10], has been developed. One of the latest
provements is a central WENO, or CWENO, intr
duced by Levy et al. [7,8]. The main advantage
the CWENO scheme is simplicity: one only has
know an estimate of the maximum propagation spe
of perturbations, and there is no need to solve a R
mann problem. We employ the CWENO techniq
and, therefore for completeness, proceed to desc
the basic idea of a third-order, semi-discrete CWE
algorithm as it was proposed by Kurganov and Le
[9]. For simplicity of the argument, only the on
dimensional case is treated here. (Consequently,x and
u denote one component of the vectorsx andu, not
their lengths.)

To solve (6) for the caseQ = 0 on a spatial grid
of cell size�x, the functionu in each cellIj :=
[xj−1/2, xj+1/2] is approximated by a polynomia
Pj (x). This allows to define the cell averageūnj (the
lower horizontal lines in Fig. 1) ofu(x) at time t =
tn := n �t and positionx = xj+1/2 := (j + 1/2) �x
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(7)

ūnj+1/2 := 1

�x

( xj+1/2∫
xj

Pj (x)dx +
xj+1∫

xj+1/2

Pj+1(x)dx

)
.

Sampling (6) at the cells[xj , xj+1] and integrating
from tn to tn+1 then yields

ūn+1
j+1/2 = ūnj+1/2 − 1

�x

tn+1∫
tn

[
f
(
u(xj+1, τ )

)
(8)− f

(
u(xj , τ )

)]
dτ.

The accuracy of̄un+1 in (8) depends on the choic
of the polynomialsPj and the method by which th
integral is evaluated. The CWENO scheme uses
Pj a convex sum of two linear polynomialsPL,j and
PR,j , and one parabolaPC,j centered atxj :

(9)Pj (x)=
∑

α∈{R,C,L}
gαPα,j (x)

with
∑

α gα = 1 andgα > 0.PC,j is defined by

(10)
∑

α∈{R,C,L}
cαPα,j (x)= Pexact,j ,

where PL,j , PR,j and Pexact,j reproduce the cel
averages(ūj−1, ūj ), (ūj , ūj+1) and(ūj−1, ūj , ūj+1),
respectively. That is,PR,j (xj ) = ūj , PR,j (xj+1) =
ūj+1 and analogously forPL,j and Pexact,j . For a
central scheme, thecα are chosen symmetrically, e.g
cL = cR = 1/4, cC = 1/2, which can be shown t
guarantee third-order accuracy.

Many other schemes tend to produce numer
artifacts (oscillations) at strong gradients. CWEN
avoids this by checking the difference(unj − unj±1)

to neighboring cells and by adjusting the weightsgj
for the polynomial reconstruction such that the s
which varies least provides the largest contribution
the construction ofPj , while in smooth regions, a
components contribute equally. The polynomials
shown as bold curves in Fig. 1.

The polynomials obtained from the procedure
scribed above are continuous within each cell but
across the cell boundaries. Consequently, there are
continuities that propagate with characteristic velo
ties, like that of the fast mode in the MHD case.
-

Fig. 1. CWENO differencing. The representation ofu using cell
polynomials (bold curves) causes discontinuities at the cell bo
aries which propagate within the Riemann fans (wedge-shape
eas). Both grids, smooth and non-smooth, are integrated in time
then projected back onto the uniform grid. Adopted from Kurgan
and Levy [9].

order to estimate the location of these propagating
continuities, we introduce an upper thresholdaj for
their propagation velocity. Thus, the discontinuity li
within a triangular area in(x, t) space bounded by tw
linesx = xj+1/2 ± aj (t − tn), the so-called Rieman
fan (wedge-shaped areas in Fig. 1). The time inte
tion is now performed separately in both the smo
region and the Riemann fans by a standard num
cal stepping scheme like Runge–Kutta. This lead
new cell averages�wn+1

j (smooth region) and�wn+1
j+1/2

(Riemann fan). From these values we again rec
struct polynomials̃wn+1

j andw̃n+1
j+1/2 with the above-

mentioned algorithm. The cell-averagesun+1
j on the

original grid at the new time (upper part of Fig. 1) c
now be computed from these three contributions w
a formula similar to Eq. (8).

