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Abstract

Until recently, numerical simulations of discontinuities in highly super-Alfvénic plasmas have been severely limited by
comparatively crude resolution and accuracy. Significant progress in the numerical simulation of such plasmas was achieved
with the recently implemente@entral Weighted Essentially Non-Oscillatof@ WENO) scheme. Combining this technique
with that of adaptive mesh refinement (AMR), we have developed a third-order numerical scheme, which is able to efficiently
capture strong gradients on spatial scales being small compared to the overall scale of the plasma system considered. Here, we
first describe important algorithmic aspects of the scheme as well as the physics included in it. Second, we present the results of
various performance tests. And, third, we illustrate its application to ‘real world problems’ using the example of the dynamics
of a Sedov-type explosion.
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1. Motivation mined by instabilities and turbulence on the electron
skin depth £0.05 cm). In space plasmas the situa-
The motivation for developing a new numerical tion is similar. Plasma contact or tangential disconti-
scheme was two-fold. First, a correct and insightful nuities as well as shocks can be as narrow as the elec-
treatment of various plasma systems in both laboratory tron inertial length Le = c/wpe S 10° km), and, there-
and space plasmas requires the resolution of scalesfore, are often extremely short compared with typi-
being very small compared to the extent of the en- cal system scale lengths like the diameter of a plane-
tire system. In laboratory plasmas typical small scale tary magnetosphereagn, Earth ~ 10°-6 km), the so-
problems occur in the context of fast reconnection |ar radius (¢ &~ 7 x 10° km), or an Astronomical Unit
(Biskamp [1]) in the sawtooth crash, where the dy- (1 AU ~ 1.5 x 10! m), see, e.g., the reviews in Tsu-
namics on the macroscale (several meters) is deter-rytani and Stone [2].
Second, there is the numerical challenge to resolve
~* Corresponding author. narrow, potentially discontinuous, small-scale struc-
E-mail addressjk@tp4.ruhr-uni-bochum.de (J. Kleimann). tures in extended systems with several (phase) space
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dimensions without producing numerical artifacts like p = p T and the total energy density by
oscillations or even unphysical solutions (as, e.g., dis- 5 5

cussed by LeVeque [3] and LeVeque et al. [4]). Sev- ,_ P PV B_. (5)
eral numerical difficulties have been addressed with y—-1 2 2

the development of special techniques. For exam- The symbolll in (2) is to be understood adl);; =
ple, the detailed treatment of extended, non-localized s,
systems with a simultaneous resolution of internal
small-scale structures can be achieved veittaptive
mesh refinemenfAMR), see, e.g., Friedel et al. [5]
and Grauer et al. [6]. Oscillations can be suppressed
with new numerical §chemes like thentral yveighted 3.1. The CWENO algorithm
essentially non-oscillatorflCWENO) algorithm pro-
posed recently by Levy et al. [7,8] and Kurganov and
Levy [9] for the numerical solution of systems of hy-
perbolic partial differential equations.

With the present study we reporton an MHD-based 4 3, r(u) = Q(x, ¢, u, axu), (6)
evaluation of the first numerical scheme that combines
the CWENO algorithm with a block-structured AMR ~ Where the quantityl = u(x, 1), the nonlinear convec-
technique. tive flux f = f(u) and the source ter® are vector-

In the f0||owing1 we describe the physics contained valued functions of the Spatial vecbonnd timer. The
in the new|y deve|oped code (Section 2) and the nu- basic idea is to Separate the ‘conservation law’ part
merical approach taken to solve the relevant equations (€quations withQ = 0) from the sources.
(Section 3). We report in detail about the code perfor- ~ During the last decade, significant progress has
mance for a set of standard tests (Section 4), and webeen made regarding the numerical solution of sys-
illustrate the application to the ‘real world’ problem of ~tems of hyperbolic conservation laws. Besides Rie-
a Sedov explosion (Section 5). Finally, we conclude Mmann or approximate Riemann solvers [3], the promis-

with a summary of the results and a brief discussion of INg concept of weighted essentially non-oscillatory
prospective applications (Section 6). (WENO) schemes, a review of which is given by

Shu [10], has been developed. One of the latest im-
provements is a central WENO, or CWENO, intro-
2. Model equations duced by Levy et al. [7,8]. The main advantage of
the CWENO scheme is simplicity: one only has to
For the purpose of testing as well illustrating KNOW an estimate of the maximum propagation speeds
the computational approach discussed in the presentC! Perturbations, and there is no need to solve a Rie-
paper, the numerical solution of the following set of Mann problem. We employ the CWENO technique

nonlinear, normalized MHD equations is considered: aNd; therefore for completeness, proceed to describe
the basic idea of a third-order, semi-discrete CWENO

dp=—V-(pV), (1) algorithm as it was proposed by Kurganov and Levy
2 [9]. For simplicity of the argument, only the one-
0 (pv) ==V (pwW + (p+ B°/2)11-BB), (2) dimensional case is treated here. (Consequentnd
B=—-V.(vB—Bv), 3) u denote one component of the vectarandu, not
_ 2 their lengths.)
de=—V- [(e Tt BT/2v=(v: B)B]' “) To solve (6) for the cas@® = 0 on a spatial grid
These equations describe the timgdvolution of of cell size Ax, the functionu in each cell; :=
an ideally conducting, quasi-neutral electron—proton [x;_1/2, x;11/2] iS approximated by a polynomial
plasma, considered as one fluid characterized by its P;(x). This allows to define the cell averag‘tjé (the
mass density, flow velocityv, magnetic fieldB, and lower horizontal lines in Fig. 1) ofi(x) at timer =
polytropic indexy. The thermal pressure is given by " :=n At and positiony = x ;112 := (j +1/2) Ax

3. Numerical approach

The hyperbolic system of Egs. (1) to (4) can be
written in the form
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u

as
Xj+1/2 Xj+1

_ 1

Wji1y2'= E( / Pj(x) dx +

Xj

Pj+l(x) dx)
Xj+1/2

(7
Sampling (6) at the cell$x;, x; 1] and integrating
from 1" to "1 then yields

t)H»l

f [f(uxjy1. 7))

tn

. 1
Uj+12 7 A

+1
Wit1/2=

— f(uxj,v)]dr.  (8)

The accuracy ofi"*! in (8) depends on the choice
of the polynomialsP; and the method by which the
integral is evaluated. The CWENO scheme uses for
P; a convex sum of two linear polynomial} ; and
PRr,j, and one parabolBc ; centered at;:

Pix)= > gaPuj(x) 9)
ae{R,C L}
with >, g« =1 andg, > 0. Pc ; is defined by
Z CaPa,j(x)=Pexactj, (10)

ae{R,C,L}

where P ;j, Pr; and Pexact; reproduce the cell
average$ﬁj_1, I/_tj), (I/_tj, ﬁj+1) and(ﬁj_l, I/_tj, ﬁj+1),
respectively. That iS,Pr j(x;) = ij, Prj(xj+1) =
ij+1 and analogously forPL ; and Pexactj. For a
central scheme, thg, are chosen symmetrically, e.g.,
cL. = cr = 1/4, cc = 1/2, which can be shown to
guarantee third-order accuracy.

Many other schemes tend to produce numerical
artifacts (oscillations) at strong gradients. CWENO
avoids this by checking the difference’; — u”, )
to neighboring cells and by adjusting the weiggis
for the polynomial reconstruction such that the side
which varies least provides the largest contribution to
the construction ofP;, while in smooth regions, all
components contribute equally. The polynomials are
shown as bold curves in Fig. 1.

The polynomials obtained from the procedure de-

49

Fig. 1. CWENO differencing. The representation ofusing cell
polynomials (bold curves) causes discontinuities at the cell bound-
aries which propagate within the Riemann fans (wedge-shaped ar-
eas). Both grids, smooth and non-smooth, are integrated in time and
then projected back onto the uniform grid. Adopted from Kurganov
and Levy [9].

order to estimate the location of these propagating dis-
continuities, we introduce an upper thresheldfor
their propagation velocity. Thus, the discontinuity lies
within a triangular area i, ¢) space bounded by two
linesx =xjy1/2 = a;(t —t"), the so-called Riemann
fan (wedge-shaped areas in Fig. 1). The time integra-
tion is now performed separately in both the smooth
region and the Riemann fans by a standard numeri-
cal stepping scheme like Runge—Kutta. This leads to
new cell averaged’** (smooth region) and@’ 7 ,
(Riemann fan). From these values we again recon-

struct polynomlalm)Tr and w'j?il 12 With the above-

mentioned algorithm. The cell-averages™ on the
original grid at the new time (upper part of Fig. 1) can
now be computed from these three contributions with
a formula similar to Eq. (8).