3.2. Adaptive mesh refinement

The idea of adaptive mesh refinement is nea
hand. Starting with one grid of given resolution (
most of our three-dimensional configurations we c
rently chose 60× 60 × 60 mesh points), the MHD
equations (1) to (4) are solved with the CWEN
scheme as described above. After a certain num
of time steps, it is checked whether the local num
ical resolution is still sufficient on the entire grid.
finer grids are needed, a first local refinement is car
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out. In order to prepare for it, the points where the
ror of discretization exceeds a given value are mark
In addition to these grid points, adjacent ones are
cluded. These marked points of insufficient numer
resolution have to be covered with rectangular gr
of finer resolution as efficiently as possible. Our alg
rithm for this purpose is very similar to the one us
by Berger and Colella [11], and was described in
tail by Friedel et al. [5]. On the grids of the newly bu
level, the spatial discretization length and the time s
are reduced by a factor of 2. The new grids are fil
with data obtained by interpolation from the preced
coarser level. The integration advances on both le
until the resolution again becomes locally insufficie
The rebuilding of the grid hierarchy starting with th
current level and proceeding on all subsequent le
begins when the above-mentioned error threshol
locally exceeded, e.g., if the regions of strong gra
ents have moved out of the region covered with fi
grids, or if additional local gradients have develop
such that the prescribed accuracy is no longer g
anteed. The points of insufficient numerical resolut
are collected on all grids of each level. On the ba
of the resulting list, new grids are generated. After
suring that the latter are properly embedded in th
parent grids, interpolated data are filled in. If data
isted on grids of the same level before the regridi
these are used instead of the data interpolated from
parent grids.

The length of the time step is dynamically adap
to ensure that the Courant–Friedrich–Levy condit
is met at all times.

The implementation of the adaptive mesh refi
ment strategy is done in C++. Handling of the d
structures is separated from the problem under c
sideration. Therefore, it is relatively easy to use
code for other types of problems, like, e.g., the thr
dimensional incompressible Euler equations [6].
implemented the parallelization using POSIX threa
so that the code is actually portable but restricted
work on shared memory machines.

4. Numerical tests and performance evaluation

Since the publication of the now ‘classical’ p
per by Sod [12] establishing the one-dimensio
“shock tube” problem as a standard test for numer
schemes, an entire suite of one- and two-dimensi
test cases has become available (see, e.g., S
et al. [14]). While it appears that three-dimensio
standards have not yet been developed to the s
level, some can be constructed straightforwardly.

In this and the following section the potential
the new approach is demonstrated by discussing
performance for a number of test problems in o
two and three spatial dimensions (see, e.g., Fry
et al. [13]).

4.1. The hydrodynamical advection problem

In order to see how the code handles flow proble
in planar geometries, we consider the following
duced system of partial differential equations for d
sity ρ = ρ(x, t) and velocityv = v(x, t)

(11)∂tρ + ∂x(ρv) = 0,

(12)∂t (ρv)+ ∂x(ρv
2) = 0,

which is obtained by substitutingp = 0 andB = 0
into the one-dimensional version of our Eqs. (1) a
(2). Subjected to the initial conditions

(13)ρ(x,0)= ρ0(x) and v(x,0)= v0,

this so-called advection problem is easily shown
have

(14)ρ(x, t)= ρ0(x − v0t),

(15)v(x, t) = v0

as analytical solution. The initial density profile
thus, simply advected with constant fluid speedv0
without changing its shape. Therefore, any deform
tion thatdoesoccur must be a numerical artifact. A
vection test of this type were proposed by, e.g., Bo
and Book [15]. Fig. 2 shows advection runs for diffe
ent spatial resolutions using the box-shaped functi

(16)ρ0(x) :=
{

1.2 if |x| � 1/3,

1.0 otherwise

as initial profile. While the numerically caused asy
metric deformation of the density pulse is obvious,
comparatively large value of about 10 percent mer
reflects the effect of numerical dissipation on the
physically large gradient present at the steps.
‘dissipation zone’ on the lower panel of Fig. 2 on
spans a few grid cells and clearly diminishes in s
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Fig. 2. Advection runs using (16) as initial profile andv0 = 0.5
on the periodic domainx ∈ [−1,1]. Upper panel: profiles a
t = 4 (i.e. after one domain pass, dotted) for different values
spatial resolution (256, 512, and 1024 grid points) vs. their in
counterpart (16) (solid). Lower panel: Point-wise absolute devia
from the expected shape.

with growing resolution. Note in particular the a
sence of oscillatory artifacts known from convention
schemes.