3.2. Adaptive mesh refinement

The idea of adaptive mesh refinement is near at
hand. Starting with one grid of given resolution (in
most of our three-dimensional configurations we cur-
rently chose 60< 60 x 60 mesh points), the MHD
equations (1) to (4) are solved with the CWENO

scribed above are continuous within each cell but not scheme as described above. After a certain number
across the cell boundaries. Consequently, there are dis-of time steps, it is checked whether the local numer-
continuities that propagate with characteristic veloci- ical resolution is still sufficient on the entire grid. If
ties, like that of the fast mode in the MHD case. In finer grids are needed, afirst local refinement s carried
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out. In order to prepare for it, the points where the er-
ror of discretization exceeds a given value are marked.
In addition to these grid points, adjacent ones are in-
cluded. These marked points of insufficient numerical
resolution have to be covered with rectangular grids
of finer resolution as efficiently as possible. Our algo-
rithm for this purpose is very similar to the one used
by Berger and Colella [11], and was described in de-
tail by Friedel et al. [5]. On the grids of the newly built
level, the spatial discretization length and the time step
are reduced by a factor of 2. The new grids are filled
with data obtained by interpolation from the preceding

coarser level. The integration advances on both levels

until the resolution again becomes locally insufficient.

The rebuilding of the grid hierarchy starting with the

current level and proceeding on all subsequent levels
begins when the above-mentioned error threshold is
locally exceeded, e.g., if the regions of strong gradi-
ents have moved out of the region covered with finer
grids, or if additional local gradients have developed,
such that the prescribed accuracy is no longer guar-
anteed. The points of insufficient numerical resolution

are collected on all grids of each level. On the basis
of the resulting list, new grids are generated. After as-
suring that the latter are properly embedded in their
parent grids, interpolated data are filled in. If data ex-
isted on grids of the same level before the regriding,
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schemes, an entire suite of one- and two-dimensional
test cases has become available (see, e.g., Stone
et al. [14]). While it appears that three-dimensional
standards have not yet been developed to the same
level, some can be constructed straightforwardly.

In this and the following section the potential of
the new approach is demonstrated by discussing its
performance for a number of test problems in one,
two and three spatial dimensions (see, e.g., Fryxell
et al. [13]).

4.1. The hydrodynamical advection problem

In order to see how the code handles flow problems
in planar geometries, we consider the following re-
duced system of partial differential equations for den-
sity p = p(x, t) and velocityv = v(x, 1)

3 p + dx(pv) =0, (11)
3 (pv) + 8 (pv?) =0, (12)

which is obtained by substituting =0 andB =0
into the one-dimensional version of our Egs. (1) and
(2). Subjected to the initial conditions

p(x,0) = po(x) (13)

this so-called advection problem is easily shown to
have

and v(x,0) =y,

these are used instead of the data interpolated from the

parent grids.

The length of the time step is dynamically adapted
to ensure that the Courant—Friedrich—Levy condition
is met at all times.

The implementation of the adaptive mesh refine-

(14)
(15)

as analytical solution. The initial density profile is,
thus, simply advected with constant fluid speegd

p(x,t) = po(x — vot),
v(x,t) =vo

ment strategy is done in C++. Handling of the data without changing its shape. Therefore, any deforma-
structures is separated from the problem under con- tion thatdoesoccur must be a numerical artifact. Ad-
sideration. Therefore, it is relatively easy to use the vection test of this type were proposed by, e.g., Boris
code for other types of problems, like, e.g., the three- and Book [15]. Fig. 2 shows advection runs for differ-
dimensional incompressible Euler equations [6]. We ent spatial resolutions using the box-shaped function
implemented the parallelization using POSIX threads, { 12 if x| <1/3,

so that the code is actually portable but restricted to = .
yp pox) 1.0 otherwise
as initial profile. While the numerically caused asym-

work on shared memory machines.
metric deformation of the density pulse is obvious, its
comparatively large value of about 10 percent merely
reflects the effect of numerical dissipation on the un-
Since the publication of the now ‘classical’ pa- physically large gradient present at the steps. The
per by Sod [12] establishing the one-dimensional ‘dissipation zone’ on the lower panel of Fig. 2 only
“shock tube” problem as a standard test for numerical spans a few grid cells and clearly diminishes in size

(16)

4. Numerical testsand performance evaluation
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Fig. 2. Advection runs using (16) as initial profile ang = 0.5

on the periodic domaine € [—1,1]. Upper panel: profiles at

t = 4 (i.e. after one domain pass, dotted) for different values of
spatial resolution (256, 512, and 1024 grid points) vs. their initial
counterpart (16) (solid). Lower panel: Point-wise absolute deviation
from the expected shape.

with growing resolution. Note in particular the ab-
sence of oscillatory artifacts known from conventional
schemes.

For the preceding computations, the direction of
bothv and the gradient op were oriented parallel to
thex-axis, such that for this truly one-dimensional set-
ting, only a few grid points in the- and z-direction
were required for using the three-dimensionally coded
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Fig. 3. Oblique advection runs at orientatiotise {0°, 30°, 45°}
using a mesh resolution which corresponds to 256 grid points in
the direction of motion (e.g., 23@0sy and 256 sin¢ in x and

y direction, respectively). Upper panel: density profiles after one
domain pass. Below: absolute deviation dfe {30°,45°} runs
from the reference profilé = 0°. Parameters used are those of the
parallel runs above.

‘knows’ about the symmetry of the problem. Never-
theless, the generated data must still correctly repro-
duce the expected profile in the rotated frame of ref-
erence. That this is indeed the case is demonstrated
by the results displayed in Fig. 3. Evidently, the de-
viations due to the rotated frame of reference, and,
thus, due to multi-dimensional modeling are within a

CWENO scheme. However, since the results should few percent relative to each other. The smoothness of
be independent of our choice of coordinates, we also these plots should be attributed to the fact that these in-
considered the above setting in an implementation clined cuts were produced by linear interpolation onto

were the system’s plane of symmetry makes an an-

gle v # 0° with the x-axis. While the physical situa-

the rectangular grid. Note also that, while the settings
of Figs. 2 and 3 describe the same physical problem,

tion of course remains unchanged, the code no longerthe underlying numerical problems, however, are quite
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different: in the first case, the propagationis parallelto AMR routine was activated to identify the location
the grid, while it is inclined (and thus 2D) in the lat- of discontinuities and to subsequently double the
ter case. In the limit of infinitely small grid size, these resolution around them (multiple times if required),

discrepancies should of course disappear. thus reaching an effective resolution of 1024 points.
The panels of Figs. 4 and 5 illustrates the code’s
4.2. Shock tube problems performance for this suite of standard shock tube

problems. The quality of the results is evident when
The ‘shock tube’ problem (Riemann problem) was compared to those obtained by, e.g., LeVeque et al. [4],
first used by Sod [12] to examine a code’s ability Calder et al. [16] and Ryu and Jones [18] for the
to handle strong gradients and to correctly reproduce standard, strong, and magnetic shock tube problem,
the Rankine—Hugoniot jump conditions: two homoge- respectively. Note that a grid refinement not only
neous domains of different gas pressures and densitiesyccurs at discontinuities in the solution curves, but

are separate(_j by a mer_nbra_me. Being init_ially at rest also at locations of strong changes in their gradients.
in both domains, the fluid will develop various types

of propagating discontinuities as soon as said mem-
brane is removed. For the emerging time-dependent
(but self-similar) profiles, semi-analytic solutions are
known and may, thus, be used to evaluate the code’s
reliability for this important class of simulations.