For the preceding computations, the direction
bothv and the gradient ofρ were oriented parallel to
thex-axis, such that for this truly one-dimensional s
ting, only a few grid points in they- andz-direction
were required for using the three-dimensionally cod
CWENO scheme. However, since the results sho
be independent of our choice of coordinates, we a
considered the above setting in an implementa
were the system’s plane of symmetry makes an
gle ϑ �= 0◦ with the x-axis. While the physical situa
tion of course remains unchanged, the code no lon
Fig. 3. Oblique advection runs at orientationsϑ ∈ {0◦,30◦,45◦}
using a mesh resolution which corresponds to 256 grid point
the direction of motion (e.g., 256/cosϑ and 256/sinϑ in x and
y direction, respectively). Upper panel: density profiles after
domain pass. Below: absolute deviation ofϑ ∈ {30◦,45◦} runs
from the reference profileϑ = 0◦ . Parameters used are those of
parallel runs above.

‘knows’ about the symmetry of the problem. Neve
theless, the generated data must still correctly re
duce the expected profile in the rotated frame of
erence. That this is indeed the case is demonstr
by the results displayed in Fig. 3. Evidently, the d
viations due to the rotated frame of reference, a
thus, due to multi-dimensional modeling are within
few percent relative to each other. The smoothnes
these plots should be attributed to the fact that thes
clined cuts were produced by linear interpolation o
the rectangular grid. Note also that, while the setti
of Figs. 2 and 3 describe the same physical probl
the underlying numerical problems, however, are q
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different: in the first case, the propagation is paralle
the grid, while it is inclined (and thus 2D) in the la
ter case. In the limit of infinitely small grid size, the
discrepancies should of course disappear.

4.2. Shock tube problems

The ‘shock tube’ problem (Riemann problem) w
first used by Sod [12] to examine a code’s abil
to handle strong gradients and to correctly reprod
the Rankine–Hugoniot jump conditions: two homog
neous domains of different gas pressures and dens
are separated by a membrane. Being initially at
in both domains, the fluid will develop various typ
of propagating discontinuities as soon as said m
brane is removed. For the emerging time-depend
(but self-similar) profiles, semi-analytic solutions a
known and may, thus, be used to evaluate the co
reliability for this important class of simulations.

We have investigated simulations using both So
original parameters as well as the ‘strong shock tu
problem (see Fryxell et al. [13], Calder et al. [16
which, due to its rather extreme choice of numbe
poses an even tougher test case. This purely hy
dynamic setting has been extended to include m
netic fields by Brio and Wu [17] in two fashions: Th
case with a field component (say,By ) parallel to the
shock plane (henceforth ‘BW1’) can be reduced
the purely hydrodynamic problem by simply substit
ing p → p +B2

y/2, while an additional perpendicula
componentBx = Bx0 �= 0 no longer permits an ana
lytic solution. (This case will be referred to as ‘BW
from here on). Table 1 summarizes the relevant ini
conditions on both sides of the membrane.

Since, by construction, shock tube problems alw
feature both strong gradients and regions of unifo
flow properties, they represent an ideal test case
our AMR algorithm. All runs presented below we
done using an initial grid resolution of 128 points. T
AMR routine was activated to identify the locatio
of discontinuities and to subsequently double
resolution around them (multiple times if require
thus reaching an effective resolution of 1024 poin
The panels of Figs. 4 and 5 illustrates the cod
performance for this suite of standard shock tu
problems. The quality of the results is evident wh
compared to those obtained by, e.g., LeVeque et al.
Calder et al. [16] and Ryu and Jones [18] for t
standard, strong, and magnetic shock tube prob
respectively. Note that a grid refinement not o
occurs at discontinuities in the solution curves,
also at locations of strong changes in their gradien

5. Sedov explosion

The Sedov test case [19] of a spherical explos
into a homogeneous medium is well suited to test
symmetry properties of the code. All the initial ener
of the explosion is deposited in a localized reg
around the origin. To be more specific, the localiz
region has a radius of sizeδr = 0.01, inside of which
the pressure for the three-dimensional problem
given by

(17)pinside= 3(γ − 1)

4π(δr)3
.

Outside this region the pressure is set constan
poutside= 10−5, while the density is set toρ = 1
everywhere. The initial resolution was set to 643 mesh
points with two levels of refinement, corresponding
an effective resolution of 2563 mesh points. Although
the resulting fronts of the developing (self-simila
blast wave (see Fig. 7) are very steep, their profiles
sharp and completely void of any oscillatory artifac
Note also that the code retains the problem’s ra
symmetry with respect to the origin.
Table 1
Values of density, pressure, magnetic field, and adiabatic exponentγ for the shock tube simulation

ρleft ρright pleft pright By,left By,right Bx γ

Standard 1 0.125 1 0.1 – – – 1.4

Strong shock 10 1 100 1 – – – 1.4

BW 1 1 0.125 1000 0.1 1 −1 – 2

BW 2 1 0.125 1000 0.1 1 −1 0.75 2
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Fig. 4. Profiles of density (upper panel), velocity (middle panel), and gas pressure (lower panel) for both the standard shock tube p
time t = 0.2 (left) and for the strong shock tube problem att = 0.4 (right). Shading indicates the sections at which the initial resolution
refined by a factor of two, four, and eight, respectively.
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The computational process which defines the
cation of refinement areas will generally result in
asymmetric distribution of blocks, even if the under
ing physical problem is void of any such asymmetri
(For a detailed description of the regriding algorith
see Friedel et al. [5].) Therefore, a planar cut throu
the computational domain (as shown on the left pa
of Fig. 7) cannot capture the full block structure info
mation. The 3D rendering of Fig. 6 may thus serve
a better illustration of the refinement process.
6. Summary and outlook

A new code for the time-dependent modeling
3D MHD problems is presented. In order to impro
in particular, the study of plasma discontinuities,
code is developed as a numerical realization of
so-called CWENO scheme combined with the c
cept of adaptive mesh refinement. While the first i
powerful state-of-the-art attempt to suppress unph
ical oscillations when computing discontinuities, t
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s,
Fig. 5. Profiles of density, gas pressure, and velocity for the MHD shock tube problem ‘BW2’ at timet = 0.1. In addition to the previous panel
thev andB field component parallel to the shock plane are shown. The perpendicular magnetic field componentBx stays equal to its initial,
constant value (not shown here).
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second provides for high resolution of the latter. Bo
achievements are desirable prerequisites for a refi
investigation of plasma discontinuities, particularly f
shocks in space plasmas. The knowledge of the
tailed structure of such shocks is, for example,
quired for an insightful comparison with data and
important for an understanding of particle accele
tion.

The present paper serves to describe the
code and to demonstrate its reliability by app
ing it to a set of standard test problems (pulse
vection, shock tubes, Sedov explosion) in one,
and three space dimensions. The numerical s
tion of these problems indicate the potential of
CWENO-based approach to model time-depend
multi-dimensional MHD problems requiring high sp
tial resolution.

With forthcoming work, we intend to employ th
new tool for a study of structures in space plasm
which are increasingly gaining interest in the cont
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from two

rimposed.
Fig. 6. Volume rendering of the energy distribution of a Sedov explosion at time 0.05, showing also covering with adaptive meshes
levels of refinement.

Fig. 7. Left: Plane cut through the origin showing the energy distribution at time 0.05 as a surface plot, again with refined areas supe
Right: One-dimensional cut though the origin showing energy density at timet = 0.05 (scaled by a factor 104) andt = 0.
ndi-
ep
of
ady

-
ded
of space weather, i.e. the time-varying plasma co
tions in the Earth vicinity. The results of a first st
along this line of modeling, namely a simple model
an eruptive disturbance leaving the Sun, have alre
been presented in Kleimann et al. [20].
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