We have investigated simulations using both Sod’s
original parameters as well as the ‘strong shock tube’
problem (see Fryxell et al. [13], Calder et al. [16]),
which, due to its rather extreme choice of nhumbers,
poses an even tougher test case. This purely hydro-
dynamic setting has been extended to include mag- ",
netic fields by Brio and Wu [17] in two fashions: The 9'V€N by
case with a field component (say,) parallel to the 3(y -1
shock plane (henceforth ‘BW1’) can be reduced to Pinside= Inr)
the purely hydrodynamic problem by simply substitut-
ingp— p+ 33/2, while an additional perpendicular  Outside this region the pressure is set constant to
componentB, = B,o # 0 no longer permits an ana-  Poutside= 107>, while the density is set top =1
Iytic solution. (This case will be referred to as ‘BW2'  everywhere. The initial resolution was set to’Gdesh
from here on). Table 1 summarizes the relevant initial points with two levels of refinement, corresponding to
conditions on both sides of the membrane. an effective resolution of 25@mesh points. Although

Since, by construction, shock tube problems always the resulting fronts of the developing (self-similar)
feature both strong gradients and regions of uniform blast wave (see Fig. 7) are very steep, their profiles are
flow properties, they represent an ideal test case for sharp and completely void of any oscillatory artifacts.
our AMR algorithm. All runs presented below were Note also that the code retains the problem’s radial
done using an initial grid resolution of 128 points. The symmetry with respect to the origin.

5. Sedov explosion

The Sedov test case [19] of a spherical explosion
into a homogeneous medium is well suited to test the
symmetry properties of the code. All the initial energy
of the explosion is deposited in a localized region
around the origin. To be more specific, the localized
region has a radius of size = 0.01, inside of which
the pressure for the three-dimensional problem is

17)

Table 1
Values of density, pressure, magnetic field, and adiabatic expgrientthe shock tube simulation
Pleft Pright Dleft Pright By left By right By 14
Standard 1 a25 1 01 - - - 14
Strong shock 10 1 100 1 - - - 4
BW 1 1 0125 1000 QL 1 -1 - 2
BW 2 1 0125 1000 a 1 -1 0.75 2
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Fig. 4. Profiles of density (upper panel), velocity (middle panel), and gas pressure (lower panel) for both the standard shock tube problem at
time r = 0.2 (left) and for the strong shock tube probleny at 0.4 (right). Shading indicates the sections at which the initial resolution was
refined by a factor of two, four, and eight, respectively.

The computational process which defines the lo- 6. Summary and outlook
cation of refinement areas will generally result in an

asymmetric distribution of blocks, even if the underly- A new code for the time-dependent modeling of
ing physical problem is void of any such asymmetries. 3p MHD problems is presented. In order to improve,
(For a detailed description of the regriding algorithm jn particular, the study of plasma discontinuities, the
see Friedel et al. [5].) Therefore, a planar cut through code is developed as a numerical realization of the
the computational domain (as shown on the left panel so-called CWENO scheme combined with the con-
of Fig. 7) cannot capture the full block structure infor-  cept of adaptive mesh refinement. While the first is a
mation. The 3D rendering of Fig. 6 may thus serve as powerful state-of-the-art attempt to suppress unphys-
a better illustration of the refinement process. ical oscillations when computing discontinuities, the
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Fig. 5. Profiles of density, gas pressure, and velocity for the MHD shock tube problem ‘BW2’ at+iriel.. In addition to the previous panels,
the v and B field component parallel to the shock plane are shown. The perpendicular magnetic field confostyts equal to its initial,
constant value (not shown here).

second provides for high resolution of the latter. Both ing it to a set of standard test problems (pulse ad-
achievements are desirable prerequisites for a refinedvection, shock tubes, Sedov explosion) in one, two
investigation of plasma discontinuities, particularly for and three space dimensions. The numerical solu-
shocks in space plasmas. The knowledge of the de-tion of these problems indicate the potential of the
tailed structure of such shocks is, for example, re- CWENO-based approach to model time-dependent,
quired for an insightful comparison with data and is multi-dimensional MHD problems requiring high spa-
important for an understanding of particle accelera- tial resolution.
tion. With forthcoming work, we intend to employ the
The present paper serves to describe the newnew tool for a study of structures in space plasmas,
code and to demonstrate its reliability by apply- which are increasingly gaining interest in the context
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Fig. 6. Volume rendering of the energy distribution of a Sedov explosion at time 0.05, showing also covering with adaptive meshes from two
levels of refinement.

200000

100000

Energy

Fig. 7. Left: Plane cut through the origin showing the energy distribution at time 0.05 as a surface plot, again with refined areas superimposed.
Right: One-dimensional cut though the origin showing energy density attim@05 (scaled by a factor fands =0.
